請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29422完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳榮凱 | |
| dc.contributor.author | Ting-Yu Lee | en |
| dc.contributor.author | 李庭諭 | zh_TW |
| dc.date.accessioned | 2021-06-13T01:06:41Z | - |
| dc.date.available | 2008-08-01 | |
| dc.date.copyright | 2007-08-01 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-07-23 | |
| dc.identifier.citation | Bibliography
[1] J. A. Chen, C. D. Hacon, An example of a surface of general type with pg = q = 2 and K2X = 5, Pacific Jour. Math., 233 (2006), 363-384. [2] R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics 52, Springer- Verlag (1977). [3] D. W. Hahn, R. Miranda, Quadruple covers of algebraic varieties, J. Algebraic Geom., 8 (1999), 1-30. [4] R. Miranda, Triple covers in algebraic geometry, Amer. J. Math., 107 (1985), 1123-1158. [5] S. Mukai, Duality between D(X) and D( ˆX ) with its application to Picard sheaves, Nagoya Math. Jour., 81 (1981), 153-175. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29422 | - |
| dc.description.abstract | 這篇文章的主要目的是介紹一些三次覆蓋的性質。首先,我們會介紹一些關於三次覆蓋的篡本'隨質,並且利用三次覆蓋的技巧去構造出一個 Pg = q → 2 ,磯= 5 的代數曲面。最後,我們會把類似的技巧誰廣到四次覆蓋去構造一個 P 〞 = q → 2 ,磯= 6 的代數曲面。 | zh_TW |
| dc.description.abstract | The main purpose of this article is to introduce some properties of triple coverings.
In this article, we review some properties of a triple covering, and ten we consider to use a triple covering to construct a complex surface of general type with pg = q = 2 and K2X = 5. Finally, we try to use similar techniques to develop a quadruple cover over a complex abelian surface. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T01:06:41Z (GMT). No. of bitstreams: 1 ntu-96-R94221006-1.pdf: 228247 bytes, checksum: a45d551aa9b086faf6e27a45f59c54df (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | Table of Contents
Table of Contents iii Introduction iv 1 Triple covers in algebraic geometry 1 1.1 local analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 The ramification and branch locus . . . . . . . . . . . . . . . . . . . . 3 2 An triple cover example 7 2.1 defining equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2 local analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3 An quadruple cover example 11 3.1 defining equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.2 ramification and branch locus . . . . . . . . . . . . . . . . . . . . . . 14 3.3 geometric invariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Bibliography 18 | |
| dc.language.iso | en | |
| dc.subject | 覆蓋 | zh_TW |
| dc.subject | 多樣體 | zh_TW |
| dc.subject | algebraic varieties | en |
| dc.subject | covering | en |
| dc.title | 多樣體上的分歧覆蓋問題 | zh_TW |
| dc.title | On Splitting Coverings of Algebraic Varieties | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蔡炎龍,江謝宏任 | |
| dc.subject.keyword | 多樣體,覆蓋, | zh_TW |
| dc.subject.keyword | covering,algebraic varieties, | en |
| dc.relation.page | 18 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-07-23 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 數學研究所 | zh_TW |
| 顯示於系所單位: | 數學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 222.9 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
