Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 大氣科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29547
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳正平
dc.contributor.authorPei-Yun Tangen
dc.contributor.author唐珮耘zh_TW
dc.date.accessioned2021-06-13T01:10:03Z-
dc.date.available2007-07-25
dc.date.copyright2007-07-25
dc.date.issued2007
dc.date.submitted2007-07-23
dc.identifier.citation李湘鶴,2006:本土與區域沙塵揚起、傳送及物理效應之模擬。國立台灣大學大
氣科學研究所碩士論文。37-38 pp.
王寶貫,1997:雲物理學。渤海堂文化事業有限公司。151 pp.
Anthes, R.A., and Warner T.T., 1978: The Development of Mesoscale Models Suitable
for Air Pollution and Other Mesometeorological Studies. Monthly Weather Rev.,
106,1045–1078
Ashworth, E. N. & Kieft, T. L., 1995: Ice nucleation activity associated with plants and
fungi, In R. E. Lee, G. J. Warren & L. V. Gusta, eds. Biologica Ice Nucleation and
Its Applications. pp 137-162. American Phytopathological Society, St. Paul,
Minnesota.
Bauer, H., A. Kasper-Giebl, M. Lo¨flund, H. Giebl, R. Hitzenberger, F. Zibuschka, and
H. Puxbaum, 2002: The contribution of bacteria and fungal spores to the organic
carbon content of cloud water, precipitation and aerosols, Atmos. Res., 64, 109–
119.
Chen, J.-P., and Lamb, D., 1994:Simulation of Cloud Microphysical and Chemical
Processes Using a Multicomponent Framework. Part I: Description of the
Microphysical Model. J. Atmos. Sci., 51, 2613-2630
Chen, J.-P., and Liu, S.-T., 2004:Physically based two-moment bulkwater parameterization for warm- cloud microphysics. Q. J. R. Meteorol. Soc., 130, 51–78
Cheng, C.-T., Wang, W.-C., and Chen, J.-P., 2007a: A modelling study of aerosol impacts on cloud radiative properties and precipitation. Q. J. R. Meteorol. Soc., 133, 283-279
Cheng, C.-T., Wang, W.-C., and Chen, J.-P., 2007b:A modeling study of CNN number on cloud microphysics in a deep convection system. 9th WMO Scientific Conference on Weather Modification.
Diehl,K., Matthias-Maser, S., Jaenicke R. and Mitra S. K., 2002:Heterogeneous Drop Freezing in the Immersion Mode: Model Calculations Considering Soluble and Insoluble Particles in the Drops. Atmos. Res., 2, 125-133
Field, P. R., Möhler, O., Connolly, P., Benz, S., Krämaer, M., Cotton, R., Heymsfield, A. J., Saathoff, H., and Schnaiter, M., 2006:Some ice nucleation characteristics of Asian and Saharan desert dust. Atmos. Chem. Phys., 6, 2991-3006
Fletcher, N. H., 1962:The Physics of Raincloud. Cambridge University Press(Reprinted 1972),241 pp.
Fuzzi, S., Mandriolo, P., Perfetto, A., 1997:Sort communication:fog droplets-an atmospheric source of secondary biological aerosol particles. Atmos. Environ., 31, 287-290
Grell, G. A., J. Dudhia, and D. R., Stauffer, 1994:A description of the fifth-generation Penn Stat / NCAR mesoscal model(MM5). NCAR Technical Note, NCAR /TN-398+STR, pp.121
Gruber, S., Matthias-Maser, S., Brinkmann, J., and Jaenicke, R., 1998. Vertical distribution of biological aerosol particles above the North Sea. J. Aerosol Sci, 29, 771– 772.
Hans R. Pruppacher and James D. Klett, 1997:Microphysics of clouds and precipitation. Kluwer Academic Publishers.
Hazra, A., Saha, M., De, U. K., Mukherjee, J., and Goswami, K., 2004:Study of ice nucleating characteristics of Pseudomonas aeruginosa. J. Aero. Sci., 35, 1405-1414.
Huffman, P. J., 1973:Supersaturation spectra of AgI and natural ice nuclei., J. Appl. Meteor., 12, 1080-1081
Imshenetsky, A. A., S. V. Lysenko, and G. A. Kazakov, 1978:Upper Boundary of the Biosphere. Appl. Environ. Microbiol., 35, 1-5
Isono, K., Komabayasi, M., and Ono, A., 1959:The nature and origin of ice nuclei in the atmosphere. J. Meteorol. Soc. Japan, 37 211-233
Lau, M. K., and Wu, H.T., 2003:Warm rain processes over tropical oceans and climate implications. Geophys. Res. Lett., 30, 2290
Lee, M. R., R. E. Lee, J. M. Strong-Gunderson & S. R. Minges. 1992a:Treatment with ice nucleating active fungi and surfactants decrease insect supercooling capacity. Cryobiology, 29, 743.
Levin, Z., Yankofsky, S.A., 1983. Contact versus immersion freezing of freely suspended droplets by bacterial ice nuclei. J. Clim. Appl. Meteorol. 22, 1964–1966.
Lighthart, B., 1997:The ecology of bacteria in the alfresco atmosphere., FEMS Microbiol. Ecol. 23, 263–274.
Lindemann, J., Constantinidou, H. A., Barchet, W. R., Upper, C. D., 1982:Plants as souces of airborne bacteria including ice nucleation active bacteria. Appl. Envirn. Microbiol., 44, 1059-1063
Maki, L.R., Willoughby, K.J., 1978: Bacteria as biogenic sources of freezing nuclei. J. Appl. Meteorol. 17, 1049–1053.
MANDRIOLI, P., PUPPI , G. L., BAGNI N. and PRODI F., 1973:Distribution of Microorganisms in Hailstones. Nature, 246, 416 - 417
Marshall J.S., and Palmer., W. M. K., 1948:The distribution of raindrops with size. J. Meteor., 5, 165–166.
Mason, B. J., D. Sc., and F.R.S., 1971:Thy physics of Clouds. Clarendon press. pp. 196-197
Matthias-Maser, S., Bogs, B., and Jaenicke, R., 2000:The size distribution of primary biological aerosol particles in cloud water on the mountain Kleiner Feldbergr /Taunus (FRG). Atmos. Res., 54, 1–13
Morris, C. E., Georgakopoulos, D. G., and Sand, D. C., 2004:Ice nucleation active bacteria and their potential role in precipitation. J. Phys. IV France, 121, 87–103
Nyeki, S., Li, F., Weingartner, E., Streit, N., and Colbeck, I., 1998:The background aerosol size distribution in the free troposphere:An analysis of the annual cycle at a high-alpine site. J.G.R., 103, 31,749–31,762
Reisner, R. M., and Bruintjes, R. T., 1998:Explicit forecasting of supercooled liquid water in winter storm using the MM5 mesoscale model. Q. J. Meteorol. Soc., 124, 1071–1107

Sands DC, Langhans VE, Scharen AL, de Smet G. 1982. The association between bacteria and rain and possible resultant meteorological implications. J. Hung. Meteorol. Serv. 86: 148– 52
Sattler, B., Puxbaum, H., and Psenner, R., 2001: Bacterial growth in supercooled cloud droplets. Geophys. Res.Lett. 28:239–242.
Schnell, R. C., and Vali, G., 1972:Atmospheric ice nuclei from decomposing vegetation. Nature(London), 236, 163–165
Schnell, R. C.,1975:Freezing nuclei in marine waters. Tellus, 27, 132-134
Tsumuki, H., 1992: An ice-nucleating active fungus isolated from the gut of the rice stem borer, Chilo suppressalis Walker (Lepidoptera: Pyralidae). J. Insect Physiol. 38: 119-125.
Vali, G., Christensen, M., Fresh, R.W., Galyan, E.L., Maki, L.R., Schnell, R.C., 1976: Biogenic ice nuclei: Part II. bacterial sources. J. Atmos. Sci. 33, 1565– 1570.
Vonnegut, B., 1947:The nucleation of ice formation by Silver Iodide. J. Appl. Phys., 18, 593-595
Wainwright, M., N.C. Wickramasinghe , J.V. Narlikar , P. Rajaratnam, 2003:Microorganisms cultured from stratospheric air samples obtained at 41 km. FEMS Microbiol. Lett., 218, 161-165
Whitby K. T., 1978, The physical characteristics of sulfur aerosols. Atmos. Environ.,12, 135–159
Yankosfsky, S. A., Z. Levin, T. Bertold and N. Sandlerman, 1981:Some basic characteristics of bacterial freezing nucei. J. Appl. Meteor., 20, 1013-1019.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29547-
dc.description.abstract冰晶的形成在冷雲降水中是重要關鍵,而異質核化可在較高溫度下進行,因此一般認為是產生冰晶的主要機制。異質核化過程必須靠冰核來發生,而冰核的來源包括礦物沙塵以及生物氣膠。後者包括細菌、花粉和孢子等,觀測和實驗證實它們具有高數量濃度、高核化溫度的良好冰核特性,故在植披豐富的地區很可能是降水形成的重要因素。
本研究利用中尺度氣象模式MM5進行模擬生物氣膠對降水的影響。雲微物理過程主要選用CLR參數法,此參數法是由Cheng et al.,(2007a)將Chen and Liu(2004)針對暖雲所提出的two-moment bulk water parameterization植入MM5雲微物理過程中,並與Reisner 2參數法相結合,除了可以反映凝結核與的影響,也適用於分析生物氣膠的異質核化對於降水的作用與影響。
一系列模擬測試顯示細菌數量濃度的多寡會影響地面降雨量,增加數量濃度會使雨量增多但有其極限,當數量濃度超過極限反而會使與量減少。實驗指出在相同數量濃度下,細菌所造成的地面雨量超過沙塵,顯示生物氣膠對降水過程有顯著與重要的貢獻。
zh_TW
dc.description.abstractA large proportion of precipitation formation is governed by the cold cloud processes associated with cloud ice, snow, graupel and hail particles. Heterogeneous ice nucleation occurs through a subset of the atmospheric aerosols called ice nuclei (IN), which are generally insoluble particles, such as certain mineral dusts, soot, as well as some biological materials that include bacteria, pollen, sport etc. Many laboratory and observational studies demonstrate that bio-aerosols have the unique capability of catalyzing ice formation at relatively warm environment by means of heterogeneous nucleation processes.
In this endeavor, sensitivity of cold cloud microphysical processes to bio-aerosols has been tested for one rainfall event. A non-hydrostatic mesoscale cloud model (MM5) has been used for this simulation. This model is modified by including the two-moment warm-cloud parameterization of Chen and Liu (2004; hereafter as the “CL-scheme”) which considers the effect of condensation nuclei (CN) and explicitly predicts the masses and numbers of cloud drops and raindrops (Cheng et al., 2007a). The warm cloud scheme is further coupled with the ice-phase processes of Reisner et al. (1998) by Cheng et al. (2007b), here denoted as the “CLR-scheme,” to examine the importance of ice processes on precipitation formation. Furthermore, the diagnostic formula of heterogeneous ice nucleation in the Reisner scheme is replaced with new prognostic formulas to allow the inclusion of different types of ice nuclei, such as biological aerosols and mineral dust, and their conversion into ice particles.
The simulation results indicate that ice nucleation intensity is limited by available water vapor, and precipitation enhancement varies nonlinearly with IN concentration. As they can be nucleated at higher temperature, bio-aerosols increase the total ice and rain water mixing ratio and contribute to precipitation more efficiently than dust or other natural IN. Thus, bio-aerosols play a key role in precipitation process especially over densely vegetated area.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T01:10:03Z (GMT). No. of bitstreams: 1
ntu-96-R94229011-1.pdf: 6272589 bytes, checksum: 932d7579d9570711e53307af55a8c91e (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents誌謝 i
中文摘要 ii
英文摘要 iii
目錄 iv
表說 vi
圖說 vii
第一章 前言 1
第二章 研究方法 4
2.1 模式介紹 4
2.2 雲微物理參數法 5
2.2.1 Reisner2 Scheme 6
2.2.2 C&L Scheme 6
2.2.3 C&L Reisner2 Scheme 8
2.3 冰核核化速率 8
2.3.1 自然冰核 8
2.3.2 細菌與沙塵 9
第三章 實驗設計 13
3.1 模式設定 13
3.2 氣象場分析 14
3.3 實驗介紹 15
第四章 模擬結果 18
4.1 實驗一 18
4.2 實驗二 19
4.3實驗三 21
4.4實驗四 22
4.5實驗五 23
第五章 結論 25
5.1研究結論 25
5.2未來工作 26
參考文獻 27
圖表 31
附錄A:實驗一模擬結果 42
附錄B:實驗二模擬結果 54
附錄C:實驗三模擬結果 64
附錄D:實驗四模擬結果 82
附錄E:實驗五模擬結果 98
dc.language.isozh-TW
dc.subject生物氣膠zh_TW
dc.subject雲微物理zh_TW
dc.subject降水zh_TW
dc.subject冰核zh_TW
dc.subjectbio-aerosolen
dc.subjectprecipitationen
dc.subjectcloud microphysicsen
dc.subjectice nucleien
dc.title生物氣膠影響降水過程之數值模擬zh_TW
dc.titleSimulation of Precipitation Impact from Bio-aerosolsen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee隋中興,周仲島,楊明仁,郭鴻基
dc.subject.keyword冰核,生物氣膠,降水,雲微物理,zh_TW
dc.subject.keywordice nuclei,bio-aerosol,cloud microphysics,precipitation,en
dc.relation.page119
dc.rights.note有償授權
dc.date.accepted2007-07-23
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept大氣科學研究所zh_TW
顯示於系所單位:大氣科學系

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
6.13 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved