請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29391
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林俊全 | |
dc.contributor.author | Yi-Chin Chan | en |
dc.contributor.author | 陳毅青 | zh_TW |
dc.date.accessioned | 2021-06-13T01:05:55Z | - |
dc.date.available | 2007-07-27 | |
dc.date.copyright | 2007-07-27 | |
dc.date.issued | 2007 | |
dc.date.submitted | 2007-07-20 | |
dc.identifier.citation | 王正非、朱廷曜、朱勁傳、崔顧武 (1985) 森林氣候,森林氣象學第六章,北京:中國林業出版社,236-243。
朱傚祖 (2004) 臺灣冰河遺跡的探討:以南湖大山為例,地質,23:15-22。 李國忠、王亞男、姜家華 (1997) 塔塔加台灣雲杉、鐵杉及玉山箭竹候物學及微生育地環境之研究,行政院國家科學委員會專題計畫成果報告。 林朝棨 (1957) 臺灣地形,臺北:臺灣省文獻委員會,1-139。 侯學煜、張新時 (1980) 中國山地植被垂直分佈的規律性,中國植被編輯委員會編著,中國植被科學出版社,738-745。 郭彥超 (2000) 南湖大山地區之航照判讀與地勢分析,國立臺灣大學地理學研究所碩士論文。 楊建夫 (1999) 雪山主峰圈谷群末次冰期的冰河遺跡研究,國立臺灣大學地理學研究所博士論文。 齊士崢 (1998) 野外劄記—南湖大山的冰川地形,環境與世界,2:161-163。 臺灣地質圖 1:500,000 (2000) 中央地質調查所出版。 Anderson, J. G. (1906) Solifluction, a component of subaerial denudation, Journal of Geology, 14: 91-112. Arya, S. (2001) Introduction to micrometeorology, 2th, New York: Academic, 35-451. Barsch, D. (1993) Periglacial geomorphology in the 21st century, Gemorphology, 7: 141-163. Bland, W. and Rolls, D. (1998) Weathering: an Introduction to Scientific Principles, London, Arnold, 85-94. Böse, M. (2000) Glacial landforms in Taiwan and a reinterpretation of the last glacial snowline depression , O. Slaymaker (eds), Geomorphology and human activity and global environmental change, John Wiley & Sons Ltd. Böse, M. (2006) Geomorphic altitudinal zonation of the high mountains of Taiwan, Quaternary International, 147: 55-61. Chambers, M. J. G. (1967) Investigations of patterned ground at Signy Island, South Orkney islands, Ш: Miniature patterns, frost heaving and general conclusions, Bulletin, British Antarctic Survey, 12: 1-22. Colin, E., Peter, J., Robert, G. and John, C. (1999) Statistical relationships between daily and monthly air and shallow-ground temperatures in Karkevagge, Swedish Lapland, Permafrost Periglacl Processes, 10: 317-330. Collard, R. (1988) The physical geography of landscape, London: Unwin Hyman, 224-238. Cook, F. A. and Raiche, V. G. (1962) Freeze-thaw cycles at Resolute, N.W.T., Geographical Bulletin, 18, 64-78. Cui, Z., Yang, C., Liu, G., Zhang, W., Wang, S. and Sung, Q. (2002) The Quaternary glaciation of Shesan Mountain in Taiwan and glacial classification in monsoon areas, Quaternary International, 97: 147-153. Douglas, G. R. (1972) Processes of weathering and some Properties of the Tertiary basalts of Co. Antrim, northern Ireland, Unpubl. Ph.D. thesis, Queen' s University of Belfast. Elliot, G. and Worsley, P. (1999) The sedimentology, Stratigraphy and dating of a turf-banked solifluction lobes: evidence for Holocene slope instability at Okstindan, northern Norway, Journal of Quaternary Science, 14(2): 175-188. Embleton, C. and Cuchlaine, A. M. (1975) Periglacial Geomorphology, London: Edward Arnold Ltd. Fahey B, and Lefebure, T. (1988) The freeze-thaw weathering regime at a section of the Niagara Escarpment on the Bruce Peninsula, Southern Ontario, Canada. Earth Surface Processes and Landforms, 13: 293-304. Fahey, B. D. (1973) An analysis of diurnal freeze-thaw and frost heave cycles in the Indian Peaks region of the Colorado Front Range, Arctic and Alpine Research, 5: 269-281. Fahey, B. D. (1983) Frost action and hydration as rock weathering mechanisms on schist: a laboratory study, Earth Surface Processes and Landforms, 8: 535-545. French, H. M. and Guglielmin, M. (1999) Observations on the ice-marginal periglacial geomorphology of Terra Nova Bay, Northern Victoria Land, Antarctica, Permafrost and Periglacial Processes, 10: 331-347. Gleason, K. J., Krantz, W. B., Caine, N., George, J. H. and Gunn, R. D. (1986) Geometrical apects of frozen ground in recurrently frozen soil, Science, 232: 216-220. Gerrard, A. J. (1990) Mountain Environments: An Examination of the Physical Geography of Mountains, Cambridge: MIT. Goudie, A. (1994) The Encyclopedia Dictionary of Physical Geography, 2nd,Oxford: Blackwell. Hall, K. (1997) Rock temperatures and implications for cold region weathering: I New data from Viking Valley, Alexander Island, Antarctica, Permafrost and Periglacial rocesses, 8(1): 69-90. Hall, K. (2004) Evidence for freeze-thaw events and their implications for rock weathering in Northern Canada, Earth Surface Processes and landforms, 29: 43-57. Hebenstreit, R. (2006) Present and former equilibrium line altitudes in the Taiwanese high mountain range, Quaternary International, 147: 70-75. Hewitt, K. (1968) The freeze-thaw environment of the Karakoram Himalaya, Canadian Geographer, 12: 85-98. Hoelzle, M. and Haeberli, W. (1995) Simulating the effects of mean annual air temperature changes on permafrost distribution and glacier size. An example from the Upper Engadin, Swiss Alps. Annals of Glaciology, 21: 400-405. Hoelzle, M., Mittaz, C., Etzelmüller, B. and Haeberli, W. (2001) Surface energy fluxes and distribution models of permafrost in European mountain areas: an overview of current developments, Permafrost and Periglacial Processes, 12: 53-68. Imhof, M. (1996) Modelling and verification of the permafrost distribution in Bernese Alps (Western Switzerland), Permafrost and Periglacial Processes, 7: 267-280. IPCC (2007) Climate Change 2007: The Physical Science Basis: Intergovernmental Panel on Climate Change, UNEP. Jensen, J. (1999) An analysis of permafrost distribution on Plateau Mountain, Alberta using the Geographic Information System ARC/INFO, Calgary, University of Calgary. Keller, F. (1992) Automated mapping of mountain permafrost using the program PERMAKART within the geographical information system ARC/INFO, Permafrost and Periglacial Processes, 3: 133-138. Klose, C. (2005) Meteorological station in Nanhuta Shan Manual, Freie Universitaet Berlin Institute of Geographical Science. Klose, C. (2006) Climate and geomorphology in the uppermost geomorphic belts of the Central Mountain Range, Taiwan, Quaternary International, 147: 89-102. Lautridou, J. (1988) Recent Advances in Cryogenic Weathering, In: Clark, M. J. (eds.), Advances in Periglacial Geomorphology, New York: John Wiley & Sons Ltd, 33-47. Matsuoka, N. (1990) The rate of bedrock weathering by frost action: field measurement and predict model, Earth Surface Processes and Landforms, 15: 73-90. Matsuoka, N. (1994) Diurnal Freeze-thaw depth in rockwalls: field measurement and theoretical considerations, Earth Surface Processes and Landforms, 19: 423-435. Matsuoka, N. (1995) Rock weathering processes and landform development in the Sor Rondane Mountains, Geomorphology, 12: 323-339. Matsuoka, N. (2001) Direct observation of frost wedging in alpine bedrock, Earth Surface Processes and Landforms, 26: 601-614. Matsuoka, N. (2004a) Cold climate weathering, Ole, H. and Norikazu, M. (eds.), A handbook on periglacial field methods, International Permafrost Association Press, 55-62. Matsuoka, N. (2004b) Frost heave: monitoring with strain gauge transducers, Ole, H. and Norikazu, M. (eds.), A handbook on periglacial field methods, International Permafrost Association, 50-54. Mori, J., Sone, T., Strelin, J. and Torielli, C. (2006) Surface movement of stone-banked lobes and terraces on Rink Crags plateau, James Ross Island, Antarctic Peninsula. In: Fütterer, D. K., Damaske, D., Kleinschmidt, G., Miller H. and Tessensohn F. (eds.), Antarctica: Contributions to Global Earth Sciences. Berlin: Springer-Verlag: 461-466. Ono, Y., Aoki, T., Hasegawa, H. and Dali, L. (2005) Mountain glaciation in Japan and Taiwan at the global Last Glacial Maximum, Quaternary International, 138: 79-92. Ørbæk, J. B., Tombre, I. and Kallenborn, R. (2004) Challenges in Arctic-Alpine Environmental Research, Arctic, Antarctic and Alpine Research, 36(3): 281-283. Peltier, L. C. (1950) The geographic cycle in periglacial regions as it is related to climatic geomorphology, Annals of the Association of American Geographers, 40: 214-236. Potts, A. S. (1970) Frost action in rocks: some experimental data, Transactions and Papers of the Institute of British Geographers, 49: 109-124. Putkonen, J. (2003) Determination of Frozen Soil Thermal Properties by Heated Needle Probe, Permafrost and Periglacial processes, 14: 343-347. Rączkowska, Z. (1995) Nivation in the High Tatras, Poland, Ge- ografiska Annaler, 77A: 251-258. Roger, C. (1992) Mountain Weather and Climate, London: Routledge Press, 9-96. Rudberg, S. (1969) Distribution of small-scale periglacial and glacial geomorphologic features on Axel Heiberg Island, N.W.T., In: Montreal, T. L. (eds.), The Periglacial Environment, Canadian: McGill-Queens University, 403-418. Sue, H. J. (1984) Studies on the climate and vegeation type of the natural forest in Taiwan(Ⅱ), Altitudinal vegetation zones in relation to temperature gradient, Quart. Journ. Chin. Forest, 17(4): 57-73. Taylor, A. H. and Z. S. Q. (1988) Regeneration from seed of Sinarundinaria fangiana, a bamboo, in the Wolong giant panda reserve, Sichuan, China. Amer. Jour. Bot., 75(7): 1065-1073. Tricart, J. (1968) Periglacial Landscapes, In R.W. Fairbridge (eds.), Encyclopedia of Geomorphology, Reinhold Book Co., 829-833. Troll C. (1944) Strukturböden, Solifluktion und Frostklimate der Erde: Geol. Rundschau, 34: 545-694. Thorn, C. E. (1979) Bedrock freeze-thaw weathering regime in an alpine environment, Colorado Front Range, Earth Surfaces and Processes, 4: 211-228. Kuo, C. M. and Liew, P. M. (2000) Vegetational history and climate fluctuations based on pollen analysis of the Toushe peat bog, Central Taiwan since the Last Glacial Maximum, Journal of the Geological Society of China, 43(3): 379-391. White, S. E. (1976) Is frost action really only hydration shattering? A review, Arctic Alpine Resources, 8: 1-8. Troll, C. (1973) High-mountain belts between the polar caps and the equator: their definition and lower limit. Arctic and Alpine Research, 5: 19-27. Ushakova, L. F. (1986) Changing of intensity of weathering as function of depth, Izvestiya VNII Gidrotechniky, 193: 79-82. Vieira, G., Mora, C. and Ramos, M. (2003) Ground temperature regimes and geomorphological implications in a Mediterranean mountain (Serra da Estrela, Portugal), Geomorphology, 52: 57-72. Washburn A. L. (1967) Instrumental observations on mass wasting in the Mesters Vig District, Northeast Greenland, Meddelelser om Gronland, 166: 318. Washburn, A. L. (1969) Weathering frost action and pattern ground in the Mesters Vig district, north-east Greenland, Meddelelser Grønland, 176(4): 303. Washburn, A. L. (1973) Periglacial processes and environments, London: Edward Arnold Press, 41-180. Washburn, A. L. (1979) Geocryology: A Survey of Periglacial Processes and Environments, New York: John Wiley & Sons, 496. Wilson, L. (1969) Les relations entre les processus géomorphologiques et le climat moderne comme method de paleoclimatologie, Revue de Geologie Dynamique et de Geographie Physique, 11: 303-314. Wiman, S. (1963) A preliminary study of experimental frost weathering, Geografiska Annaler, 45: 113-121. Worsley, O. and Harris, C. (1974) Evidence for Neoglacial solifluction at Okstindan, north Norway. Arctic, 27, 128-144. 網路資料 水文水資源資料管理供應系統 (2006.5),http://gweb.wra.gov.tw/wrweb。 中央氣象局全球資訊網 (2007.4),http://www.cwb.gov.tw。 行政院農委會特有生物研究保育中心 (2007.5),http://www.tesri.gov.tw/。 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29391 | - |
dc.description.abstract | 寒凍為高山與冰緣氣候中,常見的環境因子,凍融作用亦是其中最重要的地形營力。台灣高山地區易發生凍融風化與寒凍潛移等作用,而對其地形演育甚為重要。本研究蒐集南湖大山氣溫及地溫資料,利用經驗與統計模型,推估凍融作用的規模、頻率與發生的時間,以及應用野外調查的結果,繪製高山地區之冰緣地貌圖。
由2001年至2005年南湖大山地溫觀測站的資料顯示,凍融循環在地表下2、10與20㎝處,平均每年凍融循環次數分別為55、8.75、1.25次,顯示出凍融作用在地表下2㎝處較其它深度活躍;發生的時間主要在秋季與春季,而冬季因為地表受到覆雪與結凍之影響,凍融作用較不明顯,而且地表下10㎝以上的結凍時間達66至71天。利用經驗統計之模型,模擬地表溫度及觀測值的相關係數達0.7875,並且凍融次數與實際觀測值相符。利用模型推估凍融作用於空間中的分布顯示出,海拔高度變化與凍融次數之間的關係呈現對數曲線變化,而凍融作用頻率與森林線高度的關係較不明顯。在南湖大山與合歡山皆可觀察到碎石坡、碎石堆與草原土趾階地等冰緣地形,且冰緣地形皆分布於森林線以上的裸露地或高山箭竹草原之中,顯示凍融在高山地區作用和冰緣地形區相當活躍,台灣北部高山冰緣垂直分布帶約在海拔3300至4000公尺。 | zh_TW |
dc.description.abstract | Frost action is one of the important environmental factors in alpine and periglacial climate. Among them, freeze-thaw process is the most influential geomorphologic process in the area. Freeze-thaw weathering and gelifluction movement shapes the landform in high mountain area of Taiwan. In this study, the air and ground temperature data of 2, 10 and 20 cm depth of Mt. Nanhu was used to model the magnitude, frequency and distribution of freeze-thaw process. Besides, field investigation was also conducted to depict the geomorphological map in Mt. Nanhu area.
According to ground temperature data in Mt. Nanhuta collected from 2001 to 2005, frequency of freeze-thaw processes at depth of 2 , 10 and 20cm was 55, 8.75 and 1.25 times per year respectively. The freeze-thaw process was weak at depth of 20cm. It was most frequent in autumn and spring but not few in winter for freeze and snow cover in that period. At the depth of 10 cm in the ground, there are about 2 months of frozen period per year in average. The measured and estimated ground temperature data are highly correlated, the R-square value is 0.7875, and the numbers of freeze-thaw from measurement and estimation by the model are identical. The relationship between elevation and freeze-thaw cycle is in logarithm regression by the estimation of the model. However, the relationship between freeze-thaw cycle and forest line in Mt. Nanhuta is not clear. According to field investigation, there are some periglacial landforms in the Mt. Nanhuta and Mt. Hehuan, including turf-banked lobes terraces, talus accumulation and talus slopes. Turf-banked lobes terrace are crescent shape terrace developed in Mt. Sheimajuei and the saddle between main peak and east peak of Mt. Nanhuta. Talus accumulation is developed in the saddle between main peak and east peak of Mt. Nanhuta. Talus slope is accumulated a lot of frost-wedging rock which is located at east of upper-cirque. It shows that freeze-thaw processes are active in the Mt. Nanhuta, so there are many periglacial landscapes between 3200-4000m above sea level. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T01:05:55Z (GMT). No. of bitstreams: 1 ntu-96-R94228009-1.pdf: 7146246 bytes, checksum: 24a9b5c33bb124d5fa7cf5dedcced4f4 (MD5) Previous issue date: 2007 | en |
dc.description.tableofcontents | 目 錄
第一章 緒論 1 第一節 研究動機 1 第二節 研究目的 3 第二章 文獻回顧 4 第一節 冰緣與高山環境 4 第二節 凍融作用的量測與模擬 9 第三節 凍融風化與冰緣地形 16 第三章 研究區簡介 23 第一節 研究區位置與地形 23 第二節 地質 29 第三節 氣候 31 第四節 植群分布帶 33 第四章 研究方法 35 第一節 研究架構與流程 35 第二節 岩石凍融溫度測定 37 第三節 氣候與地表岩石溫度的量測 44 第四節 凍融作用空間頻率推估 46 第五節 野外調查與繪製地貌圖 50 第五章 研究結果 52 第一節 凍融溫度試驗 52 第二節 南湖大山凍融作用 58 第三節 高山地區凍融作用空間分布 70 第四節 南湖大山山區的冰緣地形 78 第五節 綜合討論 91 六、結論 96 七、建議 98 參考文獻 99 | |
dc.language.iso | zh-TW | |
dc.title | 台灣高山凍融作用與冰緣地形分布之研究 | zh_TW |
dc.title | Freeze-thaw processes and periglacial landforms of High Mountain in Taiwan | en |
dc.type | Thesis | |
dc.date.schoolyear | 95-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 齊士崢,朱傚祖 | |
dc.subject.keyword | 南湖大山,高山地形,凍融作用,冰緣地形,垂直分布帶, | zh_TW |
dc.subject.keyword | Nanhuta Shan,alpine landscapes,freeze-thaw processes,periglacial landforms,vertical distribution, | en |
dc.relation.page | 105 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2007-07-24 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 地理環境資源學研究所 | zh_TW |
顯示於系所單位: | 地理環境資源學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-96-1.pdf 目前未授權公開取用 | 6.98 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。