Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 植物科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29654
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor葉開溫
dc.contributor.authorPeng-Jen Chenen
dc.contributor.author陳鵬仁zh_TW
dc.date.accessioned2021-06-13T01:13:41Z-
dc.date.available2007-08-02
dc.date.copyright2007-08-02
dc.date.issued2007
dc.date.submitted2007-07-20
dc.identifier.citation陳淑鈺 (2001) 甘藷MAR sequence 的選殖與特性之研究。台灣大學植物學研究
所碩士論文
張孝齊(2005)甘藷sporamin基因啟動子上順向作用DNA片段之功能性分析與sporamin基因家族成員間變異性之研究。台灣大學植物學研究所碩士論文
杜金池、蕭吉雄、楊偉正主編 1994 台灣地區現有作物栽培品種名錄–十字花
篇.台灣省農業試驗所編印.151.
Bray, E. A. (1997). Plant response to water deficient. Trends in Plant Science 2: 48-54.
Broadway, R. M. and Duffy, S. S. (1986) Plant proteinase inhibitors: mechanism of action and effect on the growth and digestive physiology of larval Heliothis zea and Spodoptera exihua. Journal of Insect Physiology 32:827-833.
Burgess, E. P. J., Stevens, P. S., Keen, G. K., Laing, W. A., and Christeller, J. T.(1991) Effect of protease inhibitors and dietary protein level on the black field cricket Teleogryllus commodus.Entomologia Experimentialis et A ppl. 61:123-130.
Burrows, P. R., Barker, A. D. P., Newell, C. A., and Hamilton, W. D. O. (1998)
Pestic. Sci. 52:176-183.
Butler, L. G. (1989) Sorghum polyphenols. In : Toxicant of plant orgin, vol. IV,
phenolics, pp 95-122. Cheeke, P.R. ed., Boca Roton : CRC Press.
Carr. J. P. and Klessig, D. F.(1989)Genetic engineering-priciples and
methods. Vol. 11. ed J. K. Setlow. P. 65. Plenum Press. New York.
Chen, M. S., Johnson, B., Wen, L., Muthukrishnan, S., Kramer, K. J.,
Morgan, T. D., and Reeck, G. R. (1992) Rice cystatin: bacterial expression, purification, cysteine proteinase inhibitory activity and insect growth suppressing activity of a truncated form of the protein. Protein Expression and Purification 3:41-49.
Chen H. C., Klein A., Xiang M., Backaus R. A., and Kuntz M. (1998) Drought-
and wound-induced expression in leaves of a gene encoding a chromoplast carotenoid
-associated protein. Plant J. 14: 317-326.
Chen C.C., Kumar H.G. Ashok, Kumar Senthil, Tzean S.S., and Yeh K.W.(2007) Molecular Cloning, Characterization, and Expression of a Chitinase from the Entomopathogenic Fungus Paecilomyces javanicus. Current microbiology 55: 8–13.
Chen H.J.,Wang S.J., Chen C.C. , and Yeh K.W .(2006) New gene construction strategy in T-DNA vector to enhance expression level of sweet potato sporamin and insect resistance in transgenic Brassica oleracea. Plant Science 171:367–374.
Chet I.(1987)Trichoderma: application, mode of action, and potential as biocontrol agent of soilborne plant pathogenic fungi. In Innovative Approaches to Plant Disease Control Edited by Chet I. New York: John Wiley & Sons:137-160.
Darvill, A. G. and Albersheim, P. (1984) Phytoalexins and their elicitors:a defence
against microbial infection in plants. Annu. Rev. Plant Physiol. 35: 243-276.
Ding L. C., Hu C. Y., Yeh K. W., and Wang P. J.. (1998) Development of insect-
resistant transgenic cauliflower plants expressing the trypsin inhibitor gene isolated
from local sweet potato. Plant Cell Reports 17: 854-860.
Elad Y., Chet I. and Henis Y.(1982)Degradation of plant pathogenic fungi
by Trichoderma harzianum. Can J Microbiol 28:719-725.
EI-Sayed G. N., Coudron T. A., and Ignoffo C. M.(1989)Chitinolytic activity
and virulence associated with native and mutant isolates of the entomopathogenic fungus,Nomuraea ileyi. J. Invertr. Pathol. 54:394-403.
Flach J., Pilet PE. and Jolles P. (1992) What is new in chitinase research?
Experientia 48: 701-716.
Gatehouse, A. M. R., and Boulter, D., (1983) Assessment of the anti-metabolic effects of trypsin inhibitors from cowpea (Vigna unguiculata) and other legumes on development of the bruchid bettle Callosobruchus maculatus. Journal of the Science of Food and Agriculture. 34:345-350.
Gatehouse, A. M. R., Davison, G. M., Newell, C. A., Merryyweather, A.,
Hamilton, W. D. O., Burgess, E. P. J., Gilbert, R. J. C., and Gatehouse, J. A.,
(1997) Transgenic potato plants with enhznced resistance to the tomato month,
Lacanobia oleracea: growth room trails. Molecular Breeding 31:49-63.
George C. Allen1, Steven Spiker and William F. Thompson.(2000) Use of matrix attachment regions (MARs) to minimize transgene silencing. Plant Molecular Biology 43: 361–376, 2000.
Hamel F., Boivin R., Temblay C. and Bellemare G.(1997)Structural and
evolutionary relationships among chitinases of flowering plants. J Mol Evol 44:614
-624.
Haran S., Schickler H. and Chet I.(1996)Molecular mechanisms of lyric
enzymes involved in the biocontrol activity of Trichoderma harzianum. Microbiol 142:2321-2331.
Harman GE., Hayes CK., Lorito M., Broadway RM., Di Pietro A., Peterbauer
C. and Tronsmo A.(1993)Chitinolytic enzymes of Trichoderma harzianum:
purification of chitobiosidase and endochitinase. Phytopathology 83:313-318.
Hattori, T., Nakagawa, T., Maeshima, M., Nakamura, K., and Asahi, T. (1985)
Molecular clonging and nucleotide sequence of cDNA for sporamin, the major
soluble protein of sweet potato tuberous roots. Plant Mol. Biol. 5:313-320.
Hattori, T., Yoshide, N., and Nakamura, K. (1989) Structural relationship among
the members of a multigene family coding for the sweet potato tuberous root
storage protein. Plant Mol. Biol. 13:563-572.
Hayes CK., Klemsdal S., Lorito M., Di Pietro A., Peterbauer C., Nakas JP.,
Tronsmo A. and Harman GE.(1994)Isolation and sequence of an endochitinase-encoding gene from a cDNA library of Trichoderma harzianum. Gene 138:143-148.
Hilder, V. A., Gatehouse, A. M. R., Sheerman, S. E., Barker, R. F., and Boulter,
D., (1987) A novel mechanism of insect resistance engineered into tobacco. Nature 330:160-163.
Ichiro Kasajima, Yokoide, Naoko Ohkama-Ohtsu, Hiroaki Hayashi, Tadakatsu Yoneyama and Toru Fujiwara.(2004) A Protocol for Rapid DNA Extraction From
Arabidopsis thaliana for PCR Analysis. Plant Molecular Biology Reporter 22: 49–52.
Inbar J. and Chet I. (1991) Evidence that chitinase produced by Aero-monas caviae is involved in biological control of soil borne plant pathogen by this bacterium. Soil Biol Biochem 23: 973-978.
Ingram, J. and Bartel, D. (1996) The molecular basis of dehydration tolerance in plant. Annu. Rev. Plant Physiol. 47: 377-403.
Irene G., Jose ML., De la Cruz J., Tahia B., Antonio L., Jose A. and Pintor T. (1994) Cloning and characterization of chitinase (CHIT 42) cDNA from mycoparasitic fungus Trichoderma harzianum. Curr Genet 27: 83-89.
Iseli B., Boiler T. and Neuhaus J-M.(1993)The N-terminal cysteine-rich domain of tobacco class I chitinase is essential for chitin binding but not for catalytic or antifungal activity. Plant Physiol 103:221-226.
Jongsma, M. A., Bakker, p. l., Peters, J., Bosch, D., and Stiekema, W. J.,(1995) Adaptation of Spodoptera exigua larval to plant proteinase inhibitors by induction of proteinase activity insensitive of inhibition. Proc. Natl. Acad. Sci. 92:8041-8045.
Kapat A., Rakshit SK. and Panda T. (1996a) Parameter optimization of chitin hydrolysis by Trichoderma harzianum chitinase under assay conditions. Bioproc Eng 14: 275-279.
Kapat A., Rakshit SK. and Panda T. (1996b) Optimization of carbon and nitrogen sources in the medium and environmental factors for enhanced production of chitinase by Trichoderma harzianum. Bioproc Eng 15:13-20.
Koiwa, H., Bressan, R. A., and Hasegawa, P. M. (1997) Regulation of proteinase
ihhibitors and plant defense. Trends in Plant Science 2: 379-384.
Kuroda, M., Ishmto, M., Suzuki, K., Kondo, H., Abe, K., Kitamura, K., and Arai,
S. (1996) oryzacystatins exhibit growth-inhibitory and lethal effects on different species of bean insect pest, Ccallosobruchus chinensis(Coleoptera)and Riptortus Clavatus (Hemiptera). Bioscience Biotechnology and Biochemistry 60:209-212.
Leah R., Tommerup H., Svendsen I. and Mundy J.(1991)Biochemical and
molecular characterization of three barley seed proteins with anti-fungal properties. J Biol Chem 266:1564-1573.
Leszcynsk, B., Warchol, J., and Niraz, S. (1985) The influence of phenolic
compounds on the preference of winter wheat cultivars by central aphaids. Insect
Science Applications 6: 157-158.
Limn M.C., Lora J.M., Garcia I., de la Cruz J., Llobell A., Bentez 1. and
Pintor-Toro JA.(1995)Primary structure and expression pattern of the 33-kDa chitinase gene from the mycoparasitic fungus Trichoderma harzianum. Curr Genet 28:478-483.
Linthorst H. J. M.(1991)Pathogenesis-related proteins of plants. Curr. Rev. Plant Sci. 10:123-150.
Maeshima, M., Sasaki, T. A., and Asahi, T. (1985) Characterization of major proteins in sweet potato tuberous roots. Pytochemistry 24:1899-1920.
Matthews PR, Wang MB, Waterhouse PM, Thornton S, Fieg SJ, Gubler F, Jacobsen JV. (2001) Marker gene elimination from transgenic barley, using co-transformation with adjacent ‘twin T-DNAs’ on a standard Agrobacterium transformation vector.Mol Breed 7:195–202.
Meins F Jr., Neuhaus J-M., Sperisen C. and Ryals J.(1992)The primary
structure of plant pathogenesis- related glucanohydrolases and their genes. In Genes Involved in Plant Defence. Edited by Boiler T, Meins F Jr. New York: Springer Verlag;245-282.
Miller M, Tagliani L, Wang N, Berka B, Bidney D, and Zhao Z Y.(2002) High efficiency transgene segregation in co-transformed maize plants using an Agrobacterium tumefaciens 2 T-DNA binary system. Transgenic Res 11:381–396.
Neuhaus J-M., Sticher L., Meins F Jr. and Boiler T.(1991)A short C-terminal sequence is necessary and sufficient for the targeting of chitinases to the plant vacuole. Proc Natl Acad Sci 88:10362-10366.
Ordentlich A., Elad Y. and Chet I. (1988) The role of chitinase of Ser-ratia marcescens in biocontrol of Sclerotium rolfsii. Phyto-pathology 78: 84-88.
Perrakis A., Wilson KS., Chet I., Oppenheim AB. and Vorgias CE.(1993)
Phylogenetic relationships of chitinases. In Chitin Enzymo/ogy.Edited by Muzzarelli RAA. Ancona: European Chitin Society:217-232.
Ryan, C. A., (1990) Protease inhibitors in plants: genes for improving defence against insects and pathogens. Ann. Rev. Phytopathol. 28:425-449.
Rushton, P.J., Reinstadler, A., Lipka, V., Lippok, B., and Somssich, I.E. (2002). Synthetic plant promoters containing defined regulatory elements provide novel insights into pathogen- and wound-induced signaling. Plant Cell 14:749-762.
Sahai AS. and Manocha MS.(1993) Chitinases of fungi and plants: their involvement in morphogenesis and host-parasite interaction. FEMS Micrebiol Rev 11:317-338.
Sambrook, J., Firtxch, E. F., and Maniatis, T. (1989) Molecular cloning: a laboratory manual. 2nd Ed. Cold Spring Harbor Laboratory Press, N. Y.
Sequeria, J. A., Muraleedharan, G. N., Hammerschmidt, R., and Safir, G. R. (1991)
Significance of phenolic compounds in plant- soil-microbial system. Critical Review in
Plant Science 10: 63-121.
Sequeria, L. (1983) Mechanisms of induced resistance in plants. Annu. Rev. Microbiol.
37: 51-79.
Schickler H. and Chet I.(1997)Heterologous chitinase gene expression to improve plant defense against phytopathogenic fungi. J lnd Microbiol Biotechnol 19:196-201.
Shinshi H., Neuhaus J-M., Ryals J. and Meins F Jr.(1990)Structure of a tobacco endochitinase gene: evidence that different chitinase genes can arise by transposition of sequences encoding a cysteine-rich domain. Plant Mol Bio1 14:357-368.
Siela N. Maximova, Jean-Philippe Marelli, Ann Young Sharon Pishak, Joseph A. Verica, and Mark J. Guiltinan. (2006) Over-expression of a cacao class I chitinase gene in Theobroma cacao L.enhances resistance against the pathogen, Colletotrichum
gloeosporioides. Planta 224: 740–749.
St Leger R. J., Cooper R. M. and Charnley A. K.(1986)Cuticle-degrading enzymes of entomopathogenic fungi:regulation of production of chitinolytic enzymes. J. Gen. Microbiol. 132:1509-1517.
St Leger R. J., Cooper R. M. and Charnley A. K.(1991a)Characterization of chitinase and chitobiase produced by the entomopathogenic fungus Metarhizium anisopliae. J. Invertr. Pathol. 58:415-426.
St Leger R. J., Staples R. C. and Roberts D. W.(1991b)Entomopathogenic
isolates of Metarhizium anisopliae, Beauveria bassiana and Aspergillus flavus produce multiple extracellular chitinase isozymes. J. Invertr. Pathol. 61:81-84.
Thomas, J. C., Adams, D. G., Keppenne, V. D., Wasmann, C. C., Brown, J.
K., KaNost, M. R., and Bohnert, H. J., (1995) Protease inhibitors of Manduca
sexta expressed in transgenic cotton. Plant Cell Reports. 14:758-762.
Tzean. S. S., Hsieh. L. S. and Wu. W. J.(1997)Atlas of entomopathogenic
fungi from Taiwan. pp.166-167.
Urwin, P. E., Atkinson, H. J., Waller, D. A., and McPherson, M. J., (1995)
Engineered oryxacystatin-I expressed in transgenic hairy roots confers resistance to Giobodera pallida. Plant Journal 8:121-131.
Xing A, Zhang Z, Sato A, Staswick P, Clemente T. (2000) The use of the two T-DNA binary system to derive marker-free transgenic soybeans. In Vitro Cell Dev Biol Plant 36:456–463.
Xu, D., Xue, Q., McElroy, D., Mawal, Y., Hilder, V. A., and Wu, R., (1996)
Constitutive expression of a cowpea trypsin inhibitor gene, CpTi, in transgenic rice plants confers resistance to two major rice insect pests. Molecular Breeding 2:167-173.
Yang A. H and Yeh K.W.(2005)Molecular cloning, recombinant gene expression,and antifungal activity of cystatin from taro (Colocasia esculenta cv. Kaosiung no. 1). Planta 221(4):493-501.
Yeh K. W., Chen J. C., Lin M.I., Chen Y.M., and Lin C.Y. (1997) Functional
activity of sporamin from sweet potato (Ipomoea bataras Lam.): A tuber storage
protein with trypsin inhibitory activity. Plant Molecular Biology 33(3):565-570.
Yeh K. W., Lin M.I., Tuan S.J., Chen Y.M., Lin C.Y., and Kao S. S. (1997) Sweet
potato (Ipomoea bataras) trypsin inhibitors expressed in transgenic tobacco plants confer resistance against Spodoptera litura. Plant Cell reports 16:696-699.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29654-
dc.description.abstract甘藍為台灣栽培面積最大的葉菜類蔬菜,而台灣地處亞熱帶,夏季氣候高溫多濕,更加速了病蟲害的孳生,因此培育出抗病蟲害的蔬菜品種,是甘藍育種工作的重要方向。本研究主要利用實驗室可經受傷誘導啟動的啟動子pMSPOA,以實驗室現有的trypsin inhibitor(sporamin)和 chitinase gene當作防禦基因(defense genes),用gene stacking的方式轉殖到甘藍中,期望可以得到高效能的抗蟲轉殖株來減少施用農藥。以下胚軸轉殖的方法進行甘藍的農桿菌轉殖,總共得到了10個轉殖株(independent line),分別以genomic PCR及RT-PCR方式,初步確認了皆為轉殖株,之後各取其葉片分析trypsin inhibitory 生化活性,在未受傷時各轉殖株其trypsin inhibitor的表現皆較對照組植株高約20-30%不等,但個別轉殖株間表現量也有明顯的差異。在受傷誘導2小時之後各轉殖株其trypsin inhibitor的表現明顯有增加趨勢,增加約1-2倍不等。而chitinase的活性在未受傷前各植株差異甚大但皆比對照組植株強,在受傷誘導兩小時候各植株的活性約被誘導1-2倍左右。利用甘藍轉殖株葉片餵食二∼三齡的小菜蛾幼蟲,並分析轉殖株的抗蟲能力,經過2次的重複測試後,測量葉片啃食重量和蟲子存活率,以不含轉殖基因植株作為對照組,結果顯示具胰蛋白酶抑制因子和幾丁質酶活性的不同植株,與其抵抗小菜蛾幼蟲的能力呈正相關性。
為了能夠移除轉殖植株中的抗生素標誌基因,根據Two T-DNA one plasmid的方法,構築super binary vector(FM1300M),並接入pMSPOA gene stacking 的casette。利用co-transformation的方式同時進行甘藍及阿拉伯芥的轉殖。在阿拉伯芥轉殖部份,以genomic PCR及RT-PCR的方式確認得到了7個T1 transgenic line。取1個T1 line作T2世代的分析,以genomic PCR的方式篩選到了18株不含抗生素基因但含sporamin和chitinase gene的植株,取其中5株以RT-PCR的方式確認了確實不含抗生素標誌基因但有sporamin和chitinase gene的表現。
zh_TW
dc.description.abstractCabbage(Brassica oleracea L. Capitata)is the most important leafly vegetable in Taiwan, due to it’s abundant antioxidant compounds and anticancer compounds like glucosinolate. Unfortunately, cabbage can be easily infected with or attacked by insect peats. In order to decrease the risk of cabbage attacked by insects, the goal to create transgenic cabbage by gene stacking methods is inprogress in our lab. Trypsin inhibitor(sporamin)and chitinase genes were in stack constructed using pMSPOA as promoter,. We successfully got ten independent lines through Agrobacterium tumefaciens-mediated transformation,. In trypsin inhibitor or chitinase activity assay, we found that both sporamin and chitinase activity can be increasing 1-2 times at 2 hrs after wounding. In bioassay, we found that transgenic line 4 is more effectivel to defend Diamond-back moth(Plutella xylostella) attack..
In order to alleviate public concerns on the risk of antibiotics resistance gene, recommendations have been made to eliminate all antibiotic marker genes from GM plants. Our results showed that by Agrobacterium tumefaciens-mediated co-transformation with a double T-DNA binary vector in Arabidopsis, several marker-free transformants were successfully obtained. This technology mote will further applied in the transgenic cabbage system.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T01:13:41Z (GMT). No. of bitstreams: 1
ntu-96-R94b42008-1.pdf: 4571612 bytes, checksum: d5099709a338aa5de990aa462c3cbbbe (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents中文摘要………………………………………………………………………………4
英文摘要………………………………………………………………………………5
第一章 前言
第一節 植物的防禦機制…………….………………………………………6
第二節 甘藷中的sporamin基因….………………………….………….…11
第三節 Paecilomyces javanicus 的幾丁質水解酶基因 …………………12
第四節 合成啟動子pMSPOA …………….……………………………… 13
第五節 Matrix attachment regions(MARs)sequence……………………14
第六節 Marker Free System …………….………………………………… 14
第七節 甘藍簡介 …………………….…………………………………… 15
第八節 本論文研究方向 …………….…………………………………… 15
第二章 材料與方法
一、 材料……………………………………………………………………...….17
二、 方法
第一節 載體的構築………………………………………………………... 17
第二節 農桿菌的轉型與鑑定……………………………………………… 31
第三節 阿拉伯芥之基因轉殖與轉殖株的鑑定…………………………….32
第四節 甘藍的轉殖………………………………………………………….36
第五節 轉殖甘藍之鑑定與分析…………………………………………… 39
第六節 抗蟲能力分析………………………………………………… ……46
第三章 結果
第一節 載體的構築…………………………………………………………47
第二節 轉型至大腸桿菌DH5α strain與鑑定……………………………49
第三節 轉型至農桿菌GV3101 strain與鑑定……………………………...50
第四節 阿拉伯芥之基因轉殖與轉殖株的鑑定…………………………….51
第五節 阿拉伯芥T2世代鑑定與分析………………………………….…...51
第六節 甘藍的轉殖………………………………………………………….52
第七節 轉殖甘藍之鑑定與表現分析 ……………………………………...52
第八節 胰蛋白酶抑制因子生化活性分析………………………………….53
第九節 內切型幾丁質酶生化活性分析 …………………………………...54
第十節 抗蟲測試…………………………………………………………… 54
第四章 討論
第一節 抗蟲甘藍轉殖株…………………………………………………… 55
第二節 Marker Free System………………………………………………….58
第五章 未來展望…………………………………………………………………… 60
參考文獻……………………………………………………………………………….61
圖表…………………………………………………………………………………….69
附圖…………………………………………………………………………………….84
dc.language.isozh-TW
dc.subject基因轉殖zh_TW
dc.subject甘藍zh_TW
dc.subject抗蟲zh_TW
dc.subjectchitinaseen
dc.subjectsporaminen
dc.subjectBrassicaen
dc.title利用雙價抗蟲基因轉殖甘藍與建立無篩選標誌系統之研究zh_TW
dc.titleEngineering Brassica with insect-resistance by stacked of trypsin inhibitor (sporamin)and chitinase genes, and building marker free systemen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee鄭隨和,高穗生,王仕賢,潘子明
dc.subject.keyword甘藍,抗蟲,基因轉殖,zh_TW
dc.subject.keywordBrassica,sporamin,chitinase,en
dc.relation.page91
dc.rights.note有償授權
dc.date.accepted2007-07-20
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept植物科學研究所zh_TW
顯示於系所單位:植物科學研究所

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
4.46 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved