請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29641完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳信銘(Hsin-Ming Chen) | |
| dc.contributor.author | Shih-Feng Tseng | en |
| dc.contributor.author | 曾士峰 | zh_TW |
| dc.date.accessioned | 2021-06-13T01:13:11Z | - |
| dc.date.available | 2016-10-03 | |
| dc.date.copyright | 2011-10-03 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-03 | |
| dc.identifier.citation | Aggarwal, B.B., Shishodia, S., Takada, Y., Banerjee, S., Newman, R.A., Bueso-Ramos, C.E., and Price, J.E. (2005). Curcumin suppresses the paclitaxel-induced nuclear factor-kappaB pathway in breast cancer cells and inhibits lung metastasis of human breast cancer in nude mice. Clin Cancer Res 11, 7490-7498.
Anand, S., Honari, G., Hasan, T., Elson, P., and Maytin, E.V. (2009). Low-dose methotrexate enhances aminolevulinate-based photodynamic therapy in skin carcinoma cells in vitro and in vivo. Clin Cancer Res 15, 3333-3343. Ashkenazi, A. (2002). Targeting death and decoy receptors of the tumour-necrosis factor superfamily. Nat Rev Cancer 2, 420-430. Begg, A.C., Stewart, F.A., and Vens, C. Strategies to improve radiotherapy with targeted drugs. Nat Rev Cancer 11, 239-253. Berkovitch-Luria, G., Weitman, M., Nudelman, A., Rephaeli, A., and Malik, Z. Multifunctional 5-aminolevulinic acid prodrugs activating diverse cell-death pathways. Invest New Drugs. Bharti, A.C., Donato, N., Singh, S., and Aggarwal, B.B. (2003). Curcumin (diferuloylmethane) down-regulates the constitutive activation of nuclear factor-kappa B and IkappaBalpha kinase in human multiple myeloma cells, leading to suppression of proliferation and induction of apoptosis. Blood 101, 1053-1062. Bhuvaneswari, R., Gan, Y.Y., Soo, K.C., and Olivo, M. (2009). Targeting EGFR with photodynamic therapy in combination with Erbitux enhances in vivo bladder tumor response. Mol Cancer 8, 94. Castano, A.P., Mroz, P., and Hamblin, M.R. (2006). Photodynamic therapy and anti-tumour immunity. Nat Rev Cancer 6, 535-545. Chan, W.H., and Wu, H.J. (2004). Anti-apoptotic effects of curcumin on photosensitized human epidermal carcinoma A431 cells. J Cell Biochem 92, 200-212. Chen, H., Zhang, Z.S., Zhang, Y.L., and Zhou, D.Y. (1999). Curcumin inhibits cell proliferation by interfering with the cell cycle and inducing apoptosis in colon carcinoma cells. Anticancer Res 19, 3675-3680. Chen, H.M., Liu, C.M., Yang, H., Chou, H.Y., Chiang, C.P., and Kuo, M.Y. 5-aminolevulinic acid induce apoptosis via NF-kappaB/JNK pathway in human oral cancer Ca9-22 cells. J Oral Pathol Med. Chendil, D., Ranga, R.S., Meigooni, D., Sathishkumar, S., and Ahmed, M.M. (2004). Curcumin confers radiosensitizing effect in prostate cancer cell line PC-3. Oncogene 23, 1599-1607. Chiaviello, A., Paciello, I., Postiglione, I., Crescenzi, E., and Palumbo, G. Combination of photodynamic therapy with aspirin in human-derived lung adenocarcinoma cells affects proteasome activity and induces apoptosis. Cell Prolif 43, 480-493. Chiu, T.L., and Su, C.C. (2009). Curcumin inhibits proliferation and migration by increasing the Bax to Bcl-2 ratio and decreasing NF-kappaBp65 expression in breast cancer MDA-MB-231 cells. Int J Mol Med 23, 469-475. Cory, S., and Adams, J.M. (2002). The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer 2, 647-656. Dolmans, D.E., Fukumura, D., and Jain, R.K. (2003). Photodynamic therapy for cancer. Nat Rev Cancer 3, 380-387. Dorai, T., Cao, Y.C., Dorai, B., Buttyan, R., and Katz, A.E. (2001). Therapeutic potential of curcumin in human prostate cancer. III. Curcumin inhibits proliferation, induces apoptosis, and inhibits angiogenesis of LNCaP prostate cancer cells in vivo. Prostate 47, 293-303. Dougherty, T.J., Grindey, G.B., Fiel, R., Weishaupt, K.R., and Boyle, D.G. (1975). Photoradiation therapy. II. Cure of animal tumors with hematoporphyrin and light. J Natl Cancer Inst 55, 115-121. Elliott, S.L., Crawford, C., Mulligan, E., Summerfield, G., Newton, P., Wallis, J., Mainou-Fowler, T., Evans, P., Bedwell, C., Durkacz, B.W., et al. Mitoxantrone in combination with an inhibitor of DNA-dependent protein kinase: a potential therapy for high risk B-cell chronic lymphocytic leukaemia. Br J Haematol 152, 61-71. Elmore, S. (2007). Apoptosis: a review of programmed cell death. Toxicol Pathol 35, 495-516. Ernest, N.J., Habela, C.W., and Sontheimer, H. (2008). Cytoplasmic condensation is both necessary and sufficient to induce apoptotic cell death. J Cell Sci 121, 290-297. Eskelinen, E.L. The dual role of autophagy in cancer. Curr Opin Pharmacol. Ettorre, A., Frosali, S., Andreassi, M., and Di Stefano, A. Lycopene phytocomplex, but not pure lycopene, is able to trigger apoptosis and improve the efficacy of photodynamic therapy in HL60 human leukemia cells. Exp Biol Med (Maywood) 235, 1114-1125. Ferrario, A., Fisher, A.M., Rucker, N., and Gomer, C.J. (2005). Celecoxib and NS-398 enhance photodynamic therapy by increasing in vitro apoptosis and decreasing in vivo inflammatory and angiogenic factors. Cancer Res 65, 9473-9478. Friesen, S.A., Hjortland, G.O., Madsen, S.J., Hirschberg, H., Engebraten, O., Nesland, J.M., and Peng, Q. (2002). 5-Aminolevulinic acid-based photodynamic detection and therapy of brain tumors (review). Int J Oncol 21, 577-582. Gibson, S.L., Cupriks, D.J., Havens, J.J., Nguyen, M.L., and Hilf, R. (1998). A regulatory role for porphobilinogen deaminase (PBGD) in delta-aminolaevulinic acid (delta-ALA)-induced photosensitization? Br J Cancer 77, 235-242. Glick, D., Barth, S., and Macleod, K.F. Autophagy: cellular and molecular mechanisms. J Pathol 221, 3-12. Gura, T. (1997). How TRAIL kills cancer cells, but not normal cells. Science 277, 768. Ji, H.T., Chien, L.T., Lin, Y.H., Chien, H.F., and Chen, C.T. 5-ALA mediated photodynamic therapy induces autophagic cell death via AMP-activated protein kinase. Mol Cancer 9, 91. Jiang, Y., Wang, Y., Su, Z., Yang, L., Guo, W., Liu, W., and Zuo, J. Synergistic induction of apoptosis in HeLa cells by the proteasome inhibitor bortezomib and histone deacetylase inhibitor SAHA. Mol Med Report 3, 613-619. Kabeya, Y., Mizushima, N., Ueno, T., Yamamoto, A., Kirisako, T., Noda, T., Kominami, E., Ohsumi, Y., and Yoshimori, T. (2000). LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19, 5720-5728. Kamat, A.M., Sethi, G., and Aggarwal, B.B. (2007). Curcumin potentiates the apoptotic effects of chemotherapeutic agents and cytokines through down-regulation of nuclear factor-kappaB and nuclear factor-kappaB-regulated gene products in IFN-alpha-sensitive and IFN-alpha-resistant human bladder cancer cells. Mol Cancer Ther 6, 1022-1030. Kelly, J.F. (1975). Haematoporphyrins in the diagnosis and treatment of carcinoma of the bladder. Proc R Soc Med 68, 527-528. Kelty, C.J., Brown, N.J., Reed, M.W., and Ackroyd, R. (2002). The use of 5-aminolaevulinic acid as a photosensitiser in photodynamic therapy and photodiagnosis. Photochem Photobiol Sci 1, 158-168. Kennedy, J.C., Marcus, S.L., and Pottier, R.H. (1996). Photodynamic therapy (PDT) and photodiagnosis (PD) using endogenous photosensitization induced by 5-aminolevulinic acid (ALA): mechanisms and clinical results. J Clin Laser Med Surg 14, 289-304. Kennedy, J.C., and Pottier, R.H. (1992). Endogenous protoporphyrin IX, a clinically useful photosensitizer for photodynamic therapy. J Photochem Photobiol B 14, 275-292. Kennedy, J.C., Pottier, R.H., and Pross, D.C. (1990). Photodynamic therapy with endogenous protoporphyrin IX: basic principles and present clinical experience. J Photochem Photobiol B 6, 143-148. Kerr, J.F., Wyllie, A.H., and Currie, A.R. (1972). Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26, 239-257. Klionsky, D.J. (2005). The molecular machinery of autophagy: unanswered questions. J Cell Sci 118, 7-18. Kondo, M., Hirota, N., Takaoka, T., and Kajiwara, M. (1993). Heme-biosynthetic enzyme activities and porphyrin accumulation in normal liver and hepatoma cell lines of rat. Cell Biol Toxicol 9, 95-105. Kroemer, G. (2003). Mitochondrial control of apoptosis: an introduction. Biochem Biophys Res Commun 304, 433-435. Kroemer, G., and Reed, J.C. (2000). Mitochondrial control of cell death. Nat Med 6, 513-519. Kunnumakkara, A.B., Anand, P., and Aggarwal, B.B. (2008). Curcumin inhibits proliferation, invasion, angiogenesis and metastasis of different cancers through interaction with multiple cell signaling proteins. Cancer Lett 269, 199-225. Kunnumakkara, A.B., Guha, S., Krishnan, S., Diagaradjane, P., Gelovani, J., and Aggarwal, B.B. (2007). Curcumin potentiates antitumor activity of gemcitabine in an orthotopic model of pancreatic cancer through suppression of proliferation, angiogenesis, and inhibition of nuclear factor-kappaB-regulated gene products. Cancer Res 67, 3853-3861. Lainakis, G., Zagouri, F., Kastritis, E., Sergentanis, T.N., Bozas, G., Dimopoulos, M.A., and Papadimitriou, C.A. Systemic chemotherapy with pemetrexed and cisplatin for malignant peritoneal mesothelioma: a single institution experience. Tumori 97, 25-29. Lawen, A. (2003). Apoptosis-an introduction. Bioessays 25, 888-896. Lev-Ari, S., Starr, A., Vexler, A., Karaush, V., Loew, V., Greif, J., Fenig, E., Aderka, D., and Ben-Yosef, R. (2006). Inhibition of pancreatic and lung adenocarcinoma cell survival by curcumin is associated with increased apoptosis, down-regulation of COX-2 and EGFR and inhibition of Erk1/2 activity. Anticancer Res 26, 4423-4430. Li, S., Zhao, Y., He, X., Kim, T.H., Kuharsky, D.K., Rabinowich, H., Chen, J., Du, C., and Yin, X.M. (2002). Relief of extrinsic pathway inhibition by the Bid-dependent mitochondrial release of Smac in Fas-mediated hepatocyte apoptosis. J Biol Chem 277, 26912-26920. Lin, Y.G., Kunnumakkara, A.B., Nair, A., Merritt, W.M., Han, L.Y., Armaiz-Pena, G.N., Kamat, A.A., Spannuth, W.A., Gershenson, D.M., Lutgendorf, S.K., et al. (2007). Curcumin inhibits tumor growth and angiogenesis in ovarian carcinoma by targeting the nuclear factor-kappaB pathway. Clin Cancer Res 13, 3423-3430. Lipson, R.L., and Baldes, E.J. (1960). The photodynamic properties of a particular hematoporphyrin derivative. Arch Dermatol 82, 508-516. Lipson, R.L., and Baldes, E.J. (1961). Histamine and photodynamic action. Arch Dermatol 83, 417-419. Lopez-Lazaro, M. (2008). Anticancer and carcinogenic properties of curcumin: considerations for its clinical development as a cancer chemopreventive and chemotherapeutic agent. Mol Nutr Food Res 52 Suppl 1, S103-127. Lyakhovitsky, A., Barzilai, A., Heyman, R., Baum, S., Amichai, B., Solomon, M., Shpiro, D., and Trau, H. Low-dose methotrexate treatment for moderate-to-severe atopic dermatitis in adults. J Eur Acad Dermatol Venereol 24, 43-49. Maiuri, M.C., Zalckvar, E., Kimchi, A., and Kroemer, G. (2007). Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol 8, 741-752. Majeski, A.E., and Dice, J.F. (2004). Mechanisms of chaperone-mediated autophagy. Int J Biochem Cell Biol 36, 2435-2444. Marin, Y.E., Wall, B.A., Wang, S., Namkoong, J., Martino, J.J., Suh, J., Lee, H.J., Rabson, A.B., Yang, C.S., Chen, S., et al. (2007). Curcumin downregulates the constitutive activity of NF-kappaB and induces apoptosis in novel mouse melanoma cells. Melanoma Res 17, 274-283. Marmur, E.S., Schmults, C.D., and Goldberg, D.J. (2004). A review of laser and photodynamic therapy for the treatment of nonmelanoma skin cancer. Dermatol Surg 30, 264-271. Marsters, S.A., Sheridan, J.P., Pitti, R.M., Huang, A., Skubatch, M., Baldwin, D., Yuan, J., Gurney, A., Goddard, A.D., Godowski, P., et al. (1997). A novel receptor for Apo2L/TRAIL contains a truncated death domain. Curr Biol 7, 1003-1006. Moan, J. (1991). [Photochemotherapy of cancer]. Tidsskr Nor Laegeforen 111, 2962-2965. Moan, J., and Berg, K. (1991). The photodegradation of porphyrins in cells can be used to estimate the lifetime of singlet oxygen. Photochem Photobiol 53, 549-553. Moon, Y.H., Park, J.H., Kim, S.A., Lee, J.B., Ahn, S.G., and Yoon, J.H. Anticancer effect of photodynamic therapy with hexenyl ester of 5-aminolevulinic acid in oral squamous cell carcinoma. Head Neck 32, 1136-1142. Orrenius, S., Zhivotovsky, B., and Nicotera, P. (2003). Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol 4, 552-565. Pan, G., Ni, J., Wei, Y.F., Yu, G., Gentz, R., and Dixit, V.M. (1997). An antagonist decoy receptor and a death domain-containing receptor for TRAIL. Science 277, 815-818. Park, K., and Lee, J.H. (2007). Photosensitizer effect of curcumin on UVB-irradiated HaCaT cells through activation of caspase pathways. Oncol Rep 17, 537-540. Park, S., Hong, S.P., Oh, T.Y., Bang, S., Chung, J.B., and Song, S.Y. (2008). Paclitaxel augments cytotoxic effect of photodynamic therapy using verteporfin in gastric and bile duct cancer cells. Photochem Photobiol Sci 7, 769-774. Platini, F., Perez-Tomas, R., Ambrosio, S., and Tessitore, L. Understanding autophagy in cell death control. Curr Pharm Des 16, 101-113. Prasad, G., Sottero, T., Yang, X., Mueller, S., James, C.D., Weiss, W.A., Polley, M.Y., Ozawa, T., Berger, M.S., Aftab, D.T., et al. Inhibition of PI3K/mTOR pathways in glioblastoma and implications for combination therapy with temozolomide. Neuro Oncol 13, 384-392. Qian, H., Yang, Y., and Wang, X. Curcumin enhanced adriamycin-induced human liver-derived Hepatoma G2 cell death through activation of mitochondria-mediated apoptosis and autophagy. Eur J Pharm Sci 43, 125-131. Reddien, P.W., Cameron, S., and Horvitz, H.R. (2001). Phagocytosis promotes programmed cell death in C. elegans. Nature 412, 198-202. Rizvi, I., Celli, J.P., Evans, C.L., Abu-Yousif, A.O., Muzikansky, A., Pogue, B.W., Finkelstein, D., and Hasan, T. Synergistic enhancement of carboplatin efficacy with photodynamic therapy in a three-dimensional model for micrometastatic ovarian cancer. Cancer Res 70, 9319-9328. Sato, N., Moore, B.W., Keevey, S., Drazba, J.A., Hasan, T., and Maytin, E.V. (2007). Vitamin D enhances ALA-induced protoporphyrin IX production and photodynamic cell death in 3-D organotypic cultures of keratinocytes. J Invest Dermatol 127, 925-934. Scarlatti, F., Granata, R., Meijer, A.J., and Codogno, P. (2009). Does autophagy have a license to kill mammalian cells? Cell Death Differ 16, 12-20. Shangary, S., and Johnson, D.E. (2002). Peptides derived from BH3 domains of Bcl-2 family members: a comparative analysis of inhibition of Bcl-2, Bcl-x(L) and Bax oligomerization, induction of cytochrome c release, and activation of cell death. Biochemistry 41, 9485-9495. Sheridan, J.P., Marsters, S.A., Pitti, R.M., Gurney, A., Skubatch, M., Baldwin, D., Ramakrishnan, L., Gray, C.L., Baker, K., Wood, W.I., et al. (1997). Control of TRAIL-induced apoptosis by a family of signaling and decoy receptors. Science 277, 818-821. Sinha, A.K., Anand, S., Ortel, B.J., Chang, Y., Mai, Z., Hasan, T., and Maytin, E.V. (2006). Methotrexate used in combination with aminolaevulinic acid for photodynamic killing of prostate cancer cells. Br J Cancer 95, 485-495. Somasundaram, S., Edmund, N.A., Moore, D.T., Small, G.W., Shi, Y.Y., and Orlowski, R.Z. (2002). Dietary curcumin inhibits chemotherapy-induced apoptosis in models of human breast cancer. Cancer Res 62, 3868-3875. Tanida, I., Tanida-Miyake, E., Ueno, T., and Kominami, E. (2001). The human homolog of Saccharomyces cerevisiae Apg7p is a Protein-activating enzyme for multiple substrates including human Apg12p, GATE-16, GABARAP, and MAP-LC3. J Biol Chem 276, 1701-1706. Ulahannan, S.V., and Brahmer, J.R. Antiangiogenic agents in combination with chemotherapy in patients with advanced non-small cell lung cancer. Cancer Invest 29, 325-337. van Loo, G., Saelens, X., van Gurp, M., MacFarlane, M., Martin, S.J., and Vandenabeele, P. (2002). The role of mitochondrial factors in apoptosis: a Russian roulette with more than one bullet. Cell Death Differ 9, 1031-1042. Van Parijs, L., and Abbas, A.K. (1996). Role of Fas-mediated cell death in the regulation of immune responses. Curr Opin Immunol 8, 355-361. Waidelich, R., Stepp, H., Baumgartner, R., Weninger, E., Hofstetter, A., and Kriegmair, M. (2001). Clinical experience with 5-aminolevulinic acid and photodynamic therapy for refractory superficial bladder cancer. J Urol 165, 1904-1907. Zhao, Y., Ding, W.X., Qian, T., Watkins, S., Lemasters, J.J., and Yin, X.M. (2003). Bid activates multiple mitochondrial apoptotic mechanisms in primary hepatocytes after death receptor engagement. Gastroenterology 125, 854-867. Zhou, H.Z., Swanson, R.A., Simonis, U., Ma, X., Cecchini, G., and Gray, M.O. (2006). Poly(ADP-ribose) polymerase-1 hyperactivation and impairment of mitochondrial respiratory chain complex I function in reperfused mouse hearts. Am J Physiol Heart Circ Physiol 291, H714-723. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29641 | - |
| dc.description.abstract | 根據行政院衛生署民國98年統計資料,口腔癌已經成為台灣男性十大癌症死亡率的第四位,並且還未有趨緩的現象。同時,近年來雖然口腔研癌的治療方法有很大的進步,但是因為手術造成的顏面缺損,常使病人因之卻步而延誤治療時機,因此尋求更好的口腔癌治療方法是非常迫切需求的。
5-氨基酮戊酸光動力治療(5-aminolevulinic Acid-Photodynamic Therapy;ALA-PDT)是一個新興的癌症治療方式。先前我們實驗室不論在基礎或臨床試驗上,都發現ALA-PDT對於口腔癌及癌前病變都有不錯的治療效果。但根據我們先前研究結果發現病人腫瘤的特性、位置、大小及深度等都會影響ALA-PDT治療口腔癌的效果;另外ALA-PDT在口腔癌治療上所需時間較長、次數較多,並且費用較高,因此尋求一個毒性較低且可以有效增強ALA-PDT效果的藥物是有必要的。 我們利用Ca9-22以及SAS兩株口腔癌細胞株進行MTT assay細胞存活實驗發現,若先使用薑黃素(Curcumin)處理細胞後,再施與ALA-PDT的治療,薑黃素會明顯增加ALA-PDT殺死細胞的能力;且隨著薑黃素劑量的提高,除了會繼續增加ALA-PDT殺死細胞的能力外,另一方面也可以降低ALA-PDT殺死原相同數目細胞所需之照射焦耳數。 在Tunel Assay染色發現,先以薑黃素處理的ALA-PDT會增加DNA fragmentation,並且由西方點墨法(Western-blot)發現,此方式會增加PARP cleavage form、Caspase-8及Caspase-9蛋白表現。在細胞凋亡路徑的加乘性分析中,增加內生性細胞凋亡路徑(Intrinsic apoptotic pathway)是經由促進Cytochrome-C釋出、bid切割、Bcl-2抑制及Caspase-9活化所造成。這些結果說明加乘性的細胞毒殺效果主要是透過第一型細胞死亡( Type I Cell Death )-細胞凋亡(Apoptosis)。 我們進一步利用螢光光譜儀探討上述研究細胞凋亡現象增強的原因發現,先以薑黃素處理口腔癌細胞後,會使吸收波長為635+5nm的光感物質Protoporphyrin IX(PpIX)螢光強度增強。這個表現代表PpIX生成量的增加,這可能是增加細胞毒殺效果的原因之一。 此外,我們先以薑黃素處理Ca9-22口腔癌細胞株後再進行ALA-PDT發現,細胞自噬( Autophagy )的指標蛋白LC3-II的表現會增加。再以細胞自噬抑制劑3-Methyladenine (3-MA)處理,則細胞的存活率會增加。這個研究結果說明,先以薑黃素處理再進行ALA-PDT也會增加第二型的細胞死亡( Type II Cell Death )-細胞自噬,來增加細胞的毒殺效果。 由本研究結果可知,先以短時間且毒性較低的薑黃素處理,可以明顯增加PpIX的生成;進而增加ALA-PDT細胞凋亡和細胞自噬而增加細胞的死亡。此外,合併使用薑黃素可縮短ALA-PDT的照射時間,而不減ALA-PDT治療口腔癌的效果。 | zh_TW |
| dc.description.abstract | According to the latest statistics from the Department of Health, oral cancer has been the fourth leading cause of cancer death in males in Taiwan, and the mortality rate hasn’t been slowed down. Recently, there are many new strategy to treat oral cancer, but facial defect resulting from surgery made the patient hesitate to get early treatment. Therefore, finding a better treatment for oral cancer treatment is urgent.
5-Aminolevulinic acid (ALA) is a novel photosensitizer for photodynamic therapy (ALA-PDT). Our previous studies showed ALA-PDT could induce cytotoxicity in oral cancer cells. It can also treat potentially malignant disorders. However, oral cancers with different sizes, sites, invasion depthes and characteristics could result in different efficiency in ALA-PDT. On the other hand, it takes much time and high costs during ALA-PDT. Therefore, finding a drug with low toxicity and high efficiency to enhance the ALA-PDT is necessary. In our our results, oral cancer cell lines such as Ca9-22 and SAS pretreated with curcumin and then treated with ALA-PDT exhibited dose-dependent cytotoxicity. In addition, combination therapy could lead to DNA fragmentation detected by the Tunel assay, and effectively induced apoptotic cell death by Western-blotting. Upregulated PARP, enhanced Cytochrome-C release, downregulated Bcl-2, Bid, and an increase in the ratio of pro-apoptotic/anti-apoptotic protein, which were associated with an increase in caspase activity. We also found that combination therapy could enhance accumulation of protoporphyrin IX (PpIX) and result in an increased the cytotoxic effect on oral cancer cells. Furthermore, we found that the marker of autophagy, LC3-II level was increased upon preatreatment of Ca9-22 cells with curcumin; treatment with autophagy inhibitor, 3-Methyladenine (3-MA) increased the cancer cell survival. It suggests that combination therapy could also induce autophagic cell death to cause cancer cell death. In conclusion, these data suggested that curcumin is a potential drug that can be used for ALA-PDT pretreatment. It effectively induces PpIX accumulation, cell apoptosis, autophagic cell death, and increase ALA-PDT efficacy on treatment of oral cancer cells. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T01:13:11Z (GMT). No. of bitstreams: 1 ntu-100-R98450010-1.pdf: 2624265 bytes, checksum: 82d5c5e6372c73e225225b150dd304e8 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 口試委員會審定書……………………………………………………………………..I
致謝………………………………………………………………………………….....II 中文摘要………..……………………………………………………………...……...III 英文摘要(Abstract) ……..…..……..…………..……………………………………..V 目錄(Index)...…………………………….……………………….................................1 第一章 導論(Introduction) 第一節 口腔癌 1.1-1、口腔癌簡介...................................................................................................3 1.1-2、口腔癌診斷...................................................................................................4 1.1-3、口腔癌治療與預後.......................................................................................5 第二節 光動力治療 1.2-1、光動力治療源起..........................................................................................6 1.2-2、光動力治療基本原理..................................................................................7 1.2-3、5-氨基酮戊酸光動力治療(ALA-PDT).......................................................8 第三節 薑黃素..........................................................................................................10 第四節 細胞死亡機制 1.4-1、細胞死亡方式.............................................................................................11 1.4-2、細胞凋亡(Apoptosis)..................................................................................11 1.4-3、細胞自噬(Autophagy)………....................................................................15 第五節 癌症合併治療(Combination therapy)….....................................................17 第六節 實驗目的.....................................................................................................18 第二章 實驗材料與方法(Material and Method) 第一節 細胞來源與培養..........................................................................................19 第二節 薑黃素合併5-氨基酮戊酸光動力治療方法 2.2-1、光動力機器.................................................................................................19 2.2-2、細胞處理.....................................................................................................20 第三節 PpIX螢光測定............................................................................................21 第四節 細胞存活率試驗(MTT assay) ....................................................................21 第五節 西方點墨法(Western-blot) 2.5-1、蛋白質萃取.................................................................................................21 2.5-2、蛋白質濃度測定(Bicinchoninic Acid Protein Assay)................................22 2.5-3、膠體電泳(SDS-PAGE)…………………………………………………..23 2.5-4、蛋白質轉漬………………….……………………………………………23 2.5-5、壓片/顯影呈色……………………………………………………………23 第六節 抑制劑處理…………………………………….………….............................24 第七節 Tunel assay…………………………………………………………………...24 第三章 實驗結果(Results) 第一節 ALA-PDT抑制Ca9-22及SAS細胞存活...................................................26 第二節ALA-PDT與不同劑量薑黃素作用會明顯增加ALA-PDT對Ca9-22及SAS細胞毒殺效果....................................................................................................26 第三節ALA-PDT照射強度增加與薑黃素作用會明顯增加Ca9-22及SAS細胞毒殺效果…………………………………………………………………………....27 第四節 ALA-PDT與薑黃素作用會增加apoptosis的發生....................................27 第五節 ALA-PDT與薑黃素作用在細胞凋亡路徑的加乘性分析......................28 第六節 先以薑黃素處理細胞會促使PpIX累積.................................................29 第七節 ALA-PDT與薑黃素作用會增加Autophagy的進行............................30 第四章 討論(Discussion).............................................................................................31 圖與表...........................................................................................................................35 第五章 參考文獻.........................................................................................................53 | |
| dc.language.iso | zh-TW | |
| dc.subject | 薑黃素 | zh_TW |
| dc.subject | 細胞自噬 | zh_TW |
| dc.subject | 細胞凋亡 | zh_TW |
| dc.subject | PpIX | zh_TW |
| dc.subject | 口腔癌 | zh_TW |
| dc.subject | 光動力治療 | zh_TW |
| dc.subject | apoptosis | en |
| dc.subject | PpIX | en |
| dc.subject | Curcumin | en |
| dc.subject | photodynamic therapy | en |
| dc.subject | oral cancer | en |
| dc.subject | autophagy | en |
| dc.title | 薑黃素對於5-氨基酮戊酸光動力治療法應用於口腔癌治療加乘性效應之研究 | zh_TW |
| dc.title | The Study of Synergic Effects of Curcumin on 5-aminolevulinic Acid-Photodynamic Therapy Applied in Oral Cancer | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 江俊斌(Chun-Pin Chiang),郭彥彬(Mark Yen-Ping Kuo) | |
| dc.subject.keyword | 口腔癌,光動力治療,薑黃素,PpIX,細胞凋亡,細胞自噬, | zh_TW |
| dc.subject.keyword | oral cancer,photodynamic therapy,Curcumin,PpIX,apoptosis,autophagy, | en |
| dc.relation.page | 61 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-08-03 | |
| dc.contributor.author-college | 牙醫專業學院 | zh_TW |
| dc.contributor.author-dept | 口腔生物科學研究所 | zh_TW |
| 顯示於系所單位: | 口腔生物科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 2.56 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
