Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29506
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李達源(Dar-Yuan Lee)
dc.contributor.authorChien-Chih Chiuen
dc.contributor.author邱健智zh_TW
dc.date.accessioned2021-06-13T01:08:53Z-
dc.date.available2007-07-30
dc.date.copyright2007-07-30
dc.date.issued2007
dc.date.submitted2007-07-23
dc.identifier.citation陳仁炫、歐淑蒖。2005。不同有機質材之磷釋出特性及對土壤性質之影響。有機肥料之施用對土壤與作物品質之影響研討會論文集。P.19-46。
鄒裕民、陳益榮、王明光。1997。鉻酸鹽在土壤中的吸持﹝一﹞。中國農業化學會誌。35:641-651。
鄒裕民、陳益榮、王明光。1998。鉻酸鹽在土壤中的吸持﹝二﹞。中國農業化學會誌。36:77-90。
賴喜美、蘇南維。2005。粗蛋白質含量測定。生物材料分析實驗。Lab 6:1-4
環保署。2002。農地土壤中金屬調查與場址列管計畫。
〈EPA-90-GA13-03-90A285〉。
行政院勞工委員會勞工安全衛生研究所。1996。勞工鉻暴露生物偵測標準參考方法之建立。
行政院環保署環境檢驗所。2000。水中總有機碳檢驗方法-過硫焦鹽酸加熱氧化法/紅外線測定法。(NIEA W532.51C)。
Bartlett, R., and B. James. 1979. Behavior of chromium in soils: III. Oxidation. J. Environ. Qual. 8:31-35.
Bartlett, R. J., and J. M. Kimble. 1976a. Behavior of chromium in soils: I. Trivalent forms. J. Environ. Qual. 5:379-383.
Bartlett, R. J., and J. M. Kimble. 1976b. Behavior of chromium in soils: II. Hexavalent forms. J. Environ. Qual. 5:383-386
Ben-Dor, E., and A. Banin. 1989. Determination of organic matter content in arid-zone soils using a simple loss-on-ignition method. Commun. Soil Sci. Plant Anal. 20:5-1695.
Bolan, N. S., D. C. Adriano, R. Natesan, and B.-J. Koo. 2003g. Effects of organic amendments on the reduction and phytoavailability of chromate in mineral soil. J. Environ. Qual. 32:120-128.
Bremner, J. M. 1965. Total nitrogen, inorganic forms of nitrogen, organic forms of nitrogen, nitrogen availability indexes. In C. A. Black et al. (ed.) Methods of soil analysis, Part 2, Agronomy 9: 1149-1255, 1324-1348. Am. Soc. of Agron., Inc., Madison, Wis.
Chen, J. M., and O. J. Hao. 1998. Microbial chromium(VI) reduction. Crit. Rev. Environ. Sci. Technol. 28:219-225.
Collins, H. P., L. F. Elliott, R. W. Rickman, D. F. Bezdicek, and R. I. Papendick. 1990. Decomposition and interactions among wheat residue components. Soil. Sci. Soc. Am. J. 54:780-799.
Eary, L. E., and D. Rai. 1988. Chromate removal from aqueous wastes by reduction with ferrous ion. Environ. Sci. Technol. 22:972-977.
Elovltz, M. S., and W. Fish. 1994. Redox interaction of Cr(VI) and substituted phenols: kinetic investigation. Environ. Sci. Technol. 28: 2161-2169.
Fendorf, S. E., and G.. C. Li. 1996. Kinetic of chromate reduction by ferrous iron. Environ. Sci. Technol. 30: 1641-1617.
Garrels, R. M., and C. L. Christ. 1965. solutions, minerals and equilibria. Harper and Row Publishers, New York. P. 450.
Gee, G. W., and J. W. Bauder. 1986. Partical-size analysis. P. 383-441. In Method of soil analysis. Part 1. Physical and mineralogical methods. 2nd ed. ASA and SSSA, Madison, W1.
James, B. R., and R. J. Bartlett. 1983a. Behavior of chromate in soils. VI. Interactions between oxidation-reduction and organic complexation. J. Environ. Qual. 12:173-176.
James, B. R., and R. J. Bartlett. 1983a. Behavior of chromate in soils. VII. Adsorption and reduction of hexavalent forms. J. Environ. Qual. 12:177-181.
Jardine, P. M., S. E. Fendorf, M. A. Mayes, I. L. Larsen, S. C. Brooks, and W. B. Bailey. 1999. Fate and transport of hexavalent chromium in undisturbed heterogeneous soil. Environ. Sci. Technol. 33:2939-2944.
Kabata-Pendias, A., and H. Pendias. 1992 Trace elements in soils and plants. 2nd edition. CRC Press, London. p.227-233.
Yu, P. F., K. W. Juang, and D. Y. Lee. 2004. Assessment of the phytotoxicity of chromium in soils using the selective ion exchange resin extraction method. Plant and Soil. 258:333-340.
Lee, D. R., Y. N. Shih, H. C. Zheng, C. P. Chen, K. W. Juang, J. F. Lee, and L. Tsui. 2006. Using the selective ion exchange resin extraction and XANES methods to evaluate the effect of compost amendments on soil chromium(VI) phytotoxicity. Plant and Soil. 281:87-96.

Losi, M. E., C. Amrhein, and W. T. Frankenberger. 1994. Factors affecting chemical and biological reduction of hexavalent chromium in soil. Environ. Toxicol. Chem. 13:1727-1735.
McLean, E. O. 1982. Soil ph and lime requirement. P.119-224. In A. L. Page et al.(ed.) Methods of soil analysis. Part 2. 2nd ed. ASA and SSSA, Madison, W1.
Mehra, O.P., and M. L. Jackson. 1960. Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. P. 317-327. In Clays and Clay Minerals, Proc. 7th Conf. Natl. Acad. Sci., Natl. Res. Council., Washington, DC.
Nakayasu, K., M. Fukushima, K. Sasaki, S. Tanaka, and H. Nakamura. 1999. Comparative studies of the reduction behavior of chromium(VI) by humic substances and their precursors. Environ. Toxicol. Chem. 18:1085-1090.
Nelson, D. W., and L. E. Sommers. 1982. Total carbon, organic carbon, and organic matter. P.539-579. In A. L. Page et al.(ed.) Methods of soil analysis. Part 2. 2nd ed. ASA and SSSA, Madison, W1.
Oliver, D. S., F. J. Brockman, R. S. Bowman, and T. L. Kieft. 2003. Microbial reduction of hexavalent chromium under vadose zone conditions. J. Environ. Qual. 21:317-324.
Park, D., Y. S. Yun, and J.M. Park. 2004. Reduction of hexavalent chromium wih the brown seaweed Ecklonia biomass. Environ. Sci. Technol. 38:4860-4864.
Parr, J. F., and R. I. Papendick. 1978. Factors affecting the decomposition of crop residues by microorganisms. P. 101-129. In W. R. Oschwald (ed.) Crop residue management systems. ASA Spec. Publ. 31, SAS, CAS, and SSSA, Madison, WI.
Patterson, R., and S. Fendorf. 1997. Reduction of hexavalent chromium by amorphous iron sulfide. Environ. Sci. Technol. 31:2039-2044.

Tokunaga, T. K., J. Wan, M. K. Firestone, T. C. Hazen, K. R. Olson, D. J. Herman, S. R. Sutton, and A. Lanzirotti. 2003. In situ reduction of chromium(VI) in heavily contaminated soils through organic carbon amendment. J. Environ. Qual. 32:1641-1649.
Ross, D. S., R. E. Sjogren, and R. J. Bartlett. 1981. Behavior of chromium in soils: IV. Toxicity to microorganisms. J. Environ. Qual. 10:145-148.
Schindler, D. W., S. E. Bayley, P. J. Curtis, B. R. Parker, M. P. Stainton, and C. A. Kelly. 1992. Natural and man-caused factors affecting the abundance and cycling of dissolved organic substances in Precambrian shield lakes. Hydrobiologia 229:1-21.
Shaffer, R. E., J. O. Cross, S. L. Rose-Pehrsson, and W. T. Elam. 2001. Speciation of chromium in simulated soil samples using X-ray adsorption spectroscopy and multivariate calibration. Anal. Chim. Acta. 442:295-304.
Stevenson, F. J. 1986. Cycle of soil. Carbon, nitrogen, phosphorus, sulfur, micronutrients. John Wiley & Sons, Inc., New York.
Stollenwerk, K. G., and D. B. Grove. 1985. Adsorption and dessorption of hexavalent chromium in an alluvial aquifer near Telluride, Colorado. J. Environ. Qual. 14:150-155

U. S. Environmental Protection Agency. 1975. Development document for interim final effluent limitations guidelines and proposed new source performance standards for the significant inorganic products. EPA-440/1-75/037. Washington, D. C. p.2-7.
Yang, J. E., E. O. Skogley, S. J. Georgits, B. E. Schaff, and A. H. Ferguson. 1991. Phytoavailability soil test: Develop and verification of theory. Soil. Sci. Soc. Am. J. 55:1358-1365.
Yu, P. F., K. W. Juang and D. Y. Lee. 2004. Assessment of the phytotoxicity of chromium in soils using the selective ion exchange resin extraction method. Plant and Soil. 258:333-340.
Zayed, A., C. M. Lytle, J.Qian, and N.Terry. 1998. Phytoaccumulation of trace elements by wetland plants: I. Duckwood. J. Environ. Qual. 27:715-721.
Zhao, D., A. K. Sengupta, and L. Stewart. 1998. Selective removal of Cr(VI) oxyanions with a new anion exchanger. Ind. Eng. Chem. Res. 37:4383-4387.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29506-
dc.description.abstract鉻在土壤中以三價陽離子或六價陰離子的型態存在,而六價鉻在土壤中的毒性、移動性及溶解度都遠高於三價鉻。前人研究發現土壤中的有機質能將六價鉻還原成三價鉻,進而降低六價鉻在土壤中的毒性,然而添加不同有機資材於土壤中時,會因其本身之理化性質不同,使其分解速率不同進而影響六價鉻之還原效果。因此本研究之目的為探討添加不同有機資材處理 (大豆粕、牛糞堆肥、蔗渣堆肥及米糠) 對土壤中六價鉻之有效性之影響。
本試驗選定三種台灣代表性土系 (平鎮系(Pc)、將軍系(Cf)、太康系(Tk)) 作為供試土壤。將三種供試土壤分別添加K2Cr2O7溶液使其含有 0 及 500 mg Cr(VI) kg-1,加水至飽和狀態,進行三次乾濕交替。之後分別添加蔗渣堆肥 (SCDC)、牛糞堆肥(CC)、大豆粕 (SBM)及米糠 (RB)等四種有機資材於三種供試土壤中,使每公斤供試土壤增加 0、1 % 及 2 % 的有機質,於 25 ℃,田間容水量下孵育 40 天。各處理分別於孵育之第 0、4、8、12、20、30、40 天取出部份土樣,經風乾研磨過80 mesh的篩網之後,利用DOWEX M4195選擇性離子交換樹脂抽出土壤中有效性之六價鉻。另外取出孵育第 21 天之土壤,經風乾研磨過230 mesh的篩網後,進行X光吸收近邊緣結構光譜(XANES)測定。
由 DOWEX M4195 選擇性離子交換樹脂抽出結果發現,平鎮系土壤在不添加有機資材孵育下即能使土壤中有效性六價鉻降低至 10 mg kg-1。而在太康系與將軍系土壤中添加四種有機資材處理之後,土壤中之有效性六價鉻皆明顯下降,其中以添加大豆粕與米糠的效果最為快速。添加六價鉻之太康系與將軍系的土壤經三次乾濕交替後樹脂抽出有效性六價鉻分別為 149.8 及 160.7 mg kg-1,在添加 1 % 的大豆粕與米糠孵育 8 天後,能使有效性六價鉻降低至10 mg kg-1以下,而添加 2 % 的大豆粕與米糠孵育4天後即能達相同之效果。將添加不同有機資材孵育不同天數後之土壤樹脂可抽出六價鉻含量利用一級動力方程式進行套配,求得太康系土壤中六價鉻之還原速率係數分別為蔗渣堆肥 0.052 day-1、牛糞堆肥 0.18 day-1、米糠0.47 day-1及大豆粕 0.5 day-1,在將軍系土壤中六價鉻之還原速率係數分別為蔗渣堆肥 0.09 day-1、牛糞堆肥 0.174 day-1、米糠 0.44 day-1 及大豆粕 0.28 day-1。由有機資材之基本性質可知有機資材在土壤中之分解難易程度,大豆粕與米糠都是屬於較易分解之有機資材,而在土壤中大豆粕又比米糠更容易分解,但是我們從試驗結果中發現添加米糠孵育後六價鉻之還原速率大於大豆粕,可能的原因是米糠 C/N 比高於大豆粕且米糠中之有機碳比大豆粕多,因此能提供更多電子使六價鉻還原更快速。
XANES 測定結果我們發現,三種添加六價鉻但未添加有機資材土壤之譜圖於 5992-5994 eV 的位置皆有明顯之 pre-edge,表示在土壤中有六價鉻存在。而添加有機資材孵育後,pre-edge 有下降的趨勢,表示有機資材能將土壤中之六價鉻還原成三價鉻。
利用有機資材添加還原污染土壤中之六價鉻是常被使用的一種整治方法。綜合本研究結果,建議在有機資材的挑選上,首先要考慮能在土壤中快速分解之資材,並且也要有適當之 C/N 比,如此才能更快速的還原土壤中之有效性六價鉻。
zh_TW
dc.description.abstractChromium is present in soils in Cr(III) cation or Cr(VI) oxyanion forms. Cr(VI) is more toxic and mobile than Cr(III). Adding organic materials into soil can reduce Cr(VI) to Cr(III) which in turn reduces the toxicity of Cr(VI). The reduction effectiveness of Cr(VI) is influenced by the rate of decomposition of added organic materials. The characteristics of organic materials will vary in how they affect their rate of decomposition. The purpose of this study is to evaluate the effectiveness of various organic materials on decreasing Cr(VI) availability of Cr(VI)-contaminated soils.
Three representative soils of Taiwan [Pinchung (Pc), Chingchung (Cf), and Taikang (Tk)] were used in this study. These soils were added with K2Cr2O7 solution to reach the level of 0 and 500 mg Cr(VI) kg-1 respectively and gone through 3 drying and wetting cycles to prepare Cr(VI)-spiked soil. Organic matter was added into Cr(VI)-spiked soils with 0, 1 % and 2 % by dry weight in the form of sugarcane dregs compost (SCDC), cattle-dung compost, soybean meal (SBM) and rice bran (RB). The organic materials amended soils were then incubated in field capacity at 20 ℃. Soils were taken out after 0, 4, 8, 12, 20, 30 and 40 day of incubation. For extracting soil available Cr(VI) the DOWEX M4195 selective ion exchange resin was used. The degree of soil Cr(VI) reduction to Cr(III) after incubation 21 days was identified by X-ray adsorption near edge structure spectroscopy (XANES).
Results from this study indicate that only 10 mg Cr(VI) kg-1 were extracted in Pc Cr(VI)-spiked soil (500 mg Cr(VI) kg-1 ) without adding organic materials after 40 days of incubation.Most of the Cr(VI) was reduced by the natyral organic matter of Pc soils.. The addition of organic materials into Cf and Tk soils significantly decreased the amount of extractable Cr(VI). Among the four organic materials, SBM and RB were the most effective ones in reducing Cr(VI). Less than 10 mg Cr(VI) kg-1 were extracted from Cr(VI)-spiked soil amended with 1 % organic matter in the form of SBM and RB after 8 days of incubation and with 2 % organic matter in the form of SBM and RB after 4 days of incubation. The relationship between the soil extractable Cr(VI) and the incubation time was described by the first-order kinetic equation, and the rate coefficients of Cr(VI) for adding SCDC, CC, RB and SBM were 0.052 day-1, 0.18 day-1, 0.47 day-1 and 0.5 day-1 in TK soil, and 0.09day-1, 0.174 day-1, 0.44 day-1 and0.28 day-1 in Cf soil respectively. The different rate coefficients are due to the different rates of decomposition of the organic materials in soils. Although both the SBM and RB were easily decomposed in soil, the higher C/N ratio of the RB resulted in the higher effectiveness of Cr(VI) reduction than SBM.
Comparing the XANES spectra of Cr(VI)-spiked soils with and without organic material amendments for Cf and Tk-soils, it is evident that the intensity of the Cr(VI) peak was significantly lower with organic materials amendments. The XANES results suggested that the reduction of Cr(VI) to Cr(III) was the dominant mechanism for the decrease of soil available Cr(VI) when organic materials were added.
The above results suggest that when adding organic materials into Cr(VI)- contaminated soil to reduce Cr(VI), the materials that can be decomposed easily in soil must be chosen. Other than the rate of the decomposition of organic materials, the C/N ratio of organic material is also an important factor that must be taken into consideration.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T01:08:53Z (GMT). No. of bitstreams: 1
ntu-96-R94623016-1.pdf: 688169 bytes, checksum: 39535176cc423826f77cc9e8aef6a6b6 (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents目 錄
摘要(中文)…………………………………………………………………… I
摘要(英文)…………………………………………………………………… III
目錄 …………………………………………………………………………… VI
表次 ………………………………………………………………………… VIII
圖次 …………………………………………………………………………… IX
一 緒論 …………………………………………………………………… 1
1.1 前言 …………………………………………………………………… 1
1.2 環境中的鉻 …………………………………………………………… 1
1.3 鉻污染土壤之復育 …………………………………………………… 5
1.4 研究動機 ……………………………………………………………… 6
1.5 以選擇性離子抽出法交換樹脂評估植物有效性六價鉻 …………… 6
二 材料與方法 …………………………………………………………… 8
2.1 選擇性離子交換樹脂之前處理 ……………………………………… 8
2.1.1選擇性離子交換樹脂之前處理 ………………………………… 8
2.1.2樹脂袋製作流程 ………………………………………………… 10
2.2 供試土壤與有機資材 ………………………………………………… 12
2.2.1 土壤採集與基本性質分析 ……………………………………… 12
2.2.2 有機資材選定與基本性質分析 ………………………………… 14
2.3 六價鉻污染土壤之製備 ……………………………………………… 17
2.4 六價鉻污染土壤添加有機資材孵育處理 …………………………… 17
2.5 以選擇性交換樹脂抽出法評估添加不同有機資材處理降低土壤有效
性Cr(VI) 之效果……………………………………………………… 18
2. 6 X光吸收近邊緣結構光譜 (XANES)之測定 ………………………… 19
2.7 統計分析 ……………………………………………………………… 19
三 結果與討論 …………………………………………………………… 21
3.1 供試土壤及供試有機資材之基本性質 ……………………………… 21
3.2 未添加有機資材土壤中樹脂抽出六價鉻之變化 …………………… 24
3.3 添加不同有機資材孵育後土壤中樹脂抽出六價鉻之變化 ………… 27
3.4 添加不同有機資材對土壤中樹脂抽出有效性六價鉻還原速率之影響 32
3.5 X光吸收近邊緣結構光譜(XANES)分析結果 …………………… 41
四 結論 …………………………………………………………………… 45
五 參考文獻 …………………………………………………………………… 46
六 附錄 ………………………………………………………………………… 52
dc.language.isozh-TW
dc.subjectX光吸收近邊緣結構光譜zh_TW
dc.subject有機資材zh_TW
dc.subject六價鉻zh_TW
dc.subject一級動力學方程式zh_TW
dc.subject選擇性離子交換樹脂zh_TW
dc.subjectFirst-order kinetics equationen
dc.subjectOrganic materialsen
dc.subjectHexavalent chromiumen
dc.subjectX-ray adsorption near edge structure spectroscopy (XANES)en
dc.subjectDOWEX M4195 selective ion exchange resinen
dc.title評估添加各種有機資材降低六價鉻污染土壤中有效性六價鉻之效果zh_TW
dc.titleEvaluation of the Effectiveness of Various Organic Materials on Decreasing Cr(VI) Availability of Cr(VI)-Contaminated Soilsen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee鍾仁賜(Ren-Shih Chung),何聖賓(Sheng-Bin Ho),陳仁炫(Jen-Hshuan Chen),廖秋榮(Chiu-Jung Liao)
dc.subject.keyword有機資材,六價鉻,選擇性離子交換樹脂,一級動力學方程式,X光吸收近邊緣結構光譜,zh_TW
dc.subject.keywordOrganic materials,Hexavalent chromium,DOWEX M4195 selective ion exchange resin,First-order kinetics equation,X-ray adsorption near edge structure spectroscopy (XANES),en
dc.relation.page56
dc.rights.note有償授權
dc.date.accepted2007-07-23
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農業化學研究所zh_TW
顯示於系所單位:農業化學系

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
672.04 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved