Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29485
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王銀國
dc.contributor.authorShao-Hua Chenen
dc.contributor.author陳少華zh_TW
dc.date.accessioned2021-06-13T01:08:19Z-
dc.date.available2011-08-05
dc.date.copyright2011-08-05
dc.date.issued2011
dc.date.submitted2011-08-03
dc.identifier.citation[1] R. A. de Groot, F. M. M¨ueller, P. G. van Engen, and K. H. J. Buschow, Phys. Rev.
Lett. 50, 2024 (1983).
[2] J.-H. Park, E. Vescovo, H.-J. Kim, C. Kwon, R. Ramesh, and T. Venkatesan, Nature
(London) 392, 794 (1998).
[3] K.-I. Kobayashi, T. Kimura, H. Sawada, K. Terakura, and Y. Tokura, Nature
(London) 395, 677 (1998).
[4] Warren E. Pickett, Phys. Rev. Lett 77, 3185 (1996).
[5] W. E. Pickett and J. S. Moodera, Phys. Today 54, Issue 5, 39 (2001).
[6] H.-T. Jeng and G. Y. Guo, Phys. Rev. B 65, 094429 (2002).
[7] K. Schwarz, J. Phys. F: Met. Phys. 16, L211 (1986).
[8] W. E. Pickett and D. J. Singh, Phys. Rev. B 53, 1146 (1996).
[9] H.-T. Jeng and G. Y. Guo, Phys. Rev. B 67, 094438 (2003).
[10] M. S. Park , S. K. Kwon, S. J. Youn and B. I. Min, Phys. Rev. B 59, 10018 (1999).
[11] M. Shirai, T. Ogawa, I. Kitagawa and N. Suzuki, J. Magn. Magn. Mater. 177 − 181,
1383 (1998).
[12] J. H. Park, S. K. Kwon and B. I. Min, Physica B 281/282, 703 (2000).
[13] H. van Leuken and R. A. de Groot, Phys. Rev. Lett. 74, 1171 (1995).
[14] Ersoy Sasioglu, Phys. Rev. B 79, 100406(R) (2009).
[15] S. Wurmehl, H. C. Kandpal, G. H. Fecher, and C. Fecher, Jurnal Phys. : Condens.
Matter, 18, 6171 (2006).
[16] I. Galanakis, K. ¨Ozdogan, E. Sasioglu, and B. Aktas, Phys. Rev. B 75, 172405
(2007).
[17] M. S. Park, S. K. Kwon, and B. I. Min, Phys. Rev. B 64, 100403(R) (2001).
[18] N. H. Long, M. Ogura and H. Akai, J. Phys :Condens. Matter 21, 064241 (2009).
[19] Shu-Jun and Xiao Hu, J. Phys. Chem. C 114, 11614-11617 (2010).
57[20] D. K¨odderitzsch, W. Hergert, Z. Szotek and W. M. Temmerman, Phys. Rev. B 68,
125114 (2003).
[21] I. Galanakis, K. ¨Ozdogan, E. Sasioglu, and B. Aktas, Phys. Rev. B 75, 092407
(2007).
[22] H. Akai and M. Ogura, Phys. Rev. Lett. 97, 026401 (2006).
[23] M. Ogura, Y. Hashimoto and H. Akai, Phys. stat. sol. (c) 3, No. 12, 4160 (2006).
[24] M. Ogura, C. Takahashi and H. Akai, J. Phys. : Condens. Matter, 19, 365226
(2007).
[25] L. Bergqvist and P. H. Dederichs, Jurnal Phys. : Condens. Matter, 19, 216220
(2007).
[26] W. E. Pickett, Phys. Rev. B 57, 10613 (1998).
[27] Y.K. Wang and G. Y. Guo, Phys. Rev. B 73, 064424 (2006).
[28] S. H. Chen, Z. R. Xiao, Y. P. Liu and Y. K. Wang, J. Appl. Phys. 137018JAP
(2010).
[29] J. H. Park, S. K. Kwon, and B. I. Min, Phys. Rev. B 65, 174401 (2002).
[30] Y. K. Wang, P. H. Lee and G. Y. Guo, Phys. Rev. B 80, 224418 (2009).
[31] S. H. Chen, Z. R. Xiao, Y. P. Liu, P. H. Lee and Y. K. Wang, JMMM 323, 175
(2011).
[32] S. H. Chen, Z. R. Xiao, P. H. Lee, Y. P. Liu and Y. K. Wang, Physica B PHYSB-
D-10-00323R2 (2011).
[33] Victor Pardo and W. E. Pickett, Phys. Rev. B 80, 054415 (2009).
[34] K. W. Lee and W. E. Pickett, Phys. Rev. B 77, 115101 (2008).
[35] M. Born and V. A. Fock, Z. Phys. 51, 165 (1928).
[36] M. Born and J. R. Oppenheimer, Ann. Phys. 84, 457 (1927).
[37] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864-871 (1964).
[38] W. Kohn, and L. J. Sham Phys. Rev 140, A1133-A1138, (1965).
[39] Y. Wang and J. P. Perdew, Phys. Rev. B 44, 13298 (1991); J. P. Perdew and Y.
Wang, Phys. Rev. B 45, 13244 (1992).
[40] J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett. 77 3865 (1996).
[41] M. Levy, Proc. Natl. Sci. USA, 76, 6062 (1979).
[42] M. Levy, Phys. Rev. A 26,1200 (1982).
58[43] J. P. Perdew and M. Levy, Phys. Rev. Lett. 51, 1884 (1983).
[44] J. C. Slater, Wavefunction in a periodic potential, Phys. Rev. 51, 846 (1937).
[45] P. E. Bl¨ochl, Phys. Rev. B 50 17953-17979 (1994).
[46] G. Kresse and D. Joubert, Phys. Rev. 59 1758-1775 (1999).
[47] S. Yip et. al Handbook of Materials Modeling 93-119, Springer, (2005).
[48] M. S. Park and B. I. Min, Phys. Rev. B 71, 052405 (2005).
[49] V.I. Anisimov, I.V. Solovyev, M.A. Korotin, M.T. Czyzyk, and G.A. Sawatzky,
Phys. Rev. B 48, 16929 (1993).
[50] P. E. Bl¨ochl, Phys. Rev. B 50, 17953 (1994); G. Kresse and D. Joubert, Phys. Rev.
B 59, 1758 (1999).
[51] G. Kresse, and J. Hafner, Phys. Rev. B 48, 13115 (1993); G. Kresse and J.
Furthm¨uller, Comput. Mater. Sci. 6, 15 (1996); Phys. Rev. B 54, 11169 (1996).
[52] P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2K, An
Augmented Plane Wave Local Orbitals Program for Calculating Crystal Properties
Techn. University Wien, Austria, (2002).
[53] O. K. Andersen, Phys. Rev. B 12, 3060, (1975).
[54] D. D. Koelling and G. O. Arbman, J. Phys. F: Met. Phys. 5, 2041 (1975).
[55] P. E. Blochl, O. Jepsen, and O. K. Andersen, Phys. Rev. B 49, 16223 (1994).
[56] V.I. Anisimov, F. Aryasetiawan, and A.I. Lichtenstein, J. Phys.: Condens. Matter
9, 767 (1997).
[57] I. V. Solovyev, P. H. Dederichs and V. I. Anisimov, Phys. Rev. B 50, 16861 (1994).
[58] J. Androulakis, N. Katsarakis and J. Giapintzakis, Solid State Commun. 124, 77
(2002).
[59] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964) ; W. Kohn and L. J.
Sham, Phys. Rev. 140, A1133 (1965).
[60] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
[61] V. I. Anisimov, J. Zaanen and O. K. Andersen, Phys. Rev. B 44, 943 (1991).
[62] A. I. Lichtenstein, V. I. Anisimov and J. Zaanen, Phys. Rev. B 52, R5467 (1995).
[63] C. Zener, Phys. Rev. 82, 403 (1951).
[64] I. V. Solovyev and K. Terakura, Phys. Rev. Lett 82, 2959 (1999).
59[65] I. V. Solovyev and K. Terakura, in Electronic Structure and Magnetism of Complex
Materials, edited by D. J. Singh and D. A. Papaconstantopoulos (Springer-Verlag,
Berlin, 2003).
[66] H. Wu, Phys. Rev. B 64, 125126 (2001).
[67] H. L. Skriver, The LMTO Method (Springer-Verlag, Berlin, 1984), Table 10.1.
[68] Song et al., The Journal of Chemical Physics 130, 114707 (2009).
[69] J. B. Goodenough, Magnetism and the Chemical Bond (IEEE, New York, 2001).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29485-
dc.description.abstract在這篇論文裏,我們以雙鈣鈦(Double Perovskites, DP)結構為主,以第一原理計算研究可能存在的反鐵磁(Antiferromagnet, AFM)半金屬(Half-metal, HM) ,包括LaABB’O6、La2BB’O6及A2BB’O6系列(B,B’=過渡金屬,A=Ca,Sr,Ba)。考慮到過渡金屬氧化物的自旋─軌道耦合(Spin-orbital coupling,SOC)及電子關聯效應(Correlation effect),我們所使用的計算方法包括GGA(Generalized-Gradient Approximation)、GGA+U、GGA+SOC+U,而使用計算程式包括VASP package(PAW法)及WIEN2k package(FLAPW法)。
在第一章裏,我們簡單介紹反鐵磁半金屬的歷史,以及多少特定的結構已被找尋為可能的反鐵磁半金屬 ?”、”我們找到那些可能的反鐵磁半金屬候選者 ?”
在第二章裏,我們簡單介紹相關的理論及計算方法,包括Born-Oppenheimer近似、密度泛函理論(DFT)、PAW法、FLAPW法、電子關聯效應(+U計算)、自旋─軌道耦合效應(+SOC計算)。
在第三章裏,我們簡介”什麼是反鐵磁半金屬 ?”,並且對過去十幾年來關於反鐵磁半金屬的理論預測文章作一回顧,以及”為什麼我們要選擇在雙鈣鈦結構中找尋反鐵磁半金屬 ?”,同時介紹兩類的雙鈣鈦堆疊結構 ([111],[001])、兩類反鐵磁(AF-I,AF-II)、理論計算尋找的策略及計算程序,最後解釋形成反鐵磁之機制。
在第四章裏,針對LaABB’O6 系列,我們找到可能的候選者LaAWXO6 (A=Ca、Sr、Ba;X=Tc、Re),加上2006年王銀國,郭光宇博士所找到LaAVOsO6,LaAM0XO6,以上為此一系列所有可能的反鐵磁半金屬的候選者。
在第五章裏,針對La2BB’O6系列,除了2009年王銀國、李柏翰、郭光宇博士所到可能的候選者La2VCuO6、La2VTcO6外,我們又找到La2VMnO6 (1998年,Pickett已預測,但Androulkis et al.的實驗顯示為HM-FiM)、La2VReO6、La2CrM0O6為可能的反鐵磁半金屬候選者。
在第六章裏,針對A2BB’O6系列,我們找到A2CrRuO6 (Lee and Pickett在2008年已預測)、A2M0OsO6、A2TcReO6為可能的候選者。
最後,我們總結所有理論預測結果(包括我們及他人的工作)於表7.1,並且以GKA (Goodenough-Kanamori-Anderson) rule給予解釋。而部份候選者如 LaAWTcO6、La2VReO6等等,是GGA+U計算後(即考慮電子關聯效應)才顯現出反鐵磁半金屬特性,但+U計算並非ab-initio計算,而是半經驗式的計算,當U變較大時,它們會變成絶縁體,所以尚待以後實驗証實。
zh_TW
dc.description.abstractIn this thesis, we thoroughly investigated all the possible (C_2^29=406) candidates of half-metallic (HM) antiferromagnet (AFM) with the double Perovskites (DP) structure LaSrBB'O6, La2BB'O6 and Sr2BB'O6, where BB' pairs are any combination of two 3d, 4d and 5d transition elements except for La. Sr could also be replaced by Ca or Ba whenever HM-AFM was found and similar calculation was performed in order to probe more possibilities. Our calculations were based on density functional theory (DFT) with GGA, GGA + U and GGA + SOC approaches, where + U is
the correction for electron correlation effect and + SOC is the correction for electron spin-orbit coupling effect. The crystal shapes and ionic positions were fully optimized using full-potential projector augmented wave (PAW) method within conjugate-gradient (CG) method implemented in VASP package (code). And we used the WIEN2k package with the all electron full-potential linearized augmented plane wave (FLAPW) method for calculating the electronic structures and magnetic properties.
In the first chapter, we briefly introduced the history of HM-AFM, as well as 'how many HM-AFMs with specific structure has been found theoretically ?' and 'what we got in this series investigation ?'
In chapter 2, we briefly introduced the Born-Oppenheimer approximation, DFT (including Hohangberg-Kohn theorems, Kohn-Sham equations, exchange-correlation functional, local (spin) density approximation (L(S)DA) and generalized-gradient approximation (GGA) ), as well as computational methods we used, including Projector Augmented Wave (PAW) method, Full Linear Augmented Plane Wave (FLAPW) method, electron correlation effect (+ U calculation), spin-orbit coupling effect (+ SOC calculation).
In chapter 3, we introduced 'what is HM-AFM', including its characteristics and properties. We also reviewed possible HM-AFM candidates hitherto 2010, 'why we search HM-AFMs on double perovskites (DP) structure ?' and introduce two kinds of DP stacked structures, AFMs, as well as our theoretical search strategy and calculation procedure and explained the formation of AFM.
In chapter 4, for DP structure LaABB'O6 (A=Ca,Sr,Ba; B,B'=transition elements), we present LaAWXO6 where A=Ca, Sr, Ba and X=Tc, Re are potential candidates of HM-AFM. Among those HM-AFM candidates, LaAWReO6 (A=Sr, Ba) are more robust than others for the structural optimization.
Including the previous Wang and Guo's work in 2006, we believe that we have found all possible HM-AFM candidates in LaABB'O6 compounds.
In Chapter 5, for DP structure La2BB'O6,
in 2009, while Wang, Lee and Guo found that La2VTcO6 and La2VCuO6 are promising candidates for HM-AFM, the search continued to other potential candidates of HM-AFM in the DP structure La2BB'O6. In this chapter, we present other two materials, La2VReO6 and La2CrMoO6 which are very likely candidates of HM-AFM.
The DP La2VMnO6 with a $Fm bar{3}m$ structure was predicted by Pickett et al. as a HM-AFM based on first principle calculations, while Androulakis et al.'s experimental result showed that La2VMnO6 also exhibits the same structure as a ferrimagnetic (FiM) state. For thoroughly understanding what happens in the DP La2VMnO6 with a $Fm bar{3}m$ structure, we first calculated the fixed cubic $Fm bar{3}m$ structure before recalculating the structure through an optimization process. Our results show that La2VMnO6 is a FiM state in the fixed and volume-relaxed cubic $Fm bar{3}m$ structure. However, after full relaxation, it becomes a HM-AFM and remains the same even +U is taken into consideration. This recalculation illustrates that the magnetic state of the Mn ion is sensitive to the crystal field of MnO6 octahedron, and is the main reason behind the transformation of the magnetic state of La2VMnO6 from a FiM to a AFM state after full relaxation. Because the difference of total energy $ riangle$$E^{FiM-AFM}$ is small (merely about 57.1 meV/f.u.) and their space group in both FiM and AFM states La2VMnO6 are similar, we conclude that the decisive factor is the crystal field of the MnO6 octahedron, i.e. the distortion magnitude of the MnO6 octahedron, which is related to the process of synthesis and the presence of defects. Although Androulakis et al.'s experimental result show that this is a $Fm bar{3}m$/FiM state, we think that it is still possible for a I4/mmm/AFM state to exists. i.e. a HM-AFM La2VMnO6.

In chapter 6,
for DP structures A2BBO6, we present A2MoOsO6, A2TcReO6, A2CrRuO6, where A=Ca, Sr, Ba, are potential candidates for HM-AFM.
Also considered were the effects of spin-orbit coupling (SOC) and correlation by introducing +SOC and +U corrections.
It is found that the SOC effect has much less influence than the correlation effect on the HM property of the compounds. For A2TcReO6 and A2CrRuO6 (A=Ca, Sr, Ba), after +U, they become Mott-Insulators. In the future, it is hoped that there will be further experimental confirmation for these possible HM-AFM candidates.
In chapter 7, we listed all theoretical prediction results of DP structures LaABB'O6, La2BB'O6 and A2BB'O6 in Table
ef{tb-conclusion}, including our works and others. We tried to give a explaination by GKA (Goodenough-Kanamori-Anderson) rule.
For less robust HM-AFM candidates, such as LaAWTcO6, La2VReO6 $cdots$ etc, they exhibit the HM-AFM's characteristic after considering correlation effect. Since + U calculation is a semi-emperical calculation method, not eactly so-called $ab-initio$ calculation, and theoretical prediction for them will go to insulators if choose higher U value, the value of U need more accurate calculation or relevant experimental data.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T01:08:19Z (GMT). No. of bitstreams: 1
ntu-100-D92222009-1.pdf: 3604324 bytes, checksum: 6970c6cf4b2b215dab2dcc943b32591e (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents1 Introduction 1
2 Density Functional Theory (DFT) and computational methods 3
2.1 Born-Oppenheimer approximation . . . . . . . . . . . . . . . . . . . . . . 3
2.2 DFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2.1 Hohanberg-Kohn theorems . . . . . . . . . . . . . . . . . . . . . . 4
2.2.2 Kohn-Sham equations . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.3 Exchange-correlation functionals . . . . . . . . . . . . . . . . . . . 9
2.3 Projector Augmented Wave (PAW) method (for VASP package) . . . . . 9
2.4 Full-potential Linear Augmented Plane Wave (FLAPW) method (for
WIEN2K package) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 L(S)DA(GGA) + U method . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.6 Spin-Orbital Coupling (SOC) . . . . . . . . . . . . . . . . . . . . . . . . 13
3 Half-Metallic Antiferromagnet (HM-AFM) 14
3.1 What is ”HM-AFM” ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Paper review of possible HM-AFM candidates . . . . . . . . . . . . . . . 14
3.3 Why we chose double perovskites (DP) structure compounds ? . . . . . . 16
3.4 Two kinds of stacked DP structures and initial-arranged magnetic states 17
3.5 Theoretical search strategy and calculation procedure . . . . . . . . . . . 18
3.6 The formation of AFM : Superexchange and/or Double-exchange couplings 19
4 HM-AFMs in LaABB 0 O 6 22
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2 Calculation detail and structures . . . . . . . . . . . . . . . . . . . . . . 23
4.3 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3.1 Effects of structural optimization . . . . . . . . . . . . . . . . . . 25
4.3.2 Effects of on-site Coulomb interactions . . . . . . . . . . . . . . . 31
4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5 HM-AFMs in La 2 BB 0 O 6 33
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.2 Calculation detail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.3 La 2 VMnO 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.3.1 Results and discussions . . . . . . . . . . . . . . . . . . . . . . . . 34
5.3.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.4 La 2 VReO 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
i5.4.1 Results and discussions . . . . . . . . . . . . . . . . . . . . . . . . 38
5.4.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.5 La 2 CrMoO 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.5.1 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . 42
5.5.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6 HM-AFMs in A 2 BB 0 O 6 46
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.2 Calculation detail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.3 Results and discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.3.1 HM-AFMs from the initial search and stable phase . . . . . . . . 46
6.3.2 Electronic structure and magnetic properties . . . . . . . . . . . . 47
6.3.3 Correlation and spin-orbital coupling effects . . . . . . . . . . . . 53
6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
7 Summary 55
dc.language.isoen
dc.subject反鐵磁半金屬zh_TW
dc.subject雙鈣鈦結構zh_TW
dc.subjectHalf-Metallic Antiferromagnetsen
dc.subjectDouble Perovskites Structureen
dc.title以第一原理計算研究雙鈣鈦礦中的反鐵磁半金屬zh_TW
dc.titleFirst-Principle Studies of Half-Metallic Antiferromagnets in Double Perovskites Structure Compoundsen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree博士
dc.contributor.coadvisor胡崇德
dc.contributor.oralexamcommittee鄭弘泰,梁贊全,張慶瑞,關肇正,陳穎叡
dc.subject.keyword雙鈣鈦結構,反鐵磁半金屬,zh_TW
dc.subject.keywordDouble Perovskites Structure,Half-Metallic Antiferromagnets,en
dc.relation.page60
dc.rights.note有償授權
dc.date.accepted2011-08-03
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
3.52 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved