請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29502完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 湯志永(Chih-Yung Tang) | |
| dc.contributor.author | Yu-Han Weng | en |
| dc.contributor.author | 翁于涵 | zh_TW |
| dc.date.accessioned | 2021-06-13T01:08:46Z | - |
| dc.date.available | 2007-08-08 | |
| dc.date.copyright | 2007-08-08 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-07-23 | |
| dc.identifier.citation | Bannister, J. P., Chanda, B., Bezanilla, F., & Papazian, D. M. (2005). Optical detection of rate-determining ion-modulated conformational changes of the ether-a-go-go K+ channel voltage sensor. Proc Natl Acad Sci U S A, 102(51), 18718-18723.
Bauer, C. K., & Schwarz, J. R. (2001). Physiology of EAG K+ channels. J Membr Biol, 182(1), 1-15. Bianchi, L., Wible, B., Arcangeli, A., Taglialatela, M., Morra, F., Castaldo, P., et al. (1998). herg encodes a K+ current highly conserved in tumors of different histogenesis: a selective advantage for cancer cells? Cancer Res, 58(4), 815-822. Biggin, P. C., Roosild, T., & Choe, S. (2000). Potassium channel structure: domain by domain. Curr Opin Struct Biol, 10(4), 456-461. Bruggemann, A., Pardo, L. A., Stuhmer, W., & Pongs, O. (1993). Ether-a-go-go encodes a voltage-gated channel permeable to K+ and Ca2+ and modulated by cAMP. Nature, 365(6445), 445-448. Camacho, J. (2006). Ether a go-go potassium channels and cancer. Cancer Lett, 233(1), 1-9. Cha, A., Snyder, G. E., Selvin, P. R., & Bezanilla, F. (1999). Atomic scale movement of the voltage-sensing region in a potassium channel measured via spectroscopy. Nature, 402(6763), 809-813. Chen, J., Mitcheson, J. S., Tristani-Firouzi, M., Lin, M., & Sanguinetti, M. C. (2001). The S4-S5 linker couples voltage sensing and activation of pacemaker channels. Proc Natl Acad Sci U S A, 98(20), 11277-11282. Chen, J., Zou, A., Splawski, I., Keating, M. T., & Sanguinetti, M. C. (1999). Long QT syndrome-associated mutations in the Per-Arnt-Sim (PAS) domain of HERG potassium channels accelerate channel deactivation. J Biol Chem, 274(15), 10113-10118. Chiesa, N., Rosati, B., Arcangeli, A., Olivotto, M., & Wanke, E. (1997). A novel role for HERG K+ channels: spike-frequency adaptation. J Physiol, 501 ( Pt 2), 313-318. Christie, M. J. (1995). Molecular and functional diversity of K+ channels. Clin Exp Pharmacol Physiol, 22(12), 944-951. Cole, K. S., & Moore, J. W. (1960). Potassium ion current in the squid giant axon: dynamic characteristic. Biophys J, 1, 1-14. Craven, K. B., & Zagotta, W. N. (2006). CNG and HCN channels: two peas, one pod. Annu Rev Physiol, 68, 375-401. Drysdale, R., Warmke, J., Kreber, R., & Ganetzky, B. (1991). Molecular characterization of eag: a gene affecting potassium channels in Drosophila melanogaster. Genetics, 127(3), 497-505. Farias, L. M., Ocana, D. B., Diaz, L., Larrea, F., Avila-Chavez, E., Cadena, A., et al. (2004). Ether a go-go potassium channels as human cervical cancer markers. Cancer Res, 64(19), 6996-7001. Ferrer, T., Rupp, J., Piper, D. R., & Tristani-Firouzi, M. (2006). The S4-S5 linker directly couples voltage sensor movement to the activation gate in the human ether-a'-go-go-related gene (hERG) K+ channel. J Biol Chem, 281(18), 12858-12864. Frings, S., Brull, N., Dzeja, C., Angele, A., Hagen, V., Kaupp, U. B., et al. (1998). Characterization of ether-a-go-go channels present in photoreceptors reveals similarity to IKx, a K+ current in rod inner segments. J Gen Physiol, 111(4), 583-599. Ganetzky, B., Robertson, G. A., Wilson, G. F., Trudeau, M. C., & Titus, S. A. (1999). The eag family of K+ channels in Drosophila and mammals. Ann N Y Acad Sci, 868, 356-369. Gomez-Varela, D., de la Pena, P., Garcia, J., Giraldez, T., & Barros, F. (2002). Influence of amino-terminal structures on kinetic transitions between several closed and open states in human erg K+ channels. J Membr Biol, 187(2), 117-133. Grabe, M., Lai, H. C., Jain, M., Nung Jan, Y., & Yeh Jan, L. (2007). Structure prediction for the down state of a potassium channel voltage sensor. Nature, 445(7127), 550-553. Guy, H. R., Durell, S. R., Warmke, J., Drysdale, R., & Ganetzky, B. (1991). Similarities in amino acid sequences of Drosophila eag and cyclic nucleotide-gated channels. Science, 254(5032), 730. Hegle, A. P., Marble, D. D., & Wilson, G. F. (2006). A voltage-driven switch for ion-independent signaling by ether-a-go-go K+ channels. Proc Natl Acad Sci U S A, 103(8), 2886-2891. Hemmerlein, B., Weseloh, R. M., Mello de Queiroz, F., Knotgen, H., Sanchez, A., Rubio, M. E., et al. (2006). Overexpression of Eag1 potassium channels in clinical tumours. Mol Cancer, 5, 41. Jeng, C. J., Chang, C. C., & Tang, C. Y. (2005). Differential localization of rat Eag1 and Eag2 K+ channels in hippocampal neurons. Neuroreport, 16(3), 229-233. Jenke, M., Sanchez, A., Monje, F., Stuhmer, W., Weseloh, R. M., & Pardo, L. A. (2003). C-terminal domains implicated in the functional surface expression of potassium channels. Embo J, 22(3), 395-403. Johnson, J. P., Jr., & Zagotta, W. N. (2005). The carboxyl-terminal region of cyclic nucleotide-modulated channels is a gating ring, not a permeation path. Proc Natl Acad Sci U S A, 102(8), 2742-2747. Ju, M., Stevens, L., Leadbitter, E., & Wray, D. (2003). The Roles of N- and C-terminal determinants in the activation of the Kv2.1 potassium channel. J Biol Chem, 278(15), 12769-12778. Ju, M., & Wray, D. (2002). Molecular identification and characterisation of the human eag2 potassium channel. FEBS Lett, 524(1-3), 204-210. Ju, M., & Wray, D. (2006). Molecular regions responsible for differences in activation between heag channels. Biochem Biophys Res Commun, 342(4), 1088-1097. Kobrinsky, E., Schwartz, E., Abernethy, D. R., & Soldatov, N. M. (2003). Voltage-gated mobility of the Ca2+ channel cytoplasmic tails and its regulatory role. J Biol Chem, 278(7), 5021-5028. Kobrinsky, E., Stevens, L., Kazmi, Y., Wray, D., & Soldatov, N. M. (2006). Molecular rearrangements of the Kv2.1 potassium channel termini associated with voltage gating. J Biol Chem, 281(28), 19233-19240. Lesage, F., & Lazdunski, M. (2000). Molecular and functional properties of two-pore-domain potassium channels. Am J Physiol Renal Physiol, 279(5), F793-801. Liu, T. I., Lebaric, Z. N., Rosenthal, J. J., & Gilly, W. F. (2001). Natural substitutions at highly conserved T1-domain residues perturb processing and functional expression of squid Kv1 channels. J Neurophysiol, 85(1), 61-71. Ludwig, J., Owen, D., & Pongs, O. (1997). Carboxy-terminal domain mediates assembly of the voltage-gated rat ether-a-go-go potassium channel. Embo J, 16(21), 6337-6345. Ludwig, J., Terlau, H., Wunder, F., Bruggemann, A., Pardo, L. A., Marquardt, A., et al. (1994). Functional expression of a rat homologue of the voltage gated either a go-go potassium channel reveals differences in selectivity and activation kinetics between the Drosophila channel and its mammalian counterpart. Embo J, 13(19), 4451-4458. Ludwig, J., Weseloh, R., Karschin, C., Liu, Q., Netzer, R., Engeland, B., et al. (2000). Cloning and functional expression of rat eag2, a new member of the ether-a-go-go family of potassium channels and comparison of its distribution with that of eag1. Mol Cell Neurosci, 16(1), 59-70. Marble, D. D., Hegle, A. P., Snyder, E. D., 2nd, Dimitratos, S., Bryant, P. J., & Wilson, G. F. (2005). Camguk/CASK enhances Ether-a-go-go potassium current by a phosphorylation-dependent mechanism. J Neurosci, 25(20), 4898-4907. McCormack, K., Tanouye, M. A., Iverson, L. E., Lin, J. W., Ramaswami, M., McCormack, T., et al. (1991). A role for hydrophobic residues in the voltage-dependent gating of Shaker K+ channels. Proc Natl Acad Sci U S A, 88(7), 2931-2935. Mello de Queiroz, F., Suarez-Kurtz, G., Stuhmer, W., & Pardo, L. A. (2006). Ether a go-go potassium channel expression in soft tissue sarcoma patients. Mol Cancer, 5, 2. Minor, D. L., Jr. (2001). Potassium channels: life in the post-structural world. Curr Opin Struct Biol, 11(4), 408-414. Misonou, H., Mohapatra, D. P., & Trimmer, J. S. (2005). Kv2.1: a voltage-gated k+ channel critical to dynamic control of neuronal excitability. Neurotoxicology, 26(5), 743-752. Morais Cabral, J. H., Lee, A., Cohen, S. L., Chait, B. T., Li, M., & Mackinnon, R. (1998). Crystal structure and functional analysis of the HERG potassium channel N terminus: a eukaryotic PAS domain. Cell, 95(5), 649-655. Napp, J., Monje, F., Stuhmer, W., & Pardo, L. A. (2005). Glycosylation of Eag1 (Kv10.1) potassium channels: intracellular trafficking and functional consequences. J Biol Chem, 280(33), 29506-29512. Occhiodoro, T., Bernheim, L., Liu, J. H., Bijlenga, P., Sinnreich, M., Bader, C. R., et al. (1998). Cloning of a human ether-a-go-go potassium channel expressed in myoblasts at the onset of fusion. FEBS Lett, 434(1-2), 177-182. Ousingsawat, J., Spitzner, M., Puntheeranurak, S., Terracciano, L., Tornillo, L., Bubendorf, L., et al. (2007). Expression of voltage-gated potassium channels in human and mouse colonic carcinoma. Clin Cancer Res, 13(3), 824-831. Pardo, L. A., Bruggemann, A., Camacho, J., & Stuhmer, W. (1998). Cell cycle-related changes in the conducting properties of r-eag K+ channels. J Cell Biol, 143(3), 767-775. Pellequer, J. L., Brudler, R., & Getzoff, E. D. (1999). Biological sensors: More than one way to sense oxygen. Curr Biol, 9(11), R416-418. Piper, D. R., Hinz, W. A., Tallurri, C. K., Sanguinetti, M. C., & Tristani-Firouzi, M. (2005). Regional specificity of human ether-a'-go-go-related gene channel activation and inactivation gating. J Biol Chem, 280(8), 7206-7217. Riven, I., Kalmanzon, E., Segev, L., & Reuveny, E. (2003). Conformational rearrangements associated with the gating of the G protein-coupled potassium channel revealed by FRET microscopy. Neuron, 38(2), 225-235. Robertson, G. A., Warmke, J. M., & Ganetzky, B. (1996). Potassium currents expressed from Drosophila and mouse eag cDNAs in Xenopus oocytes. Neuropharmacology, 35(7), 841-850. Saganich, M. J., Vega-Saenz de Miera, E., Nadal, M. S., Baker, H., Coetzee, W. A., & Rudy, B. (1999). Cloning of components of a novel subthreshold-activating K(+) channel with a unique pattern of expression in the cerebral cortex. J Neurosci, 19(24), 10789-10802. Sanguinetti, M. C., & Spector, P. S. (1997). Potassium channelopathies. Neuropharmacology, 36(6), 755-762. Sanguinetti, M. C., & Xu, Q. P. (1999). Mutations of the S4-S5 linker alter activation properties of HERG potassium channels expressed in Xenopus oocytes. J Physiol, 514 ( Pt 3), 667-675. Schonherr, R., Hehl, S., Terlau, H., Baumann, A., & Heinemann, S. H. (1999). Individual subunits contribute independently to slow gating of bovine EAG potassium channels. J Biol Chem, 274(9), 5362-5369. Schonherr, R., & Heinemann, S. H. (1996). Molecular determinants for activation and inactivation of HERG, a human inward rectifier potassium channel. J Physiol, 493 ( Pt 3), 635-642. Schonherr, R., Mannuzzu, L. M., Isacoff, E. Y., & Heinemann, S. H. (2002). Conformational switch between slow and fast gating modes: allosteric regulation of voltage sensor mobility in the EAG K+ channel. Neuron, 35(5), 935-949. Silverman, W. R., Roux, B., & Papazian, D. M. (2003). Structural basis of two-stage voltage-dependent activation in K+ channels. Proc Natl Acad Sci U S A, 100(5), 2935-2940. Silverman, W. R., Tang, C. Y., Mock, A. F., Huh, K. B., & Papazian, D. M. (2000). Mg(2+) modulates voltage-dependent activation in ether-a-go-go potassium channels by binding between transmembrane segments S2 and S3. J Gen Physiol, 116(5), 663-678. Sun, X. X., Hodge, J. J., Zhou, Y., Nguyen, M., & Griffith, L. C. (2004). The eag potassium channel binds and locally activates calcium/calmodulin-dependent protein kinase II. J Biol Chem, 279(11), 10206-10214. Tang, C. Y., Bezanilla, F., & Papazian, D. M. (2000). Extracellular Mg(2+) modulates slow gating transitions and the opening of Drosophila ether-a-Go-Go potassium channels. J Gen Physiol, 115(3), 319-338. Terlau, H., Heinemann, S. H., Stuhmer, W., Pongs, O., & Ludwig, J. (1997). Amino terminal-dependent gating of the potassium channel rat eag is compensated by a mutation in the S4 segment. J Physiol, 502 ( Pt 3), 537-543. Terlau, H., Ludwig, J., Steffan, R., Pongs, O., Stuhmer, W., & Heinemann, S. H. (1996). Extracellular Mg2+ regulates activation of rat eag potassium channel. Pflugers Arch, 432(2), 301-312. Tombola, F., Pathak, M. M., Gorostiza, P., & Isacoff, E. Y. (2007). The twisted ion-permeation pathway of a resting voltage-sensing domain. Nature, 445(7127), 546-549. Tristani-Firouzi, M., Chen, J., & Sanguinetti, M. C. (2002). Interactions between S4-S5 linker and S6 transmembrane domain modulate gating of HERG K+ channels. J Biol Chem, 277(21), 18994-19000. Trudeau, M. C., Titus, S. A., Branchaw, J. L., Ganetzky, B., & Robertson, G. A. (1999). Functional analysis of a mouse brain Elk-type K+ channel. J Neurosci, 19(8), 2906-2918. Varnum, M. D., Black, K. D., & Zagotta, W. N. (1995). Molecular mechanism for ligand discrimination of cyclic nucleotide-gated channels. Neuron, 15(3), 619-625. Wainger, B. J., DeGennaro, M., Santoro, B., Siegelbaum, S. A., & Tibbs, G. R. (2001). Molecular mechanism of cAMP modulation of HCN pacemaker channels. Nature, 411(6839), 805-810. Wang, J., Myers, C. D., & Robertson, G. A. (2000). Dynamic control of deactivation gating by a soluble amino-terminal domain in HERG K(+) channels. J Gen Physiol, 115(6), 749-758. Wang, J., Trudeau, M. C., Zappia, A. M., & Robertson, G. A. (1998). Regulation of deactivation by an amino terminal domain in human ether-a-go-go-related gene potassium channels. J Gen Physiol, 112(5), 637-647. Wang, Z., Wilson, G. F., & Griffith, L. C. (2002). Calcium/calmodulin-dependent protein kinase II phosphorylates and regulates the Drosophila eag potassium channel. J Biol Chem, 277(27), 24022-24029. Warmke, J. W., & Ganetzky, B. (1994). A family of potassium channel genes related to eag in Drosophila and mammals. Proc Natl Acad Sci U S A, 91(8), 3438-3442. Watanabe, I., Zhu, J., Sutachan, J. J., Gottschalk, A., Recio-Pinto, E., & Thornhill, W. B. (2007). The glycosylation state of Kv1.2 potassium channels affects trafficking, gating, and simulated action potentials. Brain Res, 1144, 1-18. Wray, D. (2004). The roles of intracellular regions in the activation of voltage-dependent potassium channels. Eur Biophys J, 33(3), 194-200. Young, S. H., & Moore, J. W. (1981). Potassium ion currents in the crayfish giant axon. Dynamic characteristics. Biophys J, 36(3), 723-733. Zagotta, W. N., Hoshi, T., & Aldrich, R. W. (1994). Shaker potassium channel gating. III: Evaluation of kinetic models for activation. J Gen Physiol, 103(2), 321-362. Zagotta, W. N., Olivier, N. B., Black, K. D., Young, E. C., Olson, R., & Gouaux, E. (2003). Structural basis for modulation and agonist specificity of HCN pacemaker channels. Nature, 425(6954), 200-205. Zerangue, N., Jan, Y. N., & Jan, L. Y. (2000). An artificial tetramerization domain restores efficient assembly of functional Shaker channels lacking T1. Proc Natl Acad Sci U S A, 97(7), 3591-3595. Ziechner, U., Schonherr, R., Born, A. K., Gavrilova-Ruch, O., Glaser, R. W., Malesevic, M., et al. (2006). Inhibition of human ether a go-go potassium channels by Ca2+/calmodulin binding to the cytosolic N- and C-termini. Febs J, 273(5), 1074-1086. Zou, A., Lin, Z., Humble, M., Creech, C. D., Wagoner, P. K., Krafte, D., et al. (2003). Distribution and functional properties of human KCNH8 (Elk1) potassium channels. Am J Physiol Cell Physiol, 285(6), C1356-1366. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29502 | - |
| dc.description.abstract | 電位控制開關的鉀離子通道(voltage-gated potassium channel)是一種陽離子通道,可以感應膜電位的變化選擇性的讓鉀離子通透。大鼠的ether à gogo(rEag) 鉀離子通道是屬於EAG家族(EAG family)的一種,有兩個子類型分別為rEag1和rEag2。rEag主要分布在中樞神經系統當中,對於調控神經細胞的興奮性和神經物傳導物質的釋放扮演重要角色。和其他鉀離子通道比較,rEag不同的地方除了在選擇性濾孔(selective filter)的指紋(signature)為GFG之外,還包括N端有PAS domain(Per-Arnt-Srm),C端有環核苷酸結合區(cyclic-nucleotide binding domain)。
Eag鉀離子通道的開啟速度(activation kinetic)會受到不同的前置過極化負電位(hyperpolarized prepulse)所影響,越hyperpolarized的電位除了會造成activation delay之外還會讓eag的activation kinetics變慢。和其他鉀離子通道比較,前置過極化負電位只會延緩鉀離子通道的開啟時間。Eag對前置過極化負電位特殊的反應暗示了eag在activation之前可能會經過一個以上rate-limiting close state的transition。除了前置過極化電位之外,鎂離子和pH值也會改變通道開啟的速度。 本論文的研究目的是探討rEag1和rEag2電位活化機制之差異為何,並進一步了解產生這些差異的潛在分子結構基礎。我們的假設是造成rEag1和rEag2有不相同的gating property的主因可能為兩者在C端的差異。實驗時使用雙電極膜電位箝制(two-electrode voltage clamp)的電生理紀錄方法,首先比較rEag1和rEag2的gating propetty。之後並利用PCR的方法配合適當的引子(primer)以及利用兩次PCR( first run and second run)的技術,將rEag1和rEag2上相對應的C端互相置換,來探討不同的C端片段與兩者電位活化機制差異的可能關係。本實驗一共選擇了六個不同片段長度的C端段落置換,總計得到12個突變(chimera)。之後將這些突變轉型(transform)到pcDNA3的vector上,經由轉錄後(transcription)將cRNA注射到Xenopus oocytes 內表達(express),最後測試這十二個突變對於前置過極化電位的反應以及其他的電位活化特性。 我們實驗的結果發現,rEag1和rEag2兩者在gating kinetics上存有先天明顯的差異。另外經由分析chimeras gating property的差異,我們首先觀察到rEag的C端會影響rEag1和rEag2 voltage-dependent gating property,但是不會改變rEag1和rEag2 steady-state voltage dependence。 | zh_TW |
| dc.description.abstract | Voltage-gated potassium channels are cation channels which upon membrane potential change, undergo significant comformational change, leading to the opening of potassium-selective pores. Rat ether à gogo(rEag)potassium channels, which belongs to EAG family, specifically express in the central nervous system and are thought to plays an important roles in the modulation neuron of excitability and neurontransmeter release. Unlike other potassium channels, the signature sequence in the selective filter of rEag potassium channel is GYG. Furthermore, all EAG channels contain the PAS (Per-Arnt-Srm) domain and cyclic-nucleotide binging domain in the amino (N) and carboxyl-(C) terminus, respectively.
The activation kinetics of rEag potassium channel is significantly slower in the presence of hyperpolarizing prepulses, which is also known as the non-superimposable Cole -Moore shift. This phenomenon is consistent with the idea that prior to pore opening, ion channel must go through several voltage-dependent conformation changes. In addition, Mg2+ and pH can also modulate the activation kinetics of rEag potassium channels. There are two rEag potassium channels subtypes: rEag1 and rEag2. The two isofoms share 70% indntity in amino acid sequence, which encompasses the six transmembrane segments. Their activation kinetics, however, displays distinct features. The goal of this thesis is to characterize the divergence voltage-dependent activation of rEag1 and rEag2 K+ channels and to find out the potential underlying structural bases. We applied two-electrode voltage clamp (TEVC) technique to study different rEag1 and rEag2 K+ channels heterologously expressed in Xenopus oocytes. Moreover, N and C termini, have previously been suggested to may a play role in the modulation channel activation. Since the major difference in amino acid sequence between rEag1 and rEag2 K+ channels lies in the C terminals, we aim to test the hypothesis that C terminal may confer the unique channel activation feature of rEag channels by using PCR mutagenesis technique. A total of 12 chimeras, 6 in each rEag backbone, will we constructed and tested for their biophysical properties. Our date indicate that there is distinct divergence of gating property between rEag1 and rEag2. Besides, instead of steady state voltage dependence,we first report that C terminus will modulate rEag voltage-dependent gating property. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T01:08:46Z (GMT). No. of bitstreams: 1 ntu-96-R94441007-1.pdf: 1455460 bytes, checksum: 37e42ca932f485d62b6150e28b3f85d1 (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | 目錄
誌謝 ……………………………………………………………………………………I 目錄……………………………………………………………………………………II 圖次……………………………………………………………………………………IV 中文摘要 ……………………………………………………………………………V 英文摘要 …………………………………………………………………………VII 第一章、導論 …………………………………………………………………1 I. EAG鉀離子通道介紹 ………………………………………………………2 A. 分類 ………………………………………………………………………… 2 B. EAG鉀離子通道家族功能 …………………………………………………2 C. EAG鉀離子通道的gating mechanism…………………………………… 3 II. Eag鉀離子通道的N端和C端 ………………………………………… 5 A. 一般結構 ……………………………………………………………… 6 B. N terminus………………………………………………………………… 6 C. C terminus………………………………………………………………… 7 III. 本實驗展望 …………………………………………………………… 9 A. rEag1和rEag2鉀離子通道的差異 …………………………………… 9 B. 實驗假說及實驗步驟 ……………………………………………… 10 第二章、材料與方法 ……………………………………………………………… 12 I. 分子生物技術 ……………………………………………………… 12 A. 置換GFP-rEag1和GFP-rEag2的C端位置,產生突變 ………… 12 B. 將突變從GFP vector換到pcrEag1或是pcrEag2上 ……………… 15 C. Gel extraction ………………………………………………………… 16 D. transformation,inoculation,miniprep …………………………… 16 E. RNA transcription ……………………………………………………… 17 II. 電生理記錄………………………………………………………………… 17 A. Xenopus laevis (南非爪蟾) oocyte取得和處理 ………………… 17 B. oocyte RNA injection ……………………………………………………18 C. 電生理記錄………………………………………………………………… 19 D. 電生理紀錄之分析………………………………………………………… 20 第三章、結果 ……………………………………………………………… 21 I. rEag1和rEag2鉀離子通道的voltage-dependent gating property 21 A. rEag1和rEag2鉀離子通道activation kinetics的異同性 ……… 23 B. rEag1和rEag2鉀離子通道deactivation kinetics的異同性……… 24 C. 前置過極化負電位對rEag1和rEag2鉀離子通道 activation kinetics的影響 …………………………………………26 II. 以rEag1為骨架的chimeras其電生理特性與rEag1鉀離子通道的差別29 A. steady-state voltage dependence………………………………………29 B. activation kinetics of chimeras………………………………………30 C. Deactivation kinetics of chimeras……………………………………30 D. 前置過極化負電位對chimeras的影響……………………………………31 III. 以rEag2為骨架的chimeras其電生理特性與rEag2鉀離子通道的差別32 第四章、討論 …………………………………………………………………………36 I. C端對於rEag1和rEag2 gating property異同性的影響………………37 A. Steady-state voltage dependence………………………………………37 B. Voltage dependent gating kinetics……………………………………39 II. C端在rEag1和rEag2 gating過程中扮演的角色………………………40 III. 相關的實驗討論 ………………………………………………………… 45 參考資料 ………………………………………………………………………… 74 | |
| dc.language.iso | zh-TW | |
| dc.subject | 鉀離子通道 | zh_TW |
| dc.subject | 電位開闔 | zh_TW |
| dc.subject | gating | en |
| dc.subject | C terminus | en |
| dc.subject | rEag | en |
| dc.title | rEag1和rEag2鉀離子通道電位依賴開闔機制之差異性 | zh_TW |
| dc.title | Divergent Voltage-dependent Gating Properties of REag1 and REag2 Potassium Channels | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 謝如姬(Ru-Chi Shieh),郭鐘金(Chung-Chin Kuo),黃榮棋(Rong-Chi Huang) | |
| dc.subject.keyword | 鉀離子通道,電位開闔, | zh_TW |
| dc.subject.keyword | rEag,C terminus,gating, | en |
| dc.relation.page | 82 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-07-23 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 生理學研究所 | zh_TW |
| 顯示於系所單位: | 生理學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 1.42 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
