請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29624完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李瑞庭(Anthony J.T. Lee) | |
| dc.contributor.author | Weng Chong Ip | en |
| dc.contributor.author | 葉榮忠 | zh_TW |
| dc.date.accessioned | 2021-06-13T01:12:36Z | - |
| dc.date.available | 2008-07-23 | |
| dc.date.copyright | 2007-07-23 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-07-18 | |
| dc.identifier.citation | [1] R. Agrawal and R. Srikant, Mining sequential patterns, in Proceedings of the Eleventh International Conference on Data Engineering, Taipei, Taiwan, Mar. 1995, pp. 3-14.
[2] J, Ayres, J. E. Gehrke, T. Yiu, and J. Flannick, Sequential pattern mining using a bitmap representation, in Proceedings of ACM SIGMOD International Conference on Knowledge Discovery in Database, Edmonton, Canada, 2002, pp. 429-435. [3] H. Cao, N. Mamoulis, and D.W. Cheung, Mining frequent spatio-temporal sequential patterns, in Proceedings of the Fifth IEEE International Conference on Data Mining, Washington, DC, USA, 2005, pp. 82-89. [4] H. Cao, N. Mamoulis, and D. W. Cheung, Discovery of collocation episodes in spatiotemporal data, in Proceedings of the Sixth IEEE International Conference on Data Mining, Washington, DC, USA, 2006, pp. 823-827. [5] H. Cao, N. Mamoulis, and D. W. Cheung, Discovery of periodic patterns in spatiotemporal sequence, IEEE Transactions on Knowledge and Data Engineering 19(4), 2007, pp. 453-46. [6] Y. Chen, S Wu, Mining temporal patterns from sequence database of interval-based events, in Proceedings of the Third International Conference Fuzzy Systems and Knowledge Discovery, 2006, pp. 586-595. [7] J. D. Chung, O. H. Paek, J. W. Lee, and K. H. Ryu, Temporal moving pattern mining for location-based service, in Proceedings of the 13th International Conference on Database and Expert Systems Applications, 2002, pp. 481-490. [8] D. J. Cook, L. B. Holder, Substructure discovery using minimum description length and background knowledge, Journal of Artificial Intelligence Research, Volume 1. 1994, pp 231-255. [9] M. Garofalakis, R Rastogi, and K. Shim, Mining sequential patterns with regular expression constraints, IEEE Transactions on Knowledge and Data Engineering 14(3), 2002, pp. 530-552. [10] F. Giannotti, M. Nanni, D. Pedreschi, and F. Pinelli, Mining sequences with temporal annotations, in Proceedings of the ACM Symposium on Applied Computing, 2006, pp. 593-597. [11] E, Gudes, E. Shimony N. Vanetik, Discovering frequent graph patterns using disjoint paths, IEEE Transactions on Knowledge and Data Engineering, 2006, pp. 1441-1456. [12] J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal, and M. C. Hsu, Mining frequent patterns without candidate generation, in Proceedings of ACM-SIGMOD International Conference on Management of Data Mining, 2000, pp. 1-12. [13] J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal, and M. C. Hsu, FreeSpan: frequent pattern-projected sequential pattern mining, in Proceedings of International Conference on Knowledge Discovery and Data Mining, 2000, pp.355-359. [14] J. Han, M. Kamber, Data mining: Concepts and Techniques, second edition, Morgan Kaufmann, San Francisco, 2006. [15] J. Huan, W. Wang, and J. Prins, Efficient mining of frequent subgraphs in the presence of isomorphism, in Proceedings of IEEE International Conference on Data mining, 2003, pp. 549-552. [16] S.-Y. Hwang, Y.-H. Liu, J.-K. Chiu and E.-P. Lim, Mining mobile group patterns: a trajectory-based approach, in Proceedings of the 9th Pacific-Asia Conference on Knowledge Discovery and Data Mining, 2005, pp. 713-718. [17] A. Inokuchi, T. Washio, and H.Motoda, An Apriori-based algorithm for miningfrequent substructures from graph data, in Proceedings of European Conference on Principles and Practice of Knowledge in Databases, 2000, pp. 13-23. [18] R. Jin, C. Wang, D. Polshakov, S. Parthasarathy, G. Agarwal, Discovery frequent topological structures from graph datasets, in Proceeding of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2005, pp. 606-611. [19] M. Kuramochi and G. Karypis, Frequent subgraph discovery, in Proceedings of IEE International Conference on Data Mining, 2001, pp.313-320. [20] M. Leleu, C. Rigotti, Jean-Francois Boulicaut, and G. Euvrard, GO-SPADE: mining sequential patterns over datasets with consecutive repetitions, in Proceedings of International Conference on Machine Learning and Data Mining, 2001, pp. 293-306. [21] J. Pei, J. Han, B. Mortazavi-Asl, Q. Chen, U. Dayal, and M. C. Hsu, PrefixSpan: mining sequential patterns efficiently by prefix-projected pattern growth, in Proceedings of IEEE International Conference on Data Engineering, 2001, pp. 215-224. [22] S. Orlando, R. Perego, C. Silvestri, A new algorithm for gap constrained sequence mining, in Proceedings of the ACM symposium on Applied computing, 2004, pp. 540-547. [23] R. Srikant and R. Agrawal, Mining sequential patterns: generalizations and performance improvements, in Proceedings of the 5th International Conference on Extending Database Technology: Advances in Database Technology, 1996, pp. 3-17. [24] Vu Thi Hong, N., C. Jeong Hee, and R. Keun Ho, Discovery of spatiotemporal patterns in mobile environment, in Proceedings of 8th Asia-Pacific Web Conference, 2006, pp. 949-954. [25] I. Tsoukatos, and D. Gunopulos, Efficient mining of spatiotemporal patterns, in Proceedings of the 7th International Symposium on Advances in Spatial and Temporal Databases, 2001, pp. 425-442. [26] O. Wolfson, P. Sistla, B. Xu, J. Zhou, and Chamberlain, DOMINO: databases fOr MovINg Objects tracking, in Proceedings of the 1999 ACM SIGMOD International Conference on Management of Data, 1999, pp. 547-549. [27] X. Yan and J. Han, gSpan: graph-based substructure pattern mining, in Proceedings of International Conference on Data Mining, 2002, pp. 721-724 [28] M. J. Zaki, SPADE: an efficient algorithm for mining frequent sequences, Machine Learning 42(1), 2001, pp. 31-60. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29624 | - |
| dc.description.abstract | 隨著追蹤和定位技術的進步以及定址服務的大規模普及化,使得時空資料庫中的資料量大幅成長。隱藏在時空資料庫中的知識可被應用在各種不同的領域中,利用資料探勘方法在時空資料庫中找出頻繁路徑,可以讓我們了解資料庫中物件的移動特性。因此,在本論文中,我們提出一個二階段式的演算法來探勘時空資料庫中的所有頻繁路徑。在第一階段,我們建立一個對應圖和一系列的路徑資訊串列。在第二階段,我們利用對應圖和路徑資訊串列來找出資料庫中所有頻繁路徑。我們所提出的演算法不會產生不必要的候選樣式,且可以減少資料庫的掃描次數,並利用所有路徑必須是連續的特性以減小搜尋空間。因此,我們的方法比改良式PrefixSpan的方法更有效率。實驗結果顯示,不管在人造資料或真實資料上,我們的方法比改良式PrefixSpan的方法快上約二至九倍。 | zh_TW |
| dc.description.abstract | With advances in tracking technologies and great diffusion of location-based services, a large amount of data has been collected in a spatial-temporal database. The implicit knowledge in a spatial-temporal database can be used in many application areas and mining frequent trajectories in the spatial-temporal database can help us understand the movements of objects. Therefore, in this thesis, we propose a novel algorithm to mine the frequent trajectory patterns in a spatial-temporal database. Our proposed method consists of two phases. First, we transform all trajectories in the database into a mapping graph. For each vertex in the mapping graph, we record the information of the trajectories passing through the vertex in a data structure, called Trajectories Information lists (TI-lists). Second, we mine all frequent patterns from the mapping graph and TI-lists in a depth-first search manner. Our proposed method doesn’t generate unnecessary candidates, needs fewer database scans, and utilizes the consecutive property of trajectories to reduce the search space. Therefore, our proposed method is more efficient than the PrefixSpan-based method. The experiment results show that our proposed method outperforms PrefixSpan-based method by one order of magnitude in synthetic data and real data. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T01:12:36Z (GMT). No. of bitstreams: 1 ntu-96-R94725017-1.pdf: 1165454 bytes, checksum: 55aef5d0cbb2a834a6dfcd2e3a4106b6 (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | Table of Contents...................................... i
List of Figures........................................ii Chapter 1 Introduction................................. 1 Chapter 2 Problem Definition........................... 6 Chapter 3 Our Proposed Method.......................... 9 3.1 Trajectory information list.................... 9 3.2 Mining frequent spatial-temporal patterns......12 Chapter 4 Performance Analysis...................22 4.1 Synthetic datasets.............................22 4.2 Performance evaluation on synthetic datasets...23 4.3 Performance evaluation on the real dataset.....28 Chapter 5 Conclusions and Future Work............31 References.............................................32 | |
| dc.language.iso | en | |
| dc.subject | 演算法 | zh_TW |
| dc.subject | 資料探勘 | zh_TW |
| dc.subject | 時空資料庫 | zh_TW |
| dc.subject | 時空樣式 | zh_TW |
| dc.subject | 頻繁路徑 | zh_TW |
| dc.subject | spatial-temporal databases | en |
| dc.subject | algorithm | en |
| dc.subject | frequent trajectories | en |
| dc.subject | spatial-temporal patterns | en |
| dc.subject | data mining | en |
| dc.title | 時空資料庫中頻繁路徑之資料探勘 | zh_TW |
| dc.title | Mining Frequent Trajectory Patterns in Spatial-temporal Databases | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳怡瑾(yi-jin wu),諶家蘭(jia-lan chen) | |
| dc.subject.keyword | 資料探勘,時空資料庫,時空樣式,頻繁路徑,演算法, | zh_TW |
| dc.subject.keyword | data mining,spatial-temporal databases,spatial-temporal patterns,frequent trajectories,algorithm, | en |
| dc.relation.page | 35 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-07-20 | |
| dc.contributor.author-college | 管理學院 | zh_TW |
| dc.contributor.author-dept | 資訊管理學研究所 | zh_TW |
| 顯示於系所單位: | 資訊管理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 1.14 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
