請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29460
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 許秉寧(Ping-Ning Hsu) | |
dc.contributor.author | Ya-Chi Yang | en |
dc.contributor.author | 楊雅淇 | zh_TW |
dc.date.accessioned | 2021-06-13T01:07:40Z | - |
dc.date.available | 2008-08-08 | |
dc.date.copyright | 2007-08-08 | |
dc.date.issued | 2007 | |
dc.date.submitted | 2007-07-23 | |
dc.identifier.citation | Reference
Abdollahi,T., Robertson,N.M., Abdollahi,A., and Litwack,G. (2003). Identification of interleukin 8 as an inhibitor of tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in the ovarian carcinoma cell line OVCAR3. Cancer Res. 63, 4521-4526. Adams,J.M. and Cory,S. (1998). The Bcl-2 protein family: arbiters of cell survival. Science 281, 1322-1326. Ahmad,A., Govil,Y., and Frank,B.B. (2003). Gastric mucosa-associated lymphoid tissue lymphoma. Am. J. Gastroenterol. 98, 975-986. Akopyants,N.S., Clifton,S.W., Kersulyte,D., Crabtree,J.E., Youree,B.E., Reece,C.A., Bukanov,N.O., Drazek,E.S., Roe,B.A., and Berg,D.E. (1998). Analyses of the cag pathogenicity island of Helicobacter pylori. Mol. Microbiol. 28, 37-53. Asahi,M., Azuma,T., Ito,S., Ito,Y., Suto,H., Nagai,Y., Tsubokawa,M., Tohyama,Y., Maeda,S., Omata,M., Suzuki,T., and Sasakawa,C. (2000). Helicobacter pylori CagA protein can be tyrosine phosphorylated in gastric epithelial cells. J. Exp. Med. 191, 593-602. Ashkenazi,A., Pai,R.C., Fong,S., Leung,S., Lawrence,D.A., Marsters,S.A., Blackie,C., Chang,L., McMurtrey,A.E., Hebert,A., DeForge,L., Koumenis,I.L., Lewis,D., Harris,L., Bussiere,J., Koeppen,H., Shahrokh,Z., and Schwall,R.H. (1999). Safety and antitumor activity of recombinant soluble Apo2 ligand. J. Clin. Invest 104, 155-162. Censini,S., Lange,C., Xiang,Z., Crabtree,J.E., Ghiara,P., Borodovsky,M., Rappuoli,R., and Covacci,A. (1996). cag, a pathogenicity island of Helicobacter pylori, encodes type I-specific and disease-associated virulence factors. Proc. Natl. Acad. Sci. U. S. A 93, 14648-14653. Chaudhary,P.M., Eby,M., Jasmin,A., Bookwalter,A., Murray,J., and Hood,L. (1997). Death receptor 5, a new member of the TNFR family, and DR4 induce FADD-dependent apoptosis and activate the NF-kappaB pathway. Immunity. 7, 821-830. Cover,T.L., Krishna,U.S., Israel,D.A., and Peek,R.M., Jr. (2003). Induction of gastric epithelial cell apoptosis by Helicobacter pylori vacuolating cytotoxin. Cancer Res. 63, 951-957. Crowe,S.E. (2005). Helicobacter infection, chronic inflammation, and the development of malignancy. Curr. Opin. Gastroenterol. 21, 32-38. Degli-Esposti,M.A., Dougall,W.C., Smolak,P.J., Waugh,J.Y., Smith,C.A., and Goodwin,R.G. (1997a). The novel receptor TRAIL-R4 induces NF-kappaB and protects against TRAIL-mediated apoptosis, yet retains an incomplete death domain. Immunity. 7, 813-820. Degli-Esposti,M.A., Smolak,P.J., Walczak,H., Waugh,J., Huang,C.P., DuBose,R.F., Goodwin,R.G., and Smith,C.A. (1997b). Cloning and characterization of TRAIL-R3, a novel member of the emerging TRAIL receptor family. J. Exp. Med. 186, 1165-1170. Desagher,S., Osen-Sand,A., Montessuit,S., Magnenat,E., Vilbois,F., Hochmann,A., Journot,L., Antonsson,B., and Martinou,J.C. (2001). Phosphorylation of bid by casein kinases I and II regulates its cleavage by caspase 8. Mol. Cell 8, 601-611. Emery,J.G., McDonnell,P., Burke,M.B., Deen,K.C., Lyn,S., Silverman,C., Dul,E., Appelbaum,E.R., Eichman,C., DiPrinzio,R., Dodds,R.A., James,I.E., Rosenberg,M., Lee,J.C., and Young,P.R. (1998). Osteoprotegerin is a receptor for the cytotoxic ligand TRAIL. J. Biol. Chem. 273, 14363-14367. Fan,X., Crowe,S.E., Behar,S., Gunasena,H., Ye,G., Haeberle,H., Van,H.N., Gourley,W.K., Ernst,P.B., and Reyes,V.E. (1998). The effect of class II major histocompatibility complex expression on adherence of Helicobacter pylori and induction of apoptosis in gastric epithelial cells: a mechanism for T helper cell type 1-mediated damage. J. Exp. Med. 187, 1659-1669. Faust,R.A., Niehans,G., Gapany,M., Hoistad,D., Knapp,D., Cherwitz,D., Davis,A., Adams,G.L., and Ahmed,K. (1999). Subcellular immunolocalization of protein kinase CK2 in normal and carcinoma cells. Int. J. Biochem. Cell Biol. 31, 941-949. Fischer,W., Puls,J., Buhrdorf,R., Gebert,B., Odenbreit,S., and Haas,R. (2001). Systematic mutagenesis of the Helicobacter pylori cag pathogenicity island: essential genes for CagA translocation in host cells and induction of interleukin-8. Mol. Microbiol. 42, 1337-1348. Frese,S., Pirnia,F., Miescher,D., Krajewski,S., Borner,M.M., Reed,J.C., and Schmid,R.A. (2003). PG490-mediated sensitization of lung cancer cells to Apo2L/TRAIL-induced apoptosis requires activation of ERK2. Oncogene 22, 5427-5435. Galmiche,A., Rassow,J., Doye,A., Cagnol,S., Chambard,J.C., Contamin,S., de,T., V, Just,I., Ricci,V., Solcia,E., Van,O.E., and Boquet,P. (2000). The N-terminal 34 kDa fragment of Helicobacter pylori vacuolating cytotoxin targets mitochondria and induces cytochrome c release. EMBO J. 19, 6361-6370. Green,D.R. (2000). Apoptotic pathways: paper wraps stone blunts scissors. Cell 102, 1-4. Guillemin,K., Salama,N.R., Tompkins,L.S., and Falkow,S. (2002). Cag pathogenicity island-specific responses of gastric epithelial cells to Helicobacter pylori infection. Proc. Natl. Acad. Sci. U. S. A 99, 15136-15141. Hacker,J. and Kaper,J.B. (2000). Pathogenicity islands and the evolution of microbes. Annu. Rev. Microbiol. 54, 641-679. Harper,N., Hughes,M.A., Farrow,S.N., Cohen,G.M., and MacFarlane,M. (2003). Protein kinase C modulates tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis by targeting the apical events of death receptor signaling. J. Biol. Chem. 278, 44338-44347. Hersey,P. and Zhang,X.D. (2001). How melanoma cells evade trail-induced apoptosis. Nat. Rev. Cancer 1, 142-150. Higashi,H., Tsutsumi,R., Muto,S., Sugiyama,T., Azuma,T., Asaka,M., and Hatakeyama,M. (2002). SHP-2 tyrosine phosphatase as an intracellular target of Helicobacter pylori CagA protein. Science 295, 683-686. Hymowitz,S.G., Christinger,H.W., Fuh,G., Ultsch,M., O'Connell,M., Kelley,R.F., Ashkenazi,A., and de Vos,A.M. (1999). Triggering cell death: the crystal structure of Apo2L/TRAIL in a complex with death receptor 5. Mol. Cell 4, 563-571. Izeradjene,K., Douglas,L., Delaney,A., and Houghton,J.A. (2005). Casein kinase II (CK2) enhances death-inducing signaling complex (DISC) activity in TRAIL-induced apoptosis in human colon carcinoma cell lines. Oncogene 24, 2050-2058. Jones,N.L., Day,A.S., Jennings,H.A., and Sherman,P.M. (1999). Helicobacter pylori induces gastric epithelial cell apoptosis in association with increased Fas receptor expression. Infect. Immun. 67, 4237-4242. Kelley,S.K. and Ashkenazi,A. (2004). Targeting death receptors in cancer with Apo2L/TRAIL. Curr. Opin. Pharmacol. 4, 333-339. Kim,K., Fisher,M.J., Xu,S.Q., and el-Deiry,W.S. (2000). Molecular determinants of response to TRAIL in killing of normal and cancer cells. Clin. Cancer Res. 6, 335-346. Kischkel,F.C., Lawrence,D.A., Chuntharapai,A., Schow,P., Kim,K.J., and Ashkenazi,A. (2000). Apo2L/TRAIL-dependent recruitment of endogenous FADD and caspase-8 to death receptors 4 and 5. Immunity. 12, 611-620. Kischkel,F.C., Lawrence,D.A., Tinel,A., LeBlanc,H., Virmani,A., Schow,P., Gazdar,A., Blenis,J., Arnott,D., and Ashkenazi,A. (2001). Death receptor recruitment of endogenous caspase-10 and apoptosis initiation in the absence of caspase-8. J. Biol. Chem. 276, 46639-46646. Landesman-Bollag,E., Romieu-Mourez,R., Song,D.H., Sonenshein,G.E., Cardiff,R.D., and Seldin,D.C. (2001). Protein kinase CK2 in mammary gland tumorigenesis. Oncogene 20, 3247-3257. Leverkus,M., Walczak,H., McLellan,A., Fries,H.W., Terbeck,G., Brocker,E.B., and Kampgen,E. (2000). Maturation of dendritic cells leads to up-regulation of cellular FLICE-inhibitory protein and concomitant down-regulation of death ligand-mediated apoptosis. Blood 96, 2628-2631. Litchfield,D.W. (2003). Protein kinase CK2: structure, regulation and role in cellular decisions of life and death. Biochem. J. 369, 1-15. MacFarlane,M., Ahmad,M., Srinivasula,S.M., Fernandes-Alnemri,T., Cohen,G.M., and Alnemri,E.S. (1997). Identification and molecular cloning of two novel receptors for the cytotoxic ligand TRAIL. J. Biol. Chem. 272, 25417-25420. MacFarlane,M., Merrison,W., Bratton,S.B., and Cohen,G.M. (2002). Proteasome-mediated degradation of Smac during apoptosis: XIAP promotes Smac ubiquitination in vitro. J. Biol. Chem. 277, 36611-36616. Mariani,S.M. and Krammer,P.H. (1998). Differential regulation of TRAIL and CD95 ligand in transformed cells of the T and B lymphocyte lineage. Eur. J. Immunol. 28, 973-982. Marshall,B.J. and Warren,J.R. (1984). Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet 1, 1311-1315. Marsters,S.A., Sheridan,J.P., Pitti,R.M., Huang,A., Skubatch,M., Baldwin,D., Yuan,J., Gurney,A., Goddard,A.D., Godowski,P., and Ashkenazi,A. (1997). A novel receptor for Apo2L/TRAIL contains a truncated death domain. Curr. Biol. 7, 1003-1006. Misinzo,G., Delputte,P.L., Meerts,P., Lefebvre,D.J., and Nauwynck,H.J. (2006). Porcine circovirus 2 uses heparan sulfate and chondroitin sulfate B glycosaminoglycans as receptors for its attachment to host cells. J. Virol. 80, 3487-3494. Mongkolsapaya,J., Grimes,J.M., Chen,N., Xu,X.N., Stuart,D.I., Jones,E.Y., and Screaton,G.R. (1999). Structure of the TRAIL-DR5 complex reveals mechanisms conferring specificity in apoptotic initiation. Nat. Struct. Biol. 6, 1048-1053. Montecucco,C. and Rappuoli,R. (2001). Living dangerously: how Helicobacter pylori survives in the human stomach. Nat. Rev. Mol. Cell Biol. 2, 457-466. Moss,S.F., Calam,J., Agarwal,B., Wang,S., and Holt,P.R. (1996). Induction of gastric epithelial apoptosis by Helicobacter pylori. Gut 38, 498-501. Munstermann,U., Fritz,G., Seitz,G., Lu,Y.P., Schneider,H.R., and Issinger,O.G. (1990). Casein kinase II is elevated in solid human tumours and rapidly proliferating non-neoplastic tissue. Eur. J. Biochem. 189, 251-257. Odenbreit,S., Puls,J., Sedlmaier,B., Gerland,E., Fischer,W., and Haas,R. (2000). Translocation of Helicobacter pylori CagA into gastric epithelial cells by type IV secretion. Science 287, 1497-1500. Olsten,M.E., Weber,J.E., and Litchfield,D.W. (2005). CK2 interacting proteins: emerging paradigms for CK2 regulation? Mol. Cell Biochem. 274, 115-124. Ozoren,N. and El-Deiry,W.S. (2002). Defining characteristics of Types I and II apoptotic cells in response to TRAIL. Neoplasia. 4, 551-557. Pan,G., O'Rourke,K., Chinnaiyan,A.M., Gentz,R., Ebner,R., Ni,J., and Dixit,V.M. (1997). The Receptor for the Cytotoxic Ligand TRAIL. Science 276, 111-113. Peek,R.M., Jr. and Blaser,M.J. (2002). Helicobacter pylori and gastrointestinal tract adenocarcinomas. Nat. Rev. Cancer 2, 28-37. Ravi,R. and Bedi,A. (2002). Sensitization of tumor cells to Apo2 ligand/TRAIL-induced apoptosis by inhibition of casein kinase II. Cancer Res. 62, 4180-4185. Rostand,K.S. and Esko,J.D. (1997a). Microbial adherence to and invasion through proteoglycans. Infect. Immun. 65, 1-8. Rostand,K.S. and Esko,J.D. (1997b). Microbial adherence to and invasion through proteoglycans. Infect. Immun. 65, 1-8. Rudi,J., Kuck,D., Strand,S., von,H.A., Mariani,S.M., Krammer,P.H., Galle,P.R., and Stremmel,W. (1998). Involvement of the CD95 (APO-1/Fas) receptor and ligand system in Helicobacter pylori-induced gastric epithelial apoptosis. J. Clin. Invest 102, 1506-1514. Salvesen,G.S. (2002). Caspases and apoptosis. Essays Biochem. 38, 9-19. Sawitzky,D. (1996). Protein-glycosaminoglycan interactions: infectiological aspects. Med. Microbiol. Immunol. 184, 155-161. Schmidtchen,A., Frick,I.M., and Bjorck,L. (2001). Dermatan sulphate is released by proteinases of common pathogenic bacteria and inactivates antibacterial alpha-defensin. Mol. Microbiol. 39, 708-713. Schwarz,E.M., Van,A.D., and Verma,I.M. (1996). Constitutive phosphorylation of IkappaBalpha by casein kinase II occurs preferentially at serine 293: requirement for degradation of free IkappaBalpha. Mol. Cell Biol. 16, 3554-3559. Segal,E.D., Cha,J., Lo,J., Falkow,S., and Tompkins,L.S. (1999). Altered states: involvement of phosphorylated CagA in the induction of host cellular growth changes by Helicobacter pylori. Proc. Natl. Acad. Sci. U. S. A 96, 14559-14564. Sheridan,J.P., Marsters,S.A., Pitti,R.M., Gurney,A., Skubatch,M., Baldwin,D., Ramakrishnan,L., Gray,C.L., Baker,K., Wood,W.I., Goddard,A.D., Godowski,P., and Ashkenazi,A. (1997). Control of TRAIL-induced apoptosis by a family of signaling and decoy receptors. Science 277, 818-821. Shin,S., Lee,Y., Kim,W., Ko,H., Choi,H., and Kim,K. (2005). Caspase-2 primes cancer cells for TRAIL-mediated apoptosis by processing procaspase-8. EMBO J. 24, 3532-3542. Sprick,M.R., Rieser,E., Stahl,H., Grosse-Wilde,A., Weigand,M.A., and Walczak,H. (2002). Caspase-10 is recruited to and activated at the native TRAIL and CD95 death-inducing signalling complexes in a FADD-dependent manner but can not functionally substitute caspase-8. EMBO J. 21, 4520-4530. Sprick,M.R., Weigand,M.A., Rieser,E., Rauch,C.T., Juo,P., Blenis,J., Krammer,P.H., and Walczak,H. (2000). FADD/MORT1 and caspase-8 are recruited to TRAIL receptors 1 and 2 and are essential for apoptosis mediated by TRAIL receptor 2. Immunity. 12, 599-609. Srinoulprasert,Y., Kongtawelert,P., and Chaiyaroj,S.C. (2006). Chondroitin sulfate B and heparin mediate adhesion of Penicillium marneffei conidia to host extracellular matrices. Microb. Pathog. 40, 126-132. Stein,M., Rappuoli,R., and Covacci,A. (2000). Tyrosine phosphorylation of the Helicobacter pylori CagA antigen after cag-driven host cell translocation. Proc. Natl. Acad. Sci. U. S. A 97, 1263-1268. Suerbaum,S. and Michetti,P. (2002). Helicobacter pylori infection. N. Engl. J. Med. 347, 1175-1186. Thakkar,H., Chen,X., Tyan,F., Gim,S., Robinson,H., Lee,C., Pandey,S.K., Nwokorie,C., Onwudiwe,N., and Srivastava,R.K. (2001). Pro-survival function of Akt/protein kinase B in prostate cancer cells. Relationship with TRAIL resistance. J. Biol. Chem. 276, 38361-38369. Trowbridge,J.M. and Gallo,R.L. (2002). Dermatan sulfate: new functions from an old glycosaminoglycan. Glycobiology 12, 117R-125R. Truneh,A., Sharma,S., Silverman,C., Khandekar,S., Reddy,M.P., Deen,K.C., McLaughlin,M.M., Srinivasula,S.M., Livi,G.P., Marshall,L.A., Alnemri,E.S., Williams,W.V., and Doyle,M.L. (2000). Temperature-sensitive differential affinity of TRAIL for its receptors. DR5 is the highest affinity receptor. J. Biol. Chem. 275, 23319-23325. Tschopp,J., Irmler,M., and Thome,M. (1998). Inhibition of fas death signals by FLIPs. Curr. Opin. Immunol. 10, 552-558. Wagner,S., Beil,W., Westermann,J., Logan,R.P., Bock,C.T., Trautwein,C., Bleck,J.S., and Manns,M.P. (1997). Regulation of gastric epithelial cell growth by Helicobacter pylori: offdence for a major role of apoptosis. Gastroenterology 113, 1836-1847. Walczak,H., gli-Esposti,M.A., Johnson,R.S., Smolak,P.J., Waugh,J.Y., Boiani,N., Timour,M.S., Gerhart,M.J., Schooley,K.A., Smith,C.A., Goodwin,R.G., and Rauch,C.T. (1997). TRAIL-R2: a novel apoptosis-mediating receptor for TRAIL. EMBO J. 16, 5386-5397. Walczak,H., Miller,R.E., Ariail,K., Gliniak,B., Griffith,T.S., Kubin,M., Chin,W., Jones,J., Woodward,A., Le,T., Smith,C., Smolak,P., Goodwin,R.G., Rauch,C.T., Schuh,J.C., and Lynch,D.H. (1999). Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nat. Med. 5, 157-163. Wang,D., Westerheide,S.D., Hanson,J.L., and Baldwin,A.S., Jr. (2000). Tumor necrosis factor alpha-induced phosphorylation of RelA/p65 on Ser529 is controlled by casein kinase II. J. Biol. Chem. 275, 32592-32597. Wang,G., Ahmad,K.A., and Ahmed,K. (2006). Role of protein kinase CK2 in the regulation of tumor necrosis factor-related apoptosis inducing ligand-induced apoptosis in prostate cancer cells. Cancer Res. 66, 2242-2249. Wiley,S.R., Schooley,K., Smolak,P.J., Din,W.S., Huang,C.P., Nicholl,J.K., Sutherland,G.R., Smith,T.D., Rauch,C., Smith,C.A., and . (1995). Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity. 3, 673-682. Willhite,D.C. and Blanke,S.R. (2004). Helicobacter pylori vacuolating cytotoxin enters cells, localizes to the mitochondria, and induces mitochondrial membrane permeability changes correlated to toxin channel activity. Cell Microbiol. 6, 143-154. Willhite,D.C., Cover,T.L., and Blanke,S.R. (2003). Cellular vacuolation and mitochondrial cytochrome c release are independent outcomes of Helicobacter pylori vacuolating cytotoxin activity that are each dependent on membrane channel formation. J. Biol. Chem. 278, 48204-48209. Wu,Y.Y., Tsai,H.F., Lin,W.C., Chou,A.H., Chen,H.T., Yang,J.C., Hsu,P.I., and Hsu,P.N. (2004). Helicobacter pylori enhances tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis in human gastric epithelial cells. World J. Gastroenterol. 10, 2334-2339. Zhang,X.D., Franco,A., Myers,K., Gray,C., Nguyen,T., and Hersey,P. (1999). Relation of TNF-related apoptosis-inducing ligand (TRAIL) receptor and FLICE-inhibitory protein expression to TRAIL-induced apoptosis of melanoma. Cancer Res. 59, 2747-2753. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29460 | - |
dc.description.abstract | 胃幽門螺旋桿菌(Helicobacter pylori)是個常見的人類病原菌,感染胃幽門螺旋桿菌會造成慢性胃炎、胃潰瘍和胃癌。然而,目前對於胃幽門螺旋桿菌的致病機轉尚不清楚。研究指出在受到胃幽門螺旋桿菌感染時,可觀察到胃上皮細胞的細胞凋亡有增加的現象,此現象被認為對於胃炎的發生具有重要性。胃幽門螺旋桿菌所產生的毒力因子與宿主的免疫反應的活化皆可促成胃上皮的損害。在我們實驗室先前的研究中發現當胃幽門螺旋桿菌直接接觸到胃上皮細胞時,胃幽門螺旋桿菌可使人類胃上皮細胞對於Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)誘發的細胞凋亡產生感受性。胃幽門螺旋桿菌會調節人類胃上皮細胞裡TRAIL凋亡訊息傳導。在人類胃上皮細胞與胃幽門螺旋桿菌共同培養之後加入TRAIL,會促進caspase-8的活化,且此促進的caspase-8活化便足以造成下游Bid, caspase-9與caspase-3的活化,最終打破了胃上皮細胞對TRAIL引起細胞凋亡的耐受性。然而對於胃幽門螺旋桿菌如何去調節TRAIL凋亡訊息傳導的機制,目前尚不清楚。我們假設,當胃幽門螺旋桿菌與細胞接觸時,覆蓋於細胞表面的醣類物質可能在胃幽門螺旋桿菌誘發TRAIL感受性的過程中扮演著某個角色。為了要探討醣類在調節胃幽門螺旋桿菌誘發TRAIL感受性所扮演的角色,我們將不同的醣類分別加入體外共同培養系統。我們發現,heparan sulfate會抑制胃幽門螺旋桿菌誘發TRAIL感受性,但對胃幽門螺旋桿菌與細胞間的附著並沒有顯著影響。這些結果意味著,幽門螺旋桿菌可能藉與heparan sulfate交互作用來誘發胃上皮細胞對TRAIL產生感受性。
最近的研究發現一個普遍存在、高度保存且具固有活性的serine/threonine kinase, casein kinase Ⅱ (CK2)可以保護腫瘤細胞免於受到TRAIL所誘發的細胞凋亡。因為CK2的活性在對TRAIL具有感受性的癌症細胞株中是比較低的,然而在對TRAIL具耐受性的癌症細胞株中則是比較高的。當抑制CK2的活性,可以使腫瘤細胞對TRAIL誘發的細胞凋亡產生感受性,但對正常的細胞沒有影響。研究也指出,當CK2受到抑制時加入TRAIL,procaspase-8聚集到death-inducing signaling complex (DISC)的量會增加且迅速的誘發caspase-8、-9、-3的活化。於是我們假設,胃幽門螺旋桿菌可能透過調節CK2的活性來使胃上皮細胞對TRAIL所誘發的細胞凋亡產生感受性。為了要探討CK2在調節胃幽門螺旋桿菌誘發TRAIL感受性所扮演的角色,我們使用CK2的專一抑制劑DRB去抑制胃上皮細胞株AGS細胞內CK2的磷酸化作用。實驗結果顯示,抑制CK2的活性,可使AGS細胞對TRAIL所誘發的細胞凋亡產生感受性,這個結果也暗示CK2扮演一個保護AGS細胞免於受到TRAIL所誘發的細胞凋亡的角色。由西方墨點法的結果中發現,一併給予DRB與TRAIL可促進caspase-8活化,這個現象和與胃幽門螺旋桿菌共同培養時所觀察到的現象類似,使我們聯想胃幽門螺旋桿菌可能藉由調節CK2的活性來誘發AGS細胞對TRAIL引起的細胞凋亡產生感受性。使用西方墨點法與CK2激酶活性試驗來釐清胃幽門螺旋桿菌與CK2之間的交互作用。但是CK2的蛋白表現量與激酶活性在與胃幽門螺旋桿菌共同培養前後並沒有差異,這些結果顯示CK2並非參與調節胃幽門螺旋桿菌誘發TRAIL感受性的下游分子。 | zh_TW |
dc.description.abstract | Helicobacter pylori (H. pylori), is a common pathogen of humans that causes chronic gastritis, peptic ulcer and gastric adenocarcinoma. However, the mechanisms by which H. pylori mediates pathogenesis are still unclear. Studies have shown that the enhanced gastric epithelial cell apoptosis observed during infection with H. pylori was significant in the pathogenesis of gastritis. The virulence factors produced by H. pylori and activation of immune response by host also contribute to gastric epithelium damage. Previous studies of our laboratory demonstrated that when direct contacting with gastric epithelial cells, H. pylori could sensitize human gastric epithelial cell line to be susceptible to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis. TRAIL death signal transduction in human gastric epithelial cells was modulated by H. pylori. After co-cultured with H. pylori and treated with TRAIL, caspase-8 activation was enhanced and the enhanced caspase-8 activation was sufficient to lead downstream Bid, caspase-9 and caspase-3 cleavage and finally break the resistant to TRAIL-induced apoptosis. However, the mechanism of H. pylori modulate TRAIL death signaling is still not clear. We hypothesize that the carbohydrate molecules that cover the cell surface may play a role in H. pylori-induced TRAIL sensitivity during H. pylori contact to gastric epithelial cell surface. In order to study the role of cell surface carbohydrate molecules in regulation of H. pylori-induced TRAIL sensitivity, we use different carbohydrates adding to the in vitro co-culture system. We demonstrated that heparan sulfate could inhibit H. pylori-induced TRAIL sensitivity, but not the binding of H. pylori to cell surface. These results indicated that H. pylori sensitize gastric epithelial cells to TRAIL-induced apoptosis might through the interaction with cell surface heparan sulfate.
Recent studies have shown casein kinase II (CK2), a highly conserved, ubiquitous and constitutively active serine/threonine kinase, could protect cancer cell from TRAIL-induced apoptosis. Since the CK2 activity is found low in TRAIL-sensitive cancer cell lines but high in TRAIL-resistant cancer cell lines. Inhibition of CK2 phosphorylation events result in dramatic sensitization of tumor cells to TRAIL-induced apoptosis but not normal cells. Studies also shown CK2 inhibition increase the level of recruitment of procaspase-8 to the death-inducing signaling complex (DISC) and induce rapid caspase-8,-9, -3 cleavage after TRAIL treatment. We hypothesize that H. pylori sensitize gastric epithelial cells to TRAIL-induced apoptosis may through modulation CK2 activity. In order to study the role of CK2 in regulation of H. pylori-induced TRAIL sensitivity, we use CK2 specific inhibitor, DRB, to inhibit the phosphorylation events of CK2 in human gastric epithelial cell line, AGS cells. We demonstrated that inhibition of CK2 activity could sensitize AGS to TRAIL-induced apoptosis, indicating a role of CK2 in protecting AGS cells from TRAIL-induced apoptosis. Western blotting also demonstrated that caspase-8 cleavage was enhanced by DRB and TRAIL treatment and this phenomenon was similar to co-culture with H. pylori, suggesting that H. pylori sensitize AGS cells to TRAIL-induced apoptosis through modulating CK2 activity. We use Western blotting and CK2 kinase assay to clarify the interaction between H. pylori and CK2. But the CK2 protein expression level and kinase activity did not show difference before and after co-cultured with H. pylori. These result demonstrated that CK2 is not the molecule that participates in the downstream of H. pylori-induced TRAIL sensitivity. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T01:07:40Z (GMT). No. of bitstreams: 1 ntu-96-R94449010-1.pdf: 627751 bytes, checksum: 47832d0d75327f93633b7440c9fd0525 (MD5) Previous issue date: 2007 | en |
dc.description.tableofcontents | Acknowledgement……………………………………i
Abstract (Chinese)………………………………ii Abstract……………………………………………iv ChapterⅠ Introduction……………………1 Part 1. Helicobacter pylori and pathogenesis…………1 Part 2. TRAIL………………………………………………………………3 Part 3. TRAIL receptor system…………………………………4 Part 4. Signaling of TRAIL-induced apoptosis………………6 Part 5. The modulation of sensitivity to TRAIL-induced apoptosis………7 Part 6. Casein kinase 2…………………………………………8 Part 7. Specific aim.…………………………………………10 ChapterⅡ Material and Methods………………………………12 Part 1. Experimental materials……………………………12 Part 2. Experimental procedures……………………………21 2.1 His-TRAIL purification……………………21 2.2 Measurement of apoptosis……………………21 2.3 Isolation of cell extracts…………………22 2.4 Western blot…………………………………………22 2.5 Binding assay…………………………23 2.6 Construction of CK2α…………………………23 2.7 CK2 immunoprecipitation………………………………………...…….24 2.8 CK2 kinase assay…………………………………………………...…...24 ChapterⅢ Results…………………………………………………………………..25 Part 1. Heparan sulfate inhibits H. pylori-induced TRAIL sensitivity in human gastric epithelial cell line. …………………………………..……………………....25 Part 2. Heparan sulfate slightly affects the binding of H. pylori to gastric epithelial cell line. ..…………………………….……………………………………..26 Part 3. Inhibition of CK2 activity sensitizes human gastric epithelial cell line to TRAIL-induced apoptosis. ………...……………………………………….27 Part 4. Inhibition of CK2 activity enhances caspase-8 activation and the downstream Mitochondria pathway activation after TRAIL treatment. ...………….…....28 Part 5. H. pylori do not affect the protein expression level of CK2α. …...…………29 Part 6. H. pylori do not affect the kinase activity of CK2. ………...……………….30 ChapterⅣ Discussion……………………………………...……………………….31 Part 1. Heparan sulfate involves in H. pylori-induced TRAIL sensitivity in AGS cells….………...…………………………………………………………….31 Part 2. CK2 activity confers resistance to TRAIL-induced apoptosis in AGS cells. …………………………………………………..…………………………..32 Part 3. The relation between H. pylori and CK2 in regulation of TRAIL-induced apoptosis. ……………………...………………………………………….33 Part 4. Conclusion ……………………………………...…………………………...34 Reference………………………………………………...………………………......35 Figures…………………………………………………………………43 Figure 1 Heparan sulfate inhibited H. pylori-induced TRAIL-mediated apoptosis in AGS cells. ……………………………….…...…………………………...43 Figure 2 Heparan sulfate slightly reduced the binding of H. pylori to AGS cells. …46 Figure 3 Effect of heparinase I on TRAIL induced apoptosis in the presence and absence of H. pylori. …………...…………………………...…………….49 Figure 4 Inhibition of CK2 activity enhanced TRAIL-induced apoptosis in AGS cells. ……………………...….……………………………………………51 Figure 5 Inhibition of CK2 activity enhanced TRAIL-induced cleavage of caspase-8, -9 and -3. ……………………..……………………………….52 Figure 6 H. pylori didn’t change the protein expression level of CK2α in AGS cells.……………….……………………………………………………53 Figure 7 H. pylori could not reduce the CK2 kinase activity. ……………………...54 Figure 8 The proposed model for H. pylori-induced TRAIL sensitivity. …………..56 | |
dc.language.iso | en | |
dc.title | 在胃幽門螺旋桿菌誘發TRAIL引起人類胃上皮細胞凋亡中casein kinase 2 的角色 | zh_TW |
dc.title | The role of casein kinase 2 in regulation of Helicobacter pylori-induced TRAIL sensitivity in human gastric epithelial cells | en |
dc.type | Thesis | |
dc.date.schoolyear | 95-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 謝世良(Shie-Liang Hsieh),嚴仲陽(Jong-Young Yen) | |
dc.subject.keyword | 胃幽門螺旋桿菌,腫瘤壞死因子相關凋亡誘導配體,凋亡, | zh_TW |
dc.subject.keyword | H. pylori,TRAIL,apoptosis, | en |
dc.relation.page | 57 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2007-07-23 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 免疫學研究所 | zh_TW |
顯示於系所單位: | 免疫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-96-1.pdf 目前未授權公開取用 | 613.04 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。