請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29495完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張斐章(Fi-John Chang) | |
| dc.contributor.author | Wen-Ping Tsai | en |
| dc.contributor.author | 蔡文柄 | zh_TW |
| dc.date.accessioned | 2021-06-13T01:08:35Z | - |
| dc.date.available | 2007-07-27 | |
| dc.date.copyright | 2007-07-27 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-07-23 | |
| dc.identifier.citation | 1. 行政院公共工程委員會,2006,「公共建設相關專業人員生態工程講習」。
2. 沈宗荏,2003,「生物多樣性之預測」,國立清華大學統計學研究所博士論文。 3. 汪靜明,1994,「台灣櫻花鉤吻鮭資源價值及教育」,環境教育季刊(23):3-13。 4. 林琪濟,2002,「台灣本島各縣市鳥類生物多樣性分析」,國立臺灣大學森林學研究所碩士論文。 5. 林鎮洋,2003,「台灣生態工法技術參考手冊」,經濟部水利署。 6. 林曜松,1999,「生物多樣性之省思」,台灣陸域生物多樣性研習班研習手冊,54-60。 7. 林曜松,2001,「國家公園生物多樣性保育策略之研究」,國家公園生物多樣性保育策略之研究與生物多樣性保育策略研討會論文集,1-2頁。 8. 林曜松、趙榮台,1998,「維護生物多樣性與促進資源永續利用生物多樣性研討會論文集」,14-23頁。 9. 邵廣昭、陳麗淑,2004,「魚類入門」,遠流,pp.263。 10. 張斐章、張麗秋,2005,「類神經網路」,東華書局。 11. 張斐章,2004,「生態水文於多目標水資源管理之研究與應用(1/2)」,經濟部水利署水利規劃試驗所期末報告 ISBN-957-01-9429-4。 12. 張斐章,2005,「生態水文於多目標水資源管理之研究與應用(2/2)」,經濟部水利署水利規劃試驗所期末報告 ISBN-986-00-3534-2。 13. 張斐章,2006,「水資源最佳化管理於河川生態復育之研究(1/3)」,經濟部水利署水利規劃試驗所期末報告 ISBN-978-986-00-7663-9。 14. 陳正昌,2001,「觀察體的分類」,教育學門提昇研究方法論研討會」。 15. 陳義雄、方力行,1999,「臺灣淡水及河口魚類誌」,國立海洋生物博物館籌備處,pp. 287。 16. 曾國源,2003,「以類神經網路架構土石流預警系統之研究」,國立臺灣大學生物環境系統工程學系暨研究所碩士論文。 17. 黃龍椿,2006,「生物多樣性指數在環境影響評估上的應用-以玉山國家公園塔塔加地區蝶相監測為例」,臺北市立教育大學環境教育研究所碩士論文。 18. 黃繼寬,2005,「考慮產業差異下,信用評分模型效力分析以Cross Validation為例」,東吳大學經濟學系碩士論文。 19. 楊宗吉,1998,「談生物多樣性」,自然保育季刊,22。 20. 楊津豪,2006,「河川生態廊道與魚類物理棲地之水理模式研究」,國立臺灣大學碩士論文。 21. 葉懷仁,2003,「類神經網路應用於引擎聲訊之辨識」,國立中山大學物理研究所碩士論文。 22. 廖大經,2000,「生物物種多樣性指標熵值的估計方法及模擬研究」,國立清華大學統計學研究所碩士論文。 23. 趙榮台,1999,「生物多樣性保育的國際趨勢」,台灣陸域生物多樣性研習班研習手冊,7-15。 24. 蔡孟蓉,2006,「纇神經網路結合衛星影像預報颱風降雨量」,國立臺灣大學生物環境系統工程學系暨研究所碩士論文。 25. Attrill, M.J. and M.H. Depledge, 1997, “Community and population indicators of ecosystem health: Targeting links between levels of biological organization”, Aquatic toxicology 38(1-3): 183-197. 26. Bayley, P.B., 1991, “The flood pulse advantage and the restoration of river floodplain systems”, Regulated rivers-research & management, 6(1), 75-86. 27. Chang J.L., Ghang L.C. and Huang H.L., 2002, “Real Time Recurrent Neural Metwork for Streamflow Foreasting”, Hydrological Processes. 16: 2577-2588. 28. Chang F.J., Hu H.F. and Chen Y.C., 2001, “Counterpropagation Fuzzy-Neural Network for Streamflow Reconstruction”, Hydrological Processes. 15(2): 216-232. 29. Chang L.C. and Chang F.J., 2001, “Intelligent Control for Modeling of Real-Time Reservoir Operation”, 15(9): 1621-1634. 30. Cho S.B., 1997, “Neual-Network Classifiers for Recognizing Totally Unconstrained Handwritten Numerals”, IEEE Transactions on Neural Networks. 8(1): 43-53. 31. Connell, J.H., 1978, “Diversity in tropical rain forests and coral reefs”, Science, 199: 1302-1310. 32. Coppini Ciuseppe, Diciotii Stefano and Valli Guido, 2004, “Matching of medical image by self-organizing neural networks”, Pattern Recognition Letters. 25: 341-352. 33. Cushman, R.M., 1985, “Review of ecological effects of rapidly varying flows downstream from hydroelectric facilities”, North American journal of fisheries management, 5, 330-339. 34. Fausch, K.D., Lyons, J., Karr J.R. and Angermeier, P.L., 1990, “Fish communities as indicators of environmental degradation”, American fisheries society symposium 8: 123-144. 35. Fisher, R.A., Corbet, A.S., and Williams, C.B., 1943, “The relation between the number of species and the number of individuals in a random sample of an animal population”, Journal of Animal Ecology, 12, 42-58. 36. Gaston,J.K. and Spicer, I.J., 2004, “Biodiversity An Introduction”, (Second Edition).Blackwell, 5-9. 37. Harris, J.H., 1995. “The use of fish in ecological assessments”, Australian journal of ecology 20(1): 65-80. 38. Harvey, B.C., 1987, “Susceptibility of young-of-the-year fishes to downstream displacement by flooding”, Transactions of the American fisheries society, 116(6), 851-855. 39. Hecht-Nielsen R., 1990, “Applications of Counterpropagation Networks”, Neural Networks 1: 131-139. 40. Horn, H.S., 1975, ”Marckovian processes of froest succession”, pp. 196-213. 41. Hutchinson, G.E., 1953, “The concept of pattern in ecology”, Proc. Acad. Nat. Sci.Phila. 105: 1-12. 42. Karr, J.R., 1981, “Assessment of biotic integrity using fish communities”, Fisheries. 6(6): p21-27. 43. Kohonen, T., 1982, “Self-Organizing formation of topologically correct feature maps”, Biological Cybernetics 43, 59-69. 44. Mahanty R.N. and Dutta Gupta P.B., 2004, “App;ication of RBF neural network to fault classication and location in transmission lines”, IEE Proc.-Center Transm. Distrib. 151(2): 201-212. 45. Magoulick, D.D., and Kobza, R.M., 2003, “The role of refugia for fishes during drought: a review and synthesis”, Freshwater biology, 48(7), 1186-1198. 46. McClulloch W.S. and Pitts W., 1943, “A logical Calculus of the Ideas Immanent in Nervous Activity”, Bulletin of Mathematical Biophysics. 5: 115-133. 47. Moradkhani H., Hsu Kuo-lin, Gupta Hoshin V., Sorooshian Soroosh, 2004, “Improved streamflow forecasting using self-organizing radial basis function artificial neural networks.” Journal of Hydrology 295, 246-262. 48. Naesje, T., Jonsson, B., and Skurdal, J., 1995, “Spring flood: a primary cue for hatching of river spawning Coregoninae”, Canadian journal of fisheries and aquatic sciences, 52(10), 2190-2196. 49. Olden, J.D. and Poff, N.L., 2003, “Redundancy and the choice of hydrologic indices for characterizing streamflow regimes”, River Res. Applic., 19:101-121. 50. Parka Young-Seuk, Verdonschotb Piet F.M., Chonc Tae-Soo, Lek Sovan., 2003, 'Patterning and predicting aquatic macroinvertebrate diversities using artificial neural network', Water Research. 37:1749-1758. 51. Poff, N.L., Allan, J.D., 1997, “The natural flow Regime - A paradigm for river conservation and restoration”, Bioscience , December 1, Vol. 47, Issue 11. 52. Poff, N.L., Allan, J.D., Bain, M.B., Karr, J.R., Prestegaard, K.L., Richter, B.D., Sparks, R.E. and Stromberg, J.C., 1997, “The natural flow regime”, Bioscience, 47(11): 769-784. 53. Powell M. J. D., 1987, “Radial Basis Functions For Mulitivariable Ieterpolation: A Review.’ IMA Conference on Algorithms for Approximation of Function and Data. RMCS, Shrivenham, England. 143-167. 54. Richard, B.A. and Prechtb, W.F., 1995, “Landscape patterns of reef coral diversity: A test of the intermediate disturbance hypothesis”, Journal of Experimental Marine Biology and Ecology 192 1-14. 55. Richter, B.D., Baumgartner, J.V., Powell, J., Braun, D.P., 1996, “A method for assessing hydrologic alteration within ecosystems”, Conservation Biology 10: 1163–1174. 56. Rumelhart D.E. and McClelland J.L., 1986, “Parallel Distributed Processing: Explorations in Microstructure of Cognition”, Vol. 1. Cambridge, MA: MIT Press. 57. Shannon, C. E., and W. Weaver., 1949, “The Mathematical Theory of Communication”, Urbana: University of Illinois Press. 58. Shannon, C.E., 1948, “A mathematical theory of communication”, Bell System Technical Journal, 27,379-423, 623-656. 59. Sharma, S., 1996, “Applied multivariate techniques”, NY: John Wiley & Sons, Inc. 60. Simpson, E.H., 1949, “ Measurement of diversity”, Nature, 163, 688. 61. Stilling, P., 2002, “Ecology Theories and Applications”, Prentice Hall,273-288. 62. Suen, J.P. and Eheart, J.W., 2006, “Reservoir management to balance ecosystem and human needs: incorporating the paradigm of the ecological flow regime”, Water resources research, 42(3): W03417. 63. Suen, J.P., 2005, “Ecologically based methods for multi-objective water resources management in taiwan”, Ph.D. dissertation, University of Illinois, Urbana. 64. Suen, J.P., Herricks, E.E. and Eheart, J.W., 2004, “Ecohydrologic Indicators for Rivers of Northern Taiwan”, ASCE/EWRI World Water & Environmental Resources Congress 2004, Salt Lake City, Utah, USA. Paper in CD ROM. 65. Tew, K.S., Han, C.C., Chou, W.R., and Fang, L.S., 2002, “Habitat and fish fauna structure in a subtropical mountain stream in Taiwan before and after a catastrophic typhoon”, Environmental Biology of Fishes 65(4): 457-462. 66. Townsend, C. R., M. R. Scarsbrook, and S. Doledec, 1997, “The intermediate disturbance hypothesis, refugia, and biodiversity in streams”, Limnology and Oceanography 42(5): 938-949. 67. Townsend, C.R., and R.H. Riley, 1999, “Assessment of river health: accounting for perturbation pathways in physical and ecological space”, Freshwater Biology 41(2): 395-405. 68. Ward, J.V., and Stanford, J.A., 1983, “The intermediate-disturbance hypothesis: an explanation for biotic diversity patterns in lotic ecosystems”, in Fontaine, T.D. III, and Bartell S.M. (Eds), Dynamics of Lotic Ecosystems. Ann Arbor Science, Ann Arbor, MI. pp 347–356. 69. Ward, J.V., Tockner, K. and Schiemer, F., 1999, “Biodiversity of floodplain river ecosystems: ecotones and connectivity”, Regulated rivers-research & management, 15(1-3), 125-139. 70. Welcomme, R.L., 1985, “River fisheries”, FAO fisheries technical paper, 262. Food and agriculture organization of the United Nations, Rome. 71. Whisenant, S.G., 1999, “Repairing damaged wildlands. A process-oriented, landscape-scale approach”, Cambridge University Press, Cambridge, UK. 72. Wilson, E.O., 1988, “The current state of biological diversity. In Biodiversity”, E.O. Wilson, and F.M.Peter, eds.Washington:National Academy Press. 73. Wilson, J.B., 1994, “The intermediate disturbance hypothesis of species coexistence is based on patch dynamics”, New Zealand Journal of Ecology 18(2): 176-181. 74. 經濟部水利署水文水資源管理供應系統: http://gweb.wra.gov.tw/wrweb/ 75. 臺灣魚類資料: http://fishdb.sinica.edu.tw | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29495 | - |
| dc.description.abstract | 隨著人口成長、土地利用需求快速增加,人類擷取自然環境資源已遠超過自然界自行修復的速率,導致生態系結構逐漸惡化、生態物種歧異度降低,進而減少環境原本能提供的物質與服務。近年來由於生態環境復育意識的提昇,人類在追求物質的滿足之餘,慢慢開始重視人類與生態環境的共存關係,探討人類行為對生態環境所造成的嚴重衝擊。
河川流量管理即為一兼顧人類使用需求及河川生態系統需求之理念,將生態觀念融入河川流量經營管理之中,以達到人類與河川生態系統共存的理想,然而基於對大自然有限的了解,往往無法得知河川生態系統的實際需求,也無法明確地以數值或方程式的方式表示,因此本研究建立將自組特徵映射網路(Self-Organizing Feature Map, SOM)與輻狀基底函數類神經(Radial Basis Function Neural Networks,RBFNN)網結合之自組特徵輻狀基底類神經網路(SORBNN)架構,透過此模式利用台灣生態水文指標系統(Taiwan Ecohydrology Index System,TEIS)中的指標推估溪流生態的生物多樣性,其中以魚類科別的歧異度指數代表生物多樣性(Bio-diversity)。本研究選取全台灣河川中未受人為控制、流量資料長度大於二十年且其上下游10公里內有魚類調查資料之流量站作為研究測站,結果顯示模式除了具有對流量資料進行型態判別分類的能力外,也能快速、有效率且準確推估生物多樣性。 | zh_TW |
| dc.description.abstract | As the population and demand for land use rapidly increased, the use of environmental resources has exceeded the rate of naturalization that might result in the degeneracy of ecological structure and the decrease of the diversities of species which could reduce the resources provided by environment. Due to the raise of eco-environmental restoration concept in the past several years, people gradually pay attention to the coexistence relationship between human being and eco-environment and the impacts of human activities on eco-environment.
Stream flow management is the idea that combines the concept of ecology and provides the demand for both human and river ecosystem. Base on the limited understanding of nature, it’s hard to get acquainted with actual demands of river ecosystem and represent it by numerical methods or formula. Therefore, this study combines Self-Organizing Feature Map (SOM) and Radial Basis Function Neural Networks (RBFNN) into Self-Organizing Radial Basis Neural Networks (SORBNN). By this model, it can be estimated “river bio-diversity” by using the index of Taiwan Ecohydrology Index System and the diversities of fish families are to be the index of bio-diversity. In this research, the stream flow data which are only collected with records more than 20 years and without anthropogenic control would be tested. The result shows that this model not only can categorize the stream flow data but also can estimate the bio-diversity quickly, efficiently and precisely. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T01:08:35Z (GMT). No. of bitstreams: 1 ntu-96-R94622032-1.pdf: 2520227 bytes, checksum: c38c98175d667c4c23490d54f8db0359 (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | 摘 要......i
Abstract......ii 目 錄......iv 表目錄......vii 圖目錄......viii 第一章 前言......1 1.1研究動機......1 1.2研究目的與方法......3 第二章 文獻回顧......5 2.1河川流態與水文指標......6 2.2生物多樣性概念......9 2.2.1遺傳多樣性(Genetic Diversity)......10 2.2.2物種多樣性(Species Diversity)......10 2.2.3生態系多樣性(Ecological Diversity)......11 2.3類神經網路......12 第三章 理論概述......14 3.1台灣生態水文指標系統(TEIS)......14 3.1.1 TEIS考量因子......15 3.1.2台灣生態水文指標之介紹......17 3.2生物多樣性概述......21 3.3集群分析概述......24 3.4交叉驗證法......28 3.5類神經網路架構......30 3.5.1自組特徵映射網路(SOM)......32 3.5.2輻狀基底函數類神經網路(RBFNN)......34 3.5.3自組特徵輻狀基底類神經網路(SORBNN)......37 第四章 研究案例......39 4.1研究區域概述......39 4.1.1台灣河川概述......39 4.1.2台灣魚類概述......42 4.2資料收集與處理......44 4.2.1資料收集......44 4.2.2資料處理......46 4.3模式架構......49 4.4自組特徵輻狀基底類神經網路(SORBNN)......54 第五章 結果與討論......57 5.1台灣生態水文指標分析結果......57 5.1.1一般流量變數指標分析結果......57 5.1.2高/低流量變數分析結果......59 5.1.3頻率變數分析結果......64 5.1.4時間變數分析結果......68 5.1.5面積及高程與TEIS指標之相關係數......70 5.2 SORBNN結果討論......72 5.2.1 SORBNN第一階段分類結果討論......72 5.2.2 SORBNN第二階段推估生物多樣性之結果討論......87 第六章 結論與建議......92 6.1結論......92 6.2建議......95 第七章 參考文獻......96 附 錄......105 | |
| dc.language.iso | zh-TW | |
| dc.subject | Shannon index | zh_TW |
| dc.subject | 自組特徵輻狀基底類神經網路 | zh_TW |
| dc.subject | 台灣生態水文指標系統 | zh_TW |
| dc.subject | 生物多樣性 | zh_TW |
| dc.subject | Shannon index | en |
| dc.subject | Bio-diversity | en |
| dc.subject | Taiwan Ecohydrology Index System | en |
| dc.subject | Self-Organizing Radial Basis Neural Networks | en |
| dc.title | 應用類神經網路推估溪流之生物多樣性 | zh_TW |
| dc.title | A Study of Artificial Neural Networks for Estimating Riverine Biodiversity | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳弘?,黃文政,孫建平 | |
| dc.subject.keyword | 自組特徵輻狀基底類神經網路,台灣生態水文指標系統,生物多樣性,Shannon index, | zh_TW |
| dc.subject.keyword | Self-Organizing Radial Basis Neural Networks,Taiwan Ecohydrology Index System,Bio-diversity,Shannon index, | en |
| dc.relation.page | 113 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-07-23 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物環境系統工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物環境系統工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 2.46 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
