Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生物化學暨分子生物學科研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29598
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor呂紹俊
dc.contributor.authorJhen-I Gaoen
dc.contributor.author高振壹zh_TW
dc.date.accessioned2021-06-13T01:11:42Z-
dc.date.available2012-08-08
dc.date.copyright2007-08-08
dc.date.issued2007
dc.date.submitted2007-07-20
dc.identifier.citation藍雅馨(2005)轉錄因子Oct-2 參與脂多醣刺激RAW264.7細胞resistin基因表現之研究。臺灣大學醫學院生物化學暨分子生物研究所碩士論文
吳宗諭(2006)轉錄因子Oct-2參與在脂多醣誘發巨噬細胞中iNOS啟動子活化的研究。臺灣大學醫學院生物化學暨分子生物研究所碩士論文
Aderem, A., and Ulevitch, R.J. (2000). Toll-like receptors in the induction of the innate immune response. Nature 406, 782-787.
Ahmad, I., Hoessli, D.C., Walker-Nasir, E., Rafik, S.M., Shakoori, A.R., and Nasir ud, D. (2006). Oct-2 DNA binding transcription factor: functional consequences of phosphorylation and glycosylation. Nucleic Acids Res. 34, 175-184.

Aloisi, F., Care, A., Borsellino, G., Gallo, P., Rosa, S., Bassani, A., Cabibbo, A., Testa, U., Levi, G., and Peschle, C. (1992). Production of hemolymphopoietic cytokines (IL-6, IL-8, colony-stimulating factors) by normal human astrocytes in response to IL-1 beta and tumor necrosis factor-alpha. J. Immunol. 149, 2358-2366.
Alter, B.P., and Rosenberg, P.S. (2007). Granulocyte colony-stimulating factor and severe aplastic anemia. Blood 109, 4589-4590.

Appelberg, R. (2007). Neutrophils and intracellular pathogens: beyond phagocytosis and killing. Trends Microbiol. 15, 87-92.
Asnaghi, L., Bruno, P., Priulla, M., and Nicolin, A. (2004). mTOR: a protein kinase switching between life and death. Pharmacol. Res. 50, 545-549.
Berven, L.A., and Crouch, M.F. (2000). Cellular function of p70S6K: a role in regulating cell motility. Immunol. Cell Biol. 78, 447-451.
Bohuslav, J., Chen, L.F., Kwon, H., Mu, Y., and Greene, W.C. (2004). p53 induces NF-kappaB activation by an IkappaB kinase-independent mechanism involving phosphorylation of p65 by ribosomal S6 kinase 1. J. Biol. Chem. 279, 26115-26125.
Bonilla, M.A., Gillio, A.P., Ruggeiro, M., Kernan, N.A., Brochstein, J.A., Abboud, M., Fumagalli, L., Vincent, M., Gabrilove, J.L., Welte, K., et al. (1989). Effects of recombinant human granulocyte colony-stimulating factor on neutropenia in patients with congenital agranulocytosis. N. Engl. J. Med. 320, 1574-1580.
Chen, L.F., and Greene, W.C. (2004). Shaping the nuclear action of NF-kappaB. Nature 5, 392-401.
Clerc, R.G., Corcoran, L.M., LeBowitz, J.H., Baltimore, D., and Sharp, P.A. (1988). The B-cell-specific Oct-2 protein contains POU box- and homeo box-type domains. Genes Dev. 2, 1570-1581.
Cockerill, P.N., and Klinken, S.P. (1990). Octamer-binding proteins in diverse hemopoietic cells. Mol. Cell. Biol. 10, 1293-1296.
Corcoran, L.M., Karvelas, M., Nossal, G.J., Ye, Z.S., Jacks, T., and Baltimore, D. (1993). Oct-2, although not required for early B-cell development, is critical for later B-cell maturation and for postnatal survival. Genes Dev. 7, 570-582.
Corcoran, L.M., Koentgen, F., Dietrich, W., Veale, M., and Humbert, P.O. (2004). All known in vivo functions of the Oct-2 transcription factor require the C-terminal protein domain. J. Immunol. 172, 2962-2969.
Covic, M., Hassa, P.O., Saccani, S., Buerki, C., Meier, N.I., Lombardi, C., Imhof, R., Bedford, M.T., Natoli, G., and Hottiger, M.O. (2005). Arginine methyltransferase CARM1 is a promoter-specific regulator of NF-kappaB-dependent gene expression. EMBO J. 24, 85-96.
Darveau, R.P. (1998). Lipid A diversity and the innate host response to bacterial infection. Curr. Opin. Microbiol. 1, 36-42.
Dauphinee, S.M., and Karsan, A. (2006). Lipopolysaccharide signaling in endothelial cells. Lab. Invest. 86, 9-22.
Demetri, G.D., and Griffin, J.D. (1991). Granulocyte colony-stimulating factor and its receptor. Blood 78, 2791-2808.
Demetri, G.D., Zenzie, B.W., Rheinwald, J.G., and Griffin, J.D. (1989). Expression of colony-stimulating factor genes by normal human mesothelial cells and human malignant mesothelioma cells lines in vitro. Blood 74, 940-946.
Dong, B., and Zhao, F.Q. (2007). Expression of the Oct-2 transcription factor in mouse mammary gland and cloning and characterization of a novel Oct-2 isoform. Cell Tissue Res. 328, 595-606.
Dunn, S.M., Coles, L.S., Lang, R.K., Gerondakis, S., Vadas, M.A., and Shannon, M.F. (1994). Requirement for nuclear factor (NF)-kappa B p65 and NF-interleukin-6 binding elements in the tumor necrosis factor response region of the granulocyte colony-stimulating factor promoter. Blood 83, 2469-2479.
Dunn, T.L., Ross, I.L., and Hume, D.A. (1996). Transcription factor Oct-2 is expressed in primary murine macrophages. Blood 88, 4072.
Ernst, T.J., Ritchie, A.R., Demetri, G.D., and Griffin, J.D. (1989). Regulation of granulocyte- and monocyte-colony stimulating factor mRNA levels in human blood monocytes is mediated primarily at a post-transcriptional level. J. Biol. Chem. 264, 5700-5703.
Fang, J.Y., and Richardson, B.C. (2005). The MAPK signalling pathways and colorectal cancer. Lancet Oncol. 6, 322-327.
Fibbe, W.E., van Damme, J., Billiau, A., Goselink, H.M., Voogt, P.J., van Eeden, G., Ralph, P., Altrock, B.W., and Falkenburg, J.H. (1988). Interleukin 1 induces human marrow stromal cells in long-term culture to produce granulocyte colony-stimulating factor and macrophage colony-stimulating factor. Blood 71, 430-435.
Fossiez, F., Djossou, O., Chomarat, P., Flores-Romo, L., Ait-Yahia, S., Maat, C., Pin, J.J., Garrone, P., Garcia, E., Saeland, S., et al. (1996). T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines. J. Exp. Med. 183, 2593-2603.
Franzke, A. (2006). The role of G-CSF in adaptive immunity. Cytokine Growth Factor Rev. 17, 235-244.
Fruman, D.A., Snapper, S.B., Yballe, C.M., Davidson, L., Yu, J.Y., Alt, F.W., and Cantley, L.C. (1999). Impaired B cell development and proliferation in absence of phosphoinositide 3-kinase p85alpha. Science 283, 393-397.
Galanos, C., Roppel, J., Weckesser, J., Rietschel, E.T., and Mayer, H. (1977). Biological activities of lipopolysaccharides and lipid A from Rhodospirillaceae. Infect. Immun. 16, 407-412.
Glaspy, J.A., Baldwin, G.C., Robertson, P.A., Souza, L., Vincent, M., Ambersley, J., and Golde, D.W. (1988). Therapy for neutropenia in hairy cell leukemia with recombinant human granulocyte colony-stimulating factor. Ann. Intern. Med. 109, 789-795.
Goldsborough, A.S., Healy, L.E., Copeland, N.G., Gilbert, D.J., Jenkins, N.A., Willison, K.R., and Ashworth, A. (1993). Cloning, chromosomal localization and expression pattern of the POU domain gene Oct-11. Nucleic Acids Res. 21, 127-134.
Gordon, S. (1998). The role of the macrophage in immune regulation. Res. Immunol. 149, 685-688.
Gordon, S., and Taylor, P.R. (2005). Monocyte and macrophage heterogeneity. Nature 5, 953-964.
Guha, M., and Mackman, N. (2001). LPS induction of gene expression in human monocytes. Cellular signalling 13, 85-94.
Hammond, W.P.t., Price, T.H., Souza, L.M., and Dale, D.C. (1989). Treatment of cyclic neutropenia with granulocyte colony-stimulating factor. N. Engl. J. Med. 320, 1306-1311.
Hannon, G.J. (2002). RNA interference. Nature 418, 244-251.
Hareng, L., Meergans, T., von Aulock, S., Volk, H.D., and Hartung, T. (2003). Cyclic AMP increases endogenous granulocyte colony-stimulating factor formation in monocytes and THP-1 macrophages despite attenuated TNF-alpha formation. Eur. J. Immunol. 33, 2287-2296.
Hatzopoulos, A.K., Stoykova, A.S., Erselius, J.R., Goulding, M., Neuman, T., and Gruss, P. (1990). Structure and expression of the mouse Oct2a and Oct2b, two differentially spliced products of the same gene. Development 109, 349-362.
Herrmann, F., Cannistra, S.A., and Griffin, J.D. (1986). T cell-monocyte interactions in the production of humoral factors regulating human granulopoiesis in vitro. J. Immunol. 136, 2856-2861.
Jakubowski, A.A., Souza, L., Kelly, F., Fain, K., Budman, D., Clarkson, B., Bonilla, M.A., Moore, M.A., and Gabrilove, J. (1989). Effects of human granulocyte colony-stimulating factor in a patient with idiopathic neutropenia. N. Engl. J. Med. 320, 38-42.
Kaminska, B. (2005). MAPK signalling pathways as molecular targets for anti-inflammatory therapy--from molecular mechanisms to therapeutic benefits. Biochim. Biophys. Acta 1754, 253-262.
Kang, S.M., Tsang, W., Doll, S., Scherle, P., Ko, H.S., Tran, A.C., Lenardo, M.J., and Staudt, L.M. (1992). Induction of the POU domain transcription factor Oct-2 during T-cell activation by cognate antigen. Mol. Cell. Biol. 12, 3149-3154.
Kared, H., Masson, A., Adle-Biassette, H., Bach, J.F., Chatenoud, L., and Zavala, F. (2005). Treatment with granulocyte colony-stimulating factor prevents diabetes in NOD mice by recruiting plasmacytoid dendritic cells and functional CD4(+)CD25(+) regulatory T-cells. Diabetes 54, 78-84.
Katakowski, M., Zhang, Z.G., Chen, J., Zhang, R., Wang, Y., Jiang, H., Zhang, L., Robin, A., Li, Y., and Chopp, M. (2003). Phosphoinositide 3-kinase promotes adult subventricular neuroblast migration after stroke. J. Neurosci. Res. 74, 494-501.
Kaushansky, K. (2006). Lineage-specific hematopoietic growth factors. N. Engl. J. Med. 354, 2034-2045.
Kemler, I., and Schaffner, W. (1990). Octamer transcription factors and the cell type-specificty of immunoglobulin gene-expression. Faseb J. 4, 1444-1449.
Kitabayashi, A., Hirokawa, M., Hatano, Y., Lee, M., Kuroki, J., Niitsu, H., and Miura, A.B. (1995). Granulocyte colony-stimulating factor downregulates allogeneic immune responses by posttranscriptional inhibition of tumor necrosis factor-alpha production. Blood 86, 2220-2227.
Koeffler, H.P., Gasson, J., Ranyard, J., Souza, L., Shepard, M., and Munker, R. (1987). Recombinant human TNF alpha stimulates production of granulocyte colony-stimulating factor. Blood 70, 55-59.
Koyasu, S. (2003). The role of PI3K in immune cells. Nat. Immunol. 4, 313-319.
Latchman, D.S. (1996). The Oct-2 transcription factor. Int. J. Biochem. Cell Biol. 28, 1081-1083.
Latchman, D.S. (1999). POU family transcription factors in the nervous system. J. Cell. Physiol. 179, 126-133.
LeBowitz, J.H., Kobayashi, T., Staudt, L., Baltimore, D., and Sharp, P.A. (1988). Octamer-binding proteins from B or HeLa cells stimulate transcription of the immunoglobulin heavy-chain promoter in vitro. Genes Dev. 2, 1227-1237.
Lillycrop, K.A., and Latchman, D.S. (1992). Alternative splicing of the Oct-2 transcription factor RNA is differentially regulated in neuronal cells and B cells and results in protein isoforms with opposite effects on the activity of octamer/TAATGARAT-containing promoters. J. Biol. Chem. 267, 24960-24965.
Liu, Y.-J. (2001). Dendritic Cell Subsets and Lineages, and Their Functions in Innate and Adaptive Immunity. Cell 106, 259-262.
Liu, Y., Denlinger, C.E., Rundall, B.K., Smith, P.W., and Jones, D.R. (2006). Suberoylanilide hydroxamic acid induces Akt-mediated phosphorylation of p300, which promotes acetylation and transcriptional activation of RelA/p65. J. Biol. Chem. 281, 31359-31368.
Liu, Y.Z., Lillycrop, K.A., and Latchman, D.S. (1995). Regulated splicing of the Oct-2 transcription factor RNA in neuronal cells. Neurosci. Lett. 183, 8-12.
Lu, S.C., Chang, S.F., Chen, H.L., Chou, Y.Y., Lan, Y.H., Chuang, C.Y., Yu, W.H., and Chen, C.L. (2007). A novel role for Oct-2 in the lipopolysaccharide-mediated induction of resistin gene expression in RAW264.7 cells. Biochem. J. 402, 387-395.
Malipiero, U.V., Frei, K., and Fontana, A. (1990). Production of hemopoietic colony-stimulating factors by astrocytes. J. Immunol. 144, 3816-3821.
Matthews, J.R., and Hay, R.T. (1995). Regulation of the DNA binding activity of NF-kappa B. Int. J. Biochem. Cell Biol. 27, 865-879.
Meijer, D., Graus, A., Kraay, R., Langeveld, A., Mulder, M.P., and Grosveld, G. (1990). The octamer binding factor Oct6: cDNA cloning and expression in early embryonic cells. Nucleic Acids Res. 18, 7357-7365.
Morris, E.S., MacDonald, K.P., Rowe, V., Johnson, D.H., Banovic, T., Clouston, A.D., and Hill, G.R. (2004). Donor treatment with pegylated G-CSF augments the generation of IL-10-producing regulatory T cells and promotes transplantation tolerance. Blood 103, 3573-3581.
Nathan, C. (2006). Neutrophils and immunity: challenges and opportunities. Nature 6, 173-182.
Negrin, R.S., Haeuber, D.H., Nagler, A., Kobayashi, Y., Sklar, J., Donlon, T., Vincent, M., and Greenberg, P.L. (1990). Maintenance treatment of patients with myelodysplastic syndromes using recombinant human granulocyte colony-stimulating factor. Blood 76, 36-43.
Negrin, R.S., Haeuber, D.H., Nagler, A., Olds, L.C., Donlon, T., Souza, L.M., and Greenberg, P.L. (1989). Treatment of myelodysplastic syndromes with recombinant human granulocyte colony-stimulating factor. A phase I-II trial. Ann. Intern. Med. 110, 976-984.
Nishizawa, M., and Nagata, S. (1990). Regulatory elements responsible for inducible expression of the granulocyte colony-stimulating factor gene in macrophages. Mol. Cell. Biol. 10, 2002-2011.
Nishizawa, M., Tsuchiya, M., Watanabe-Fukunaga, R., and Nagata, S. (1990). Multiple elements in the promoter of granulocyte colony-stimulating factor gene regulate its constitutive expression in human carcinoma cells. J. Biol. Chem. 265, 5897-5902.
Ojaniemi, M., Glumoff, V., Harju, K., Liljeroos, M., Vuori, K., and Hallman, M. (2003). Phosphatidylinositol 3-kinase is involved in Toll-like receptor 4-mediated cytokine expression in mouse macrophages. Eur. J. Immunol. 33, 597-605.
Oster, W., Lindemann, A., Mertelsmann, R., and Herrmann, F. (1989). Granulocyte-macrophage colony-stimulating factor (CSF) and multilineage CSF recruit human monocytes to express granulocyte CSF. Blood 73, 64-67.
Ozer, H., Armitage, J.O., Bennett, C.L., Crawford, J., Demetri, G.D., Pizzo, P.A., Schiffer, C.A., Smith, T.J., Somlo, G., Wade, J.C., et al. (2000). 2000 update of recommendations for the use of hematopoietic colony-stimulating factors: evidence-based, clinical practice guidelines. American Society of Clinical Oncology Growth Factors Expert Panel. J. Clin. Oncol. 18, 3558-3585.
Palucka, A.K., Banchereau, J., Blanco, P., and Pascual, V. (2002). The interplay of dendritic cell subsets in systemic lupus erythematosus. Immunology and cell biology 80, 484-488.
Park, H.K., Chu, K., Lee, S.T., Jung, K.H., Kim, E.H., Lee, K.B., Song, Y.M., Jeong, S.W., Kim, M., and Roh, J.K. (2005). Granulocyte colony-stimulating factor induces sensorimotor recovery in intracerebral hemorrhage. Brain Res. 1041, 125-131.
Pevzner, V., Kraft, R., Kostka, S., and Lipp, M. (2000). Phosphorylation of Oct-2 at sites located in the POU domain induces differential down-regulation of Oct-2 DNA-binding ability. Biochem. J. 347 Pt 1, 29-35.
Phillips, K., and Luisi, B. (2000). The virtuoso of versatility: POU proteins that flex to fit. J. Mol. Biol. 302, 1023-1039.
Proud, C.G. (1996). p70 S6 kinase: an enigma with variations. Trends Biochem. Sci. 21, 181-185.
Rader, D.J., and Pure, E. (2005). Lipoproteins, macrophage function, and atherosclerosis: beyond the foam cell? Cell Metab. 1, 223-230.
Raetz, C.R., Ulevitch, R.J., Wright, S.D., Sibley, C.H., Ding, A., and Nathan, C.F. (1991). Gram-negative endotoxin: an extraordinary lipid with profound effects on eukaryotic signal transduction. Faseb J. 5, 2652-2660.
Roberts, A.W. (2005). G-CSF: a key regulator of neutrophil production, but that's not all! Growth factors 23, 33-41.
Rosner, M.H., Vigano, M.A., Ozato, K., Timmons, P.M., Poirier, F., Rigby, P.W., and Staudt, L.M. (1990). A POU-domain transcription factor in early stem cells and germ cells of the mammalian embryo. Nature 345, 686-692.
Rutella, S., Zavala, F., Danese, S., Kared, H., and Leone, G. (2005). Granulocyte colony-stimulating factor: a novel mediator of T cell tolerance. J. Immunol. 175, 7085-7091.
Schmitz, M.L., Mattioli, I., Buss, H., and Kracht, M. (2004). NF-kappaB: a multifaceted transcription factor regulated at several levels. Chembiochem 5, 1348-1358.
Segal, A.W. (2005). How neutrophils kill microbes. Annu. Rev. Immunol. 23, 197-223.
Shyu, W.C., Lin, S.Z., Yang, H.I., Tzeng, Y.S., Pang, C.Y., Yen, P.S., and Li, H. (2004). Functional recovery of stroke rats induced by granulocyte colony-stimulating factor-stimulated stem cells. Circulation 110, 1847-1854.
Solaroglu, I., Cahill, J., Jadhav, V., and Zhang, J.H. (2006). A novel neuroprotectant granulocyte-colony stimulating factor. Stroke 37, 1123-1128.
Sturm, R.A., Das, G., and Herr, W. (1988). The ubiquitous octamer-binding protein Oct-1 contains a POU domain with a homeo box subdomain. Genes Dev. 2, 1582-1599.
Sugimoto, Y., Fukada, Y., Mori, D., Tanaka, S., Yamane, H., Okuno, Y., Deai, K., Tsuchiya, S., Tsujimoto, G., and Ichikawa, A. (2005). Prostaglandin E2 stimulates granulocyte colony-stimulating factor production via the prostanoid EP2 receptor in mouse peritoneal neutrophils. J. Immunol. 175, 2606-2612.
Tanaka, M., and Herr, W. (1990). Differential transcriptional activation by Oct-1 and Oct-2: interdependent activation domains induce Oct-2 phosphorylation. Cell 60, 375-386.
Tsuchiya, M., Kaziro, Y., and Nagata, S. (1987). The chromosomal gene structure for murine granulocyte colony-stimulating factor. Eur. J. Biochem. 165, 7-12.
van de Geijn, G.J., Aarts, L.H., Erkeland, S.J., Prasher, J.M., and Touw, I.P. (2003). Granulocyte colony-stimulating factor and its receptor in normal hematopoietic cell development and myeloid disease. Rev. Physiol. Biochem. Pharmacol. 149, 53-71.
van Os, R., van Schie, M.L., Willemze, R., and Fibbe, W.E. (2002). Proteolytic enzyme levels are increased during granulocyte colony-stimulating factor-induced hematopoietic stem cell mobilization in human donors but do not predict the number of mobilized stem cells. J. Hematother. Stem Cell Res. 11, 513-521.
Vellenga, E., Rambaldi, A., Ernst, T.J., Ostapovicz, D., and Griffin, J.D. (1988). Independent regulation of M-CSF and G-CSF gene expression in human monocytes. Blood 71, 1529-1532.
Wang, V.E., Tantin, D., Chen, J., and Sharp, P.A. (2004). B cell development and immunoglobulin transcription in Oct-1-deficient mice. Proc. Natl. Acad. Sci. U.S.A. 101, 2005-2010.
Wieser, M., Bonifer, R., Oster, W., Lindemann, A., Mertelsmann, R., and Herrmann, F. (1989). Interleukin-4 induces secretion of CSF for granulocytes and CSF for macrophages by peripheral blood monocytes. Blood 73, 1105-1108.
Wirth, T., Priess, A., Annweiler, A., Zwilling, S., and Oeler, B. (1991). Multiple Oct2 isoforms are generated by alternative splicing. Nucleic Acids Res. 19, 43-51.
Xu, S., Bayat, H., Hou, X., and Jiang, B. (2006). Ribosomal S6 kinase-1 modulates interleukin-1beta-induced persistent activation of NF-kappaB through phosphorylation of IkappaBbeta. Am. J. Physiol. 291, C1336-1345.
Zavala, F., Abad, S., Ezine, S., Taupin, V., Masson, A., and Bach, J.F. (2002). G-CSF therapy of ongoing experimental allergic encephalomyelitis via chemokine- and cytokine-based immune deviation. J. Immunol. 168, 2011-2019.
Zsebo, K.M., Yuschenkoff, V.N., Schiffer, S., Chang, D., McCall, E., Dinarello, C.A., Brown, M.A., Altrock, B., and Bagby, G.C., Jr. (1988). Vascular endothelial cells and granulopoiesis: interleukin-1 stimulates release of G-CSF and GM-CSF. Blood 71, 99-103.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29598-
dc.description.abstractOct-2是因為能結合到許多基因上的octamer motif(ATTTGCAT)而命名的,Oct-2是屬於POU family的一員,POU family的成員除了Oct-2之外,還有Oct-1、Pit-1以及Unc-86,在之前的研究指出,Oct-2在神經細胞內以及B淋巴球中是非常重要的轉錄因子,然而Oct-2在巨噬細胞內的表現和功能卻還尚未明瞭,在我們之前的研究指出,脂多醣LPS會誘導巨噬細胞表現Oct-2,並且進一步的發現在LPS作用下,巨噬細胞表現Oct-2是藉由PI3K/AKT/mTOR pathway來調節其蛋白質的合成,因此在巨噬細胞中,Oct-2或許是個調節細胞內發炎基因表現的重要轉錄因子。
Granulocyte colony stimulating factor (G-CSF)是一個血球生長因子,它能維持嗜中性球先驅細胞的生長並幫助其分化成嗜中性球,在體內一些發炎性刺激,像是IL-1, LPS, and TNF-α可以誘導巨噬細胞、內皮細胞和纖維母細胞表現G-CSF,雖然已知道G-CSF會受到刺激而表現,但是對於調控G-CSF表現的分子機制卻還不清楚。在本篇論文中,我們探討了在LPS作用下,巨噬細胞表現G-CSF是否會經由PI3K/AKT/mTOR pathway來調節,並且探討了Oct-2在LPS誘導G-CSF表現的過程中所扮演的角色,我們將RAW264.7細胞先給予不同濃度的PI3K、AKT或是mTOR的抑制劑來阻斷PI3K/AKT/mTOR pathway,以RT-PCR來偵測LPS誘導六小時後G-CSF mRNA的表現,在培養液中的G-CSF蛋白是利用ELISA assay偵測,結果發現,隨著抑制劑的濃度的增加,LPS所誘導的G-CSF mRNA和蛋白質表現會逐漸降低,並且這些抑制劑也能降低LPS誘導Oct-2表現。除此之外,NF-κB transactivation activity和 DNA binding affinity都會受到這些抑制劑而降低。
在chromatin immunoprecipitation (ChIP) assay中顯示在LPS作用下,Oct-2會結合到G-CSF啟動子上,而另一個octamer binding protein-Oct-1則是不會結合到啟動子上;在PI3K、AKT或是mTOR的抑制劑加入之後,便會使得Oct-2減少結合到G-CSF啟動子上。進一步地,我們將細胞轉染表現shRNA的質體,利用RNA interference的方式來knockdown Oct-2的表現,結果顯示,由LPS誘導的G-CSF的表現會因為Oct-2被knockdown之後而明顯的減少,因此由實驗結果得知,在LPS作用下,巨噬細胞表現G-CSF是需要活化PI3K/AKT/mTOR pathway,並且除了NF-κB之外,Oct-2調節LPS所誘導的G-CSF基因轉錄中是相當重要的轉錄因子。
zh_TW
dc.description.abstractThe Oct-2 factor was originally identified on the basis of its ability to bind to the octamer motif ATGCAAAT which is found in the promoters of several genes. Oct-2 belongs to the POU family composed of Oct-1, Oct-2, Pit-1, and Unc-86. In the previous studies, Oct-2 has been known as an important transcription factor for B cells and neuron cells. However, expression and function of Oct-2 in the macrophages is mostly unknown. Our recent results showed that expression of Oct-2 in the macrophages was induced by LPS. Moreover, our data suggest that LPS-induced increase of Oct-2 protein is through PI3K/AKT/mTOR signaling pathway. Therefore, Oct-2 may act as a mediator in response to inflammatory stimuli.
Granulocyte colony stimulating factor (G-CSF) is a hematopoietic growth factor. It supports the survival and stimulates the proliferation of neutrophil progenitors and promotes their differentiation into mature neutrophils. Inflammatory stimuli such as IL-1, LPS, and TNF-α can induce G-CSF production in macrophages, endothelial cells, and fibroblast, but the molecular mechanism was not clear. In our studies, we tested if LPS induces G-CSF expression through PI3K/AKT/mTOR pathway, and if Oct-2 plays a role in LPS-induced G-CSF expression. RAW264.7 macrophages were pretreated with inhibitors of PI3K, AKT, or mTOR before LPS was added for 6 hours and then G-CSF mRNA was determined by RT-PCR and protein in medium was determined by ELISA assay, and its RNA was determined by RT-PCR. The results showed that different concentration of PI3K, AKT, and mTOR inhibitors gradually prevented LPS-induced increase of G-CSF and inhibitors also downregulated LPS-induced Oct-2 expression. Additionally, NF-κB transactivation activity and DNA binding affinity was reduced by these inhibitors. Chromatin immunoprecipitation (ChIP) assay showed that in LPS-treated cells, Oct-2, but not Oct-1 was recruited to the octamer motif of the G-CSF promoter. Furthermore, pretreated with inhibitors of PI3K, AKT, or mTOR before LPS was added resulted in less Oct-2 binding to the promoter of G-CSF. When shRNA was transfected into cells to knockdown Oct-2, LPS-induced G-CSF expression was significantly reduced. Taken together, our data suggest that LPS-induced G-CSF expression depends on the activation of PI3K/AKT/mTOR pathway and besides NF-κB, Oct-2 plays an important role in the transcription regulation of G-CSF expression induced by LPS.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T01:11:42Z (GMT). No. of bitstreams: 1
ntu-96-R94442016-1.pdf: 1730383 bytes, checksum: 71e558ef08eb56233b7e43697fec84e8 (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents論文口試委員審定書…………………………………………………… i誌謝………………………………………………………………………ii
中文摘要…………………………………………………………………iv
英文摘要…………………………………………………………………vi
縮寫對照表……………………………………………………………viii
第一章 緒論
第一節 文獻回顧………………………………………………… 2
第二節 研究動機與實驗目的……………………………………14
第二章 材料與方法
第一節 實驗材料…………………………………………………17
第二節 細胞培養…………………………………………………19
第三節 實驗方法…………………………………………………19
第四節 小鼠之G-CSF promoter活性的分析……………………25
第五節 以西方墨點法(Western Blot)分析細胞內蛋白質表
現…………………………………………………………26
第六節 分析分泌性蛋白質G-CSF的表現……………………… 29
第七節 in vivo觀察細胞內DNA和轉錄因子的結合……………30
第八節 mRNA表現分析……………………………………………33
第九節 免疫螢光分析法(immunofluorescence)……………35
Table 1 Sequences of primers……………………………… 36
第三章 結果
第一節 LPS誘導巨噬細胞大量表現G-CSF………………………39
第二節 抑制劑LY294006、AKT inhibitor和rapamycin以及暫時
性轉染具活性的AKT和mTOR對於LPS誘導G-CSF表現的影
響…………………………………………………………39
第三節 在巨噬細胞中,LY294006、AKT inhibitor和rapamycin
對於NF-κB tranlocation、transactivation和DNA
binding affinity的影響………………………………40
第四節 Chromatin immunoprecipitation(ChIP)assay顯示
LPS會誘導Oct-2結合到G-CSF啟動子上、而Oct-1不
會…………………………………………………………41
第五節 抑制劑LY294006、AKT inhibitor和rapamycin對於LPS
誘導巨噬細胞表現Oct-2的影響,進而抑制了結合到G-
CSF啟動子上的Oct-2……………………………………42
第六節 pGL3-G-CSF-P與pCG-Oct-1或是pCG-Oct-2共同轉染時對
於LPS 活化G-CSF啟動子的影響……………………… 43
第七節 利用RNAi knockdown的方式來抑制Oct-1以及Oct-2表現
後對LPS誘導G-CSF表現的影響…………………………43
第四章 討論
第一節 LPS誘導G-CSF的表現……………………………………46
第二節 LPS藉由PI3K/AKT/mTOR pathway來調控Oct-2表現和NF-
κB transactivation與DNA binding affinity…… 46
第三節 Oct-2調節LPS誘導巨噬細胞表現G-CSF,而非Oct-1 48
第四節 NF-κB和Oct-2共同調控G-CSF的表現…………………50
第五節 總結…………………………………………………… 51
第五章 圖表……………………………………………………………53
參考文獻…………………………………………………………………72
附錄………………………………………………………………………82
表目錄
Figure 1 Time course of LPS-stimulated G-CSF release in
RAW264.7 cells…………………………………………… 54
Figure 2 Expression of G-CSF in RAW264.7 cells………………55
Figure 3 The influence of blockade of PI3K/AKT/mTOR pathway
on Oct-1 and Oct-2 in RAW264.7 cells……………… 56
Figure 4 LPS-induced increase of G-CSF mRNA is inhibited by
a PI3-Kinase inhibitor, LY294002, in a dose
dependent manner in RAW264.7 cells………………… 57
Figure 5 LY294002 downregulated the levels of G-CSF protein
induced by LPS…………………………………………… 58
Figure 6 AKT inhibitor blocks the LPS-induced G-CSF
expression in RAW264.7 cells………………………… 59
Figure 7 AKT inhibitor prevents the increase of LPS-induced
G-CSF protein production……………………………… 60
Figure 8 LPS-induced G-CSF production is partially
inhibited by rapamycin in RAW264.7 cells………… 61
Figure 9 Rapamycin downregulated LPS-induced G-CSF protein
expression………………………………………………… 62
Figure 10 Blockade activation of AKT or mTOR reduced G-CSF
production induced by LPS treatment…………………63
Figure 11 The effects of inhibitors of PI 3-kinase, AKT,
and mTOR on the levels of nuclear NF-κB in
Raw264.7 cells…………………………………………… 64
Figure 12 The regulation of LPS-induced NF- κB
transcriptional activity through PI3K/AKT/mTOR
pathway…………………………………………………… 65
Figure 13 Binding of NF-κB to the promoter of G-CSF is
regulated through PI3K/AKT/mTOR pathway in
RAW264.7 cells……………………………………………66
Figure 14 Oct-2 binds to the promoter of G-CSF in RAW264.7
cells is stimulated by LPS……………………………67
Figure 15 Binding of Oct-2 to the promoter of G-CSF in LPS-
treated cells is mediated through PI3K/AKT/mTOR
pathway…………………………………………………… 68
Figure 16 The sequence of selected G-CSF promoter region…69
Figure 17 Effects of Oct-1 or Oct-2 expression plasmid on
the activation of G-CSF promoter with or
without LPS treatment………………………………… 70
Figure 18 Knockdown of Oct-2 reduced LPS-induced G-CSF
expression in RAW264.7 cells…………………………71
dc.language.isozh-TW
dc.subject嗜中性球zh_TW
dc.subject脂多醣zh_TW
dc.subject巨噬細胞zh_TW
dc.subject顆粒性白血球群落刺激因子zh_TW
dc.subjectmacrophageen
dc.subjectG-CSFen
dc.subjectneutrophilen
dc.subjectOct-2en
dc.subjectNF-κBen
dc.subjectLPS RAW264.7en
dc.titlePI3K/AKT/mTOR訊息傳遞路徑在脂多醣誘導巨噬細胞表現G-CSF中所扮演的角色zh_TW
dc.titleThe role of PI3K/AKT/mTOR signaling pathway in LPS-induced increase of granulocyte colony stimulating factor (G-CSF) in macrophagesen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張淑芬,姜安娜,游偉詢
dc.subject.keyword脂多醣,巨噬細胞,顆粒性白血球群落刺激因子,嗜中性球,zh_TW
dc.subject.keywordLPS RAW264.7,macrophage,NF-κB,Oct-2,neutrophil,G-CSF,en
dc.relation.page91
dc.rights.note有償授權
dc.date.accepted2007-07-20
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生物化學暨分子生物學研究所zh_TW
顯示於系所單位:生物化學暨分子生物學科研究所

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
1.69 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved