請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29360完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 高景輝(Ching Huei Kao) | |
| dc.contributor.author | Deng Guo Cheng | en |
| dc.contributor.author | 程登國 | zh_TW |
| dc.date.accessioned | 2021-06-13T01:05:17Z | - |
| dc.date.available | 2007-07-25 | |
| dc.date.copyright | 2007-07-25 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-07-24 | |
| dc.identifier.citation | Alcázar R, Cuevas JC, Patron M, Altabella T and Tiburcio AF (2006) Abscisic acid modulates polyamine metabolism under water stress in Arabidopsis thaliana. Physiol Plant 128:448-455
Aravind P, Vara Prasad NM (2003) Zinc alleviates cadmium-induced oxidative stress in Ceratophyllum demersum L : a free floating freshwater macrophyte. Plant Physiol Biochem 41:391-397 Aravind P, NarasimhaVara Prasad M (2005) Modulation of cadmium-induced oxidative stress in Ceratophyllum demersum by zinc involves ascorbate–glutathione cycle and glutathione metabolism. Plant Physiol Biochem 43:107–116 Aziz A and Larher F (1995) Changes in polyamine titers associated with the proline response and osmotic adjustment of rape leaf discs submitted to osmotic stresses. Plant Sci 112:175-186 Benavídes MP, Gallego SM, Comba ME and Tomaro ML (2000) Relationship between polyamines and paraquat toxicity in sunflower leaf discs. Plant Growth Regul 31: 215–224 Bolwell GP and Wojtaszek P (1997) Mechanisms for the generation of reactive oxygen species in plant defence - a broad perspective. Physiol Mol Plant Pathol 51:347-366 Borrell A, Carbonell L, Farrás R, Puig-Parallada P and Tiburcio AF (1997) Polyamines inhibit lipid peroxidation in senescing oat leaves. Physiol Plant 99:385-390 Borsani O, Dýaz P, Agius MF, Valpuesta V and Monza J (2001) Water stress generates an oxidative stress through the induction of a specific Cu/Zn superoxide dismutase in Lotus corniculatus leaves. Plant Sci 161:757-763 Borsani O, Cuartero J, Valpuesta V and Botella MA (2002) Tomato tos1 mutation identifies a gene essential for osmotic tolerance and abscisic acid sensitivity. Plant J 32:905-914 Bright J, Desikan R, Hancock JT, Weir IS and Neill1 SJ (2006) ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis. Plant J 45:113-122 Chang CJ and Kao CH (1997) Paraquat toxicity is reduced by polyamines in rice leaves. Plant Growth Regul 22: 163-168 Chaoui A, Mazhoudi S, Ghorbal MH and Ferjani EE (1997) Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in bean (Phaseolus vulgaris). Plant Sci 127:139-147 Chen CT, Chen TH, Lo KF and Chiu CY (2004) Effects of proline on copper transport in rice seedlings under excess copper stress. Plant Sci 166:103-111 Chen CW, Yang YW, Lur HS, Tsai YG and Chang MC (2006) A novel function of abscisic acid in the regulation of rice (Oryza sativa L.) root growth and development. Plant Cell Physiol 47:1-13 Chen G and Asada K (1989) Ascorbate peroxidase in tea leaves: occurrence of two isozymes and the differences in their enzymatic and molecular properties. Plant Cell Physiol 30:987–998 Chen SL and Kao CH (1995a) Cd induced changes in proline level and peroxidase activity in roots of rice seedlings. Plant Growth Regul 17:67-71 Chen SL and Kao CH (1995b) Glutathione reduces the inhibition of rice seedling root caused by cadmium. Plant Growth Regul 16:249-252 Chen SL and Kao CH (1995c) Prior temperature exposure affects subsequent Cd-induced ethylene production in rice leaves. Plant Sci 104:135-138 Chien HF and Kao CH (2000) Accumulation of ammonium in rice leaves in response to excess cadmium. Plant Sci 156:111–115 Chien HF, Wang JW, Lin CC and Kao CH (2001) Cadmium toxicity of rice leaves is mediated through lipid peroxidation. Plant Growth Regul 33: 205–213 Cho UH and Seo NH (2005) Oxidative stress in Arabidopsis thaliana exposed to cadmium is due to hydrogen peroxide accumulation. Plant Sci 168 113-120 Claussen W (2005) Proline as a measure of stress in tomato plants. Plant Sci 168:241–248 Cohen CK, Fox TC, Garvin DF and Kochian LV (1998) The role of iron-deficiency stress responses in stimulating heavy-metal transport in plants. Plant Physiol 116: 1063–1072 Das P, Samantaray S and Rout GR (1997) Studies on cadmium toxicity in plants : a review. Environ Pollution 98:29-36 Díaz P, Borsani O, Márquez A and Monza J (2005) Osmotically induced proline accumulation in Lotus corniculatus leaves is affected by light and nitrogen source. Plant Growth Regul 46:223-232 Dionisio-Sese ML and Tobita S (1998) Antioxidant responses of rice seedlings to salinity stress. Plant Sci 135:1-9 Dražić G, Mihailović N and Lojić M (2006) Cadmium accumulation in Medicago sativa seedlings treated with salicylic acid. Biol Plant 50:239-244 Estevez MS, Malanga G and Puntarulo S (2001) Iron-dependent oxidative stress in Chlorella vulgaris. Plant Sci 161: 9-17 Gallego M, Bueno M, Angosto T, Gallardo E and Matilla AJ (1992) Free polyamines in Cicer arietinum seeds during the onset of germination. Phytochem 31:2283-2287 Gallego SM, Benavídes MP and Tomaro ML (1996) Effect of heavy ion excess on sunflower leaves : evidence for involvement of oxidative stress. Plant Sci 121:151-159 González-Guzmán M, Apostolova N, Bellés JM, Barrero JM, Piqueras P, Ponce MR, Micol JL, Serrano R, Rodrŷguez PL (2002) The short-chain alcohol dehydrogenase ABA2 catalyzed the conversion of xanthoxin to abscisic aldehyde. Plant Cell 14: 1833–1846 Groppa MD, Tomaro ML and Benavides MP (2001) Polyamines as protectors against cadmium or copper induced oxidative damage in sunflower leaf discs. Plant Sci 161:481–488 Hanfrey C, Sommer S, Mayer MJ, Burtin D and Michael AJ (2001) Arabidopsis polyamine biosynthesis : absence of ornithine decarboxylase and the mechanism of arginine decarboxylase activity. Plant J 27:551-560 Hart JJ, Welch RM, Norvell WA, Clarke JM and Kochian LV (2005) Zinc effects on cadmium accumulation and partitioning in near-isogenic lines of durum wheat that differ in grain cadmium concentration. New Phytol 167:397-401 Hart JJ, Welch RM, Norvell WA, Kochian LV (2002) Transport interactions between cadmium and zinc in roots of bread and durum wheat seedlings. Physiol Plant 116: 73–78 Hernández JA, Olmos E, Corpas FJ, Sevilla F and Del Río LA (1995) Salt induced oxidative stress in chloroplasts of pea plants. Plant Sci 105:151-167 Hien DT, Jacobs M, Angenon G, Hermans C, Thu TT, Son LV and Roosens NH (2003) Proline accumulation and D1-pyrroline-5-carboxylate synthetase gene properties in three rice cultivars differing in salinity and drought tolerance. Plant Sci 165:1059-1068 Hsiao TC (1973) Plant response to water stress. Annu Rev Plant Physiol 24:519-570 Hsu SY and Kao CH (2003a) Differential effect of sorbitol and polyethylene glycol on antioxidant enzymes in rice leaves. Plant Growth Regul 39:83-90 Hsu SY , Hsu YT and Kao CH (2003b) Ammonium ion, ethylene,and abscisic acid in polyethylene glycol-treated rice leaves. Biol Plant 46:239-242 Hsu SY , Hsu YT and Kao CH (2003c) The effect of polyethylene glycol on proline accumulateion in rice leaves. Biol Plant 46:73-78 Hsu YT and Kao CH (2003a) Accumulation of ammonium ion in cadmium tolerant and sensitive of Oryza sativa. Plant Growth Regul 39:271-276 Hsu YT and Kao CH (2003b)Changes in protein and amino acid contents in two cultivars of rice seedlings with different apparent tolerance to cadmium. Plant Growth Regul 40:147-155 Hsu YT and Kao CH (2003c)Role of abscisic acid in cadmium tolerance of rice (Oryza sativa L.)seedlings. Plant Cell Environ 26:867-874 Hsu YT and Kao CH (2004) Cadmium toxicity is redced by nitric oxide in rice leaves. Plant Growth Regul 42:227-238 Hsu YT and Kao CH (2007) Cadmium-induced oxidative damage in rice leaves is reduced by polyamines. Plant Soil 291:27-37 Hsu YT, Kuo MC and Kao CH (2006) Cadmium-induced ammonium ion of rice seedlings at high temperature is mediated through abscisic acid. Plant Soil 287:267-277 Hu X, Zhang A, Zhang J and Jiang M (2006) Abscisic acid is key inducer of hydrogen peroxide production in leaves of maize plants exposed to water stress. Plant Cell physiol 47:1484-1495 Hung KT and Kao CH (2005) Hydrogen peroxide is required for abscisic acid-induced NH4+ accumulation in rice leaves. J Plant Physiol 162:1022-1029 Iuchi S, Kobayashi M, Taji1 T, Naramoto M, Seki M, Kato T, Tabata S, Kakubari Y, Yamaguchi-Shinozaki K and Shinozaki K (2001) Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant J 27:325-333 Jain M, Mathur G, Koul S and Sarin NB (2001) Ameliorative effects of proline on salt stress induced lipid peroxidation in cell lines of groundnut (Arachis hypogaea L.). Plant Cell Rep 20:463-468 Jiang M and Zhang J (2002) Water stress-inudced abscisic acid accumulateion triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize leaves. J Exp Bot 53:2401-2310 Jiménez Bremont JF, Becerra Flora A, Hernández Lucero E, Rodríguez Kessler M, Acosta-Gallegos JA and Ramírez-Pimentel JG (2006) Proline accumulation in two bean cultivar under salt stress and effect of polyamines and ornithine. Physiol Plant 50:763-766 Katsuhara M, Otsuka T and Ezaki B (2005) Salt stress-induced lipid peroxidation is reduced by glutathione S-transferase, but this reduction of lipid peroxides is not enough for a recovery of root growth in Arabidopsis. Plant Sci 169:369–373 Kaur-Sawhney R, Tiburcio AF, Altabella T and Galston AW (2003) Polyamines in plants: an overview. J Cell Mol Biol 2: 1-12 Kong L, Attree SM, Fowke LC (1998) Effects of polyethylene glycol and methylglyoxal on endogenous polyamine levels and somatic embryo maturation in white spruce (Picea glauca). Plant Sci 133:211-220 Kuepa J, Smalle J , Van Montagu M and Inze D (1998) Polyamines and paraquat toxicity in Arabidopsis thaliana. Plant Cell Physiol 39: 987-992 Kumar SG, Reddy AM and Sudhakar C (2003) NaCl effects on proline metabolism in two high yielding genotypes of mulberry (Morus alba L.) with contrasting salt tolerance. Plant Sci 165:1245–1251 Lasa B, Frechilla S, Lamsfus C and Aparicio-Tejo PM (2001) The sensitivity to ammonium nutrition is related to nitrogen accumulation. Scientia Horti 91:143-152 Lascano HR, Antonicelli GE, Luna CM, Melchiorre MN, GómezA LD, Racca RW, Trippi VS and Casano LM (2001) Antioxidant system response of different wheat cultivars under drought : field and in vitro studies. Aust J Plant Physiol 28:1095–1102 Laspina NV, Groppa MD, Tomaro ML and Benavides MP (2005) Nitric oxide protects sunflower leaves against Cd-induced oxidative stress. Plant Sci 169:323–330 Lee TM, Lur HS and Chu C (1997) Role of abscisic acid in chilling tolerance of rice seedlings.Ⅱ.Modulation of free polyamine levels. Plant Sci 126:1-10 Li CZ, Jiao J and Wang GX (2004) The important roles of reactive oxygen species in the relationship between ethylene and polyamines in leaves of spring wheat seedlings under root osmotic stress. Plant Sci 166:303-315 Lin YC and Kao CH (2007) Proline accumulation induced by excess nickel in detached rice leaves. Biol Plant 51:351-354 Lombi E, Tearall KL, Howarth JR, Zhao FJ, Hawkesford MJ and McGrath SP (2002) Influence of iron status on cadmium and zinc uptake by different ecotypes of the hyperaccumulator Thlaspi caerulescens. Plant Physiol 128: 1359–1367 Luna CM, Pastori GM, Driscoll S, Groten K, Bernard S and Foyer CH (2004) Drought controls on H2O2 accumulation, catalase (CAT) activity and CAT gene expression in wheat. J Exp Bot 56-411 Martinez CA, Loureiro ME, Oliva MA and Maestri M (2001) Differential responses of superoxide dismutase in freezing resistant Solanum curtilobum and freezing sensitive Solanum tuberosum subjected to oxidative and water stress. Plant Sci 160:505-515 Metwally A, Safronova VI, Belimov AA and Dietz KJ (2005) Genotypic variation of response to cadmium toxicity in Pisum sativum. J Exp Bot 56:167-178 Mifin BJ and Lea PJ (1976) The pathway of nitrogen assimilation in plant. Phytochemistry 15:873-885 Minton KW, Tabort H, and Tabort CW (1990) Paraquat toxicity is increased in Escherichia coli. defective in the synthesis of polyamines. Proc Natl Acad Sci USA 87:2851-2855 Nambara E and Marion-Poll A (2005) Abscisic acid biosynthesis and catabolism. Annu Rev Plant Biol 56:165-185 Navrot N, Rouhier N, Gelhaye E and Jacquot JP (2007) Reactive oxygen species generation and antioxidant systems in plant mitochondria. Physiol Plant 129:185-195 Noctor G and Foyer CH (1998) Ascorbate and glutathione : keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249-279 Noctor G, Veljovic-Jovanovic S and Foyer CH (2002) Peroxide processing in photosynthesis: antioxidant coupling and redox signalling. Philosophical Trans Royal Soci London 355:1465–1475 O'Toole JC and Cruz RT (1980) Response of leaf water potential, stomatal resistance, and leaf rolling to water stress. Plant physiol 65:428-432 Pablo DD, Matilla AJ and Gallardo MM (2006) Flower fertilization and fruit development prompt changes in free polyamines and ethylene in damson plum (Prunus insititia L.). J Plant Physiol 163:86-97 Papadalis AK and Roubelakis-Angelakis KA(2005)Polyamines inhibit NADPH oxidase-mediated superoxide generation and putrescine prevents program cell death induced by polyamine oxidase-generated hydrogen peroxidase. Planta 220:826-837 Pei ZM, Murata Y, Benning G, Thomine S, Klu¨sener B, Allen GJ, Grill E and Schroeder JI (2000) Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature 406:731–734 Pére-Alfocea F and Larher F (1995) Sucrose and proline accumulation and sugar efflux in tomato leaf discs affected by NaCl and polyethylene glycol 6000 iso-osmotic stresses. Plant Sci 107:9-15 Preales L, Arbona V, Gómez-Cadenas A, Cornejo MJ and Sanz A (2005) A relationship between tolerance to dehydration of rice cell lines and ability for ABA synthesis under stress. Plant Physiol Biochem 43:786-792 Puga-Hermida MI,Gallardo M and Matilla AJ(2003) The zygotic embryogenesis and ripening of Brassica rapa seeds provokes important alteration in the levels of free and conjugated abscisic acid and polyamines. Physiol Plant 117:279-288 Rama Devi S and Prasad MNV (1998) Copper toxicity in Ceratophyllum demersum, a free floating macrophyte : response of antioxidant enzymes and antioxidants. Plant Sci 138:157165 Rodríguez-serrano M, Romero-puertas MC, Zabalza A, Corpas FJ, Gómez M, Del Río LA and Sandalio LM (2006) Cadmium effect on oxidative metabolism of pea (Pisum sativumL.) roots. Imaging of reactive oxygen species and nitric oxide accumulation in vivo. Plant Cell Environ 29:1532-1544 Romero-puertas MC, Palma JM, Gómez M, Del Río LA and Sandalio LM (2002) Cadmium causes the oxidative modification of proteins in pea plants. Plant Cell Environ 25:677–686 Romero-puertas MC, Rodríguez-serrano M, Corpas FJ, Gómez M, Del Río LA and Sandalio LM (2004) Cadmium-induced subcellular accumulation of O2•- and H2O2 in pea leaves. Plant Cell Environ 27:1122-1134 Schmidt M, Dehne S and Feierabend J (2002) Post-transcriptional mechanisms control catalase synthesis during its light-induced turnover in rye leaves through the availability of the hemin cofactor and reversible changes of the translation efficiency of mRNA. Plant J 31: 601–613. Sairam RK, Deshmukh PS and Saxena DC (1998) Role of antioxidant systems in wheat genotypes tolerance to water stress. Biol Plant 41:387-394 Sairam RK, Siiukla DS and Saxena DC (1998) Stress induced injury and antioxidant enzymes in relation to drought tolerance in wheat genotype. Biol Plant 40:357-364 Sampson JB and Beckman JS (2001) Hydrogen peroxide damages the zinc-binding site of zinc-deficient Cu/Zn superoxide dismutase. Arch Biochem Biophy 392:8-13 Sarowar S, Kim EN, Kim YJ, Ok SH, Kim KD, Hwang BK and Shin JS (2005) Overexpression of a pepper ascorbate peroxidase-like 1 gene in tobacco plants enhances tolerance to oxidative stress and pathogens. Plant Sci 169:55–63 Scebba F, Arduini I, Ercoli L and Sebastiani L (2006) Cadmium effects on growth and antioxidant enzymes activities in Miscanthus sinensis. Biol Plant 50:688-692 Selote DS and Khanna Chopra R (2006) Drought acclimation confers oxidative stress tolerance by inducing co-ordinated antioxidant defense at cellular and subcellular level in leaves of wheat seedlings. Physiol Plant 127:494-506 Seppänen M, Turakainen M and Hartikainen H (2003) Selenium effects on oxidative stress in potato. Plant Sci 165:311-319 Sharma P and Dubey RS (2005) Drought induces oxidative stress and enhances the activities of antioxidant enzymes in growing rice seedlings. Plant Growth Regul 46:209–221 Shim IS, Momose Y, Yamamoto A, Kim DW and Usui K (2003) Inhibition of catalase activity by oxidative stress and its relationship to salicylic acid accumulation in plants. Plant Growth Regul 39:285–292 Simon-Sarkadi L, Kocsy G, Várhegyi A, Galiba G and De Ronde JA (2006) Stress-induced changes in the free amino acid composition in transgenic soybean plants having increased proline content. Boil Plant 50:793-796 Skopelitis DS, Paranychianaki NV, Paschalidis KA, Pliakonis ED, Delis ID, Yakoumakis DI, Kouvarakis A, Papadakis AK, Stephanou EG and Roubelakis-Angelakisa KA (2006) Abiotic stress generates ROS that signal expression of anionic glutamate dehydrogenases to form glutamate for proline synthesis in tobacco and grapevine. Plant Cell 18:2767-2780 Skórzyńska-Polit E, Drąźkiewicz M and Krupa Z (2004) The activity of the antioxidative system in cadmium treated Arabidopsis thaliana. Biol Plant 47:71-78 Slocum RD, Kaur-Sawhney R and Galston AW(1984) The physiology and biochemistry of polyamine in plants. Arch Biochem Biophys 235:283-303 Solomom A, Beer S,Waisel Y,Jones GP and Paleg LG(1994) Effect of NaCl on the carboxylating activity of rubisco from Tamarix jordanis in the presence and absence of proline-related compatible solutes. Physiol Plant 90:198-204 Song CP, Agarwal M, Ohta M, Guo Y, Halfter U, Wang P and Zhu JK (2005) Role of an Arabidopsis AP2/EREBP-type transcriptional repressor in abscisic acid and drought stress responses. Plant Cell 17:2384-2396 Sweetlove LJ, Heazlewood JL, Herald V, Holtzapffel R, Day DA, Leaver CJ and Millar AH(2002) The impact of oxidative stress on Arabidopsis mitochondria. Plant J 32:891-904 Tamás L, Bocová B, Huttová J , Mistrk I and Ollé M (2006) Cadmium-induced inhibition of apoplastic ascorbate oxidase in barley roots. Plant Growth Regul 48:41–49 Tambussi EA, Bartoli CG, Guiamet JJ, Beltrano J and Araus JL (2004) Oxidative stress and photodamage at low temperatures in soybean (Glycine max L. Merr.) leaves. Plant Sci 167:19–26 Tausz M, Šircelj H and Grill D (2004) The glutathione system as a stress marker in plant ecophysiology : is a stress-response concept valid. J Exp Bot 55:1955-1962 Thys C, Vanthomme P, Schrevens E and De Proft M (1991) Interactions of Cd with Zn, Cu, Mn and Fe for lettuce (Lactuca sativa L.) in hydroponic culture. Plant Cell Environ 14:713-717 Trotel P, Bouchereau A, Niogret MF and Larher F (1996) The fate of osmo-accumulated proline in leaf of rape (Brassica napus) incubated in a medium of low osmolarity. Plant Sci 118:31-45 Tsang EWT, Bowler C, Hérouart D, Camp WV, Villarroel R, Genetello C, Montagu MV and Inzé D (1991) Differential regulation of superoxide dismutase in plant exposed to environmental stress. Plant Cell 3:783-792 Vassilev A, Lidon F, Scottip P, Da Graca M, and Yordanov I (2004) Cadmium-induced changes in chloroplast lipids and photosystem activities in barley plants. Biol Plant 48:153-156 Velikova V, Yordanov I and Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants protective role of exogenous polyamines. Plant Sci 151:59-66 Vranová E, Inzé D, Van Breusegem F (2002) Signal transduction during oxidative stress. J Exp Bot 53:1227-1236 Verma S and Mishra SN (2005) Putrescine alleviation of growth in salt stressed Brassica juncea by inducing antioxidative defense system. J Plant Physiol 162:669-677 Wang LJ and Li SH (2006) Thermotolerance and related antioxidant enzyme activities induced by heat acclimation and salicylic acid in grape (Vitis vinifera L.) leaves. Plant Growth Regul 48:137–144 Welch RM, Hart JJ, Norvell WA, Sullivan LA, Kochian LV (1999) Effects of nutrient solution zinc activity on net uptake, translocation, and root export of cadmium and zinc by separated sections of intact durum wheat (Triticum turgidum L. var durum) seedling roots. Plant Soil 208: 243–250 Wise RR and Ort RR(1989)Photophosphorylation after chilling in the light. Plant Physiol 90:657-664 Wójcik M, Skórzyńska-Polit E and Tukiendorf A (2006) Organic acids accumulation and antioxidant enzyme activities in Thlaspi caerulescens under Zn and Cd stress. Plant Growth Regul 48:145–155 Xiong YC, Xing GM, Li FM, Wang SM, Fan XW, Li ZX and Wang YF (2006) Abscisic acid promotes accumulation of toxin ODAP in relation to free spermine level in grass pea seedlings (Lathyrus sativus). Plant Physiol Biochem 44:161–169 Yang CW,Wang JW and Kao CH (2000) The relation between accumulation of abscisic acid and proline in detached rice leaves. Biol Plant 43:301-304 Yang J, Zhang J, Liu K, Wang Z and Liu L (2007) Involvement of polyamine in the drought resistance of rice. J Exp Bot 58:1545-1555 Yoshida K, Igarashi E, Wakatsuki E, Miyamoto K and Hirata K (2004) Mitigation of osmotic and salt stresses by abscisic acid through reduction of stress-derived oxidative damage in Chlamydomonas reinhardtii. Plant Sci 167:1335-1341 Yoshiba Y, Kiyosue T, Nakashima K, Yamaguchi-Shinozaki3 K and Shinozakj K (1997) Regulation of levels of proline as an osmolyte in plants under water stress. Plant Cell Physiol 38: 1095-1102 Yoshihara T, Hodoshima H, Miyano Y, Shoji K, Shimada H and Goto F (2006) Cadmium inducible Fe deficiency responses observed from macro and molecular views in tobacco plants. Plant Cell Rep 25:365-373 Yu CC, Hung KT and Kao CH (2005) Nitric oxide reducees Cu toxicity Cu-induced NH4+ accumulateion in rice leaves. J Plant Physiol 162:1319-1320 Zeid IM and Shedeed ZA (2006) Response of alfalfa to putrescine treatment under drought stress. Biol Plant 50:635-640 Zhao FG and Qin P (2004) Protective effect of exogenous polyamines on root tonoplast function against salt stress in barley seedlings. Plant Growth Regul 42:97-103 Zhao FJ, Jiang RF, Dunham SJ and McGrath SP (2006) Cadmium uptake, translocation and tolerance in the hyperaccumulator Arabidopsis halleri. New phytol 172:464-654 Zhao Z, Chen G and Zhang C (2001) Interaction between reactive oxygen species and nitric oxide in drought induced abscisic acid synthesis in root tips of wheat seedlings. Aust J Plant Physiol 28:1055-1061 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29360 | - |
| dc.description.abstract | 本論文分兩部分,第一部分是以台中在來一號(Oryza sativa L., cv. Taichung Native 1, TN1)水稻切離葉片為材料, 探討polyethylene glycol 6000 (PEG)處理對切離葉片生理反應之影響,同時亦探討多元胺與PEG逆境間之關係。第二部分則TN1以及台農六十七號(Oryza sativa L., cv. Tainung 67, TNG67)水稻幼苗為材料。探討水稻幼苗葉片黃化是否與鋅和鐵含量降低有關。
PEG處理水稻切離葉片造成相對水分含量之降低,過氧化氫與MDA含量增加,葉綠素以及蛋白質降解, 抗氧化酵素(SOD、GR、APX以及CAT)比活性增加,脫落酸、脯胺酸以及銨離子含量之增加,同時也影響與銨離子之累積相關酵素(GS、PAL與protease)活性或比活性。 Putrescine 與spermidine不會影響PEG所造成之MDA含量增加,而spermine (SPM)則會降低PEG所導致的MDA含量增加。SPM可抑制PEG所造成的過氧化氫含量增加,葉綠素與蛋白質降解,抗氧化酵素酵素比活性增加,脫落酸與銨離子增加,GS活性降低,以及PAL與protease比活性增加。然而SPM不影響PEG所造成脯胺酸之累積。 氯化鎘(50 μM)處理TN1水稻幼苗表現葉片黃化現象,葉片鎘含量增加,鋅與鐵含量降低,但以相同氯化鎘濃度處理TNG67水稻幼苗,則不會表現葉片黃化現象,葉片鎘、鋅與鐵含量也不改變。這些結果說明TN1水稻幼苗葉片黃化可能與葉片內鋅與鐵含量降低有關。 關鍵詞 : 鎘、鐵、氧化逆境、複乙二醇、多元胺、缺水逆境與鋅。 | zh_TW |
| dc.description.abstract | 本論文分兩部分,第一部分是以台中在來一號(少陽 7sa 打 va L . , cv . Ta 1 chung Nat ivel , TNI )水稻切離葉片為材料,探討 polyethylene glycol 6000 ( PEG )處理對切離葉片生理反應之影響,同時亦探討多元膠與 PEG 逆境問之關係。第二部分則 TNI 以及台農六十七號(少陽 7sa 打 vaL . , cv . Tainung67 , TNG67 ) 水稻幼苗為材料。探討水稻幼苗葉片黃化是否與鋅和鐵含量降低有關。 PEG 處理水稻切離葉片造成相對水分含量之降低,過氣化氫與 MDA 含量增加,葉綠素以及蛋白質降解,抗氣化酵素( SOD 、 GR 、 APX 以及 CAT )比活性增加,脫落酸、脯膠酸以及銨離子含量之增加,同時也影響與銨離子之累積相關酵素( GS 、 PAL 與 protease )活性或比活性。 Putrescine 與 spermidine 不會影響 PEG 所造成之 MDA 含量增加,而 spermine ( SPM )則會降低 PEG 所導致的 MDA 含量增加。 SPM 可抑制 PEG 所造成的過氣化氫含量增加,葉綠素與蛋白質降解,抗氣化酵素酵素比活性增加,脫落酸與銨離子增加, GS 活性降低,以及 PAL 與 protease 比活性增加。然而 SPM 不影響 PEG 所造成脯膠酸之累積。氣化鎘( 50 酈)處理 TNI 水稻幼苗表現葉片黃化現象,葉片鎘含量增加,鋅與鐵含量降低,但以相同氣化鎘濃度處理 TNG67 水稻幼苗,則不會表現葉片黃化現象,葉片鎘、鋅與鐵含量也不改變。這些結果說明 TNI 水稻幼苗葉片黃化可能與葉片內鋅與鐵含量降低有關。 | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T01:05:17Z (GMT). No. of bitstreams: 1 ntu-96-R93621109-1.pdf: 98948995 bytes, checksum: 184ae80b5343209b3814ff057f6e2225 (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | 口試委員會審定書………………………………………………… i
致謝………………………………………………………………… ii 中文摘要……………………………………………………… iii 英文摘要………………………………………………………… iv 前 言…………………………………………………………… 1 前人研究……………………………………………………………… 2 材料方法…………………………………………………………… 12 結 果……………………………………………………………… 27 討 論……………………………………………………………… 46 參考文獻……………………………………………………………… 51 | |
| dc.language.iso | zh-TW | |
| dc.subject | 複乙二醇 | zh_TW |
| dc.subject | 缺水逆境與鋅 | zh_TW |
| dc.subject | 多元膠 | zh_TW |
| dc.subject | 鎘 | zh_TW |
| dc.subject | 鐵 | zh_TW |
| dc.subject | 氣化逆境 | zh_TW |
| dc.subject | cadmium | en |
| dc.subject | zinc | en |
| dc.subject | oxidative stress | en |
| dc.subject | polyamine | en |
| dc.subject | polyethylene glycol | en |
| dc.subject | water stress | en |
| dc.subject | iron | en |
| dc.title | 水稻逆境生理之研究 | zh_TW |
| dc.title | Studies on the Physiology of Stresses in Rice Seedlings | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 宋濟民(Jih-Min Sung),黃定鼎(Dinq-Ding Huang),陳宗禮(Chung Li Cheng),洪傳揚(Chwan Yang Hong) | |
| dc.subject.keyword | 鎘,鐵,氣化逆境,複乙二醇,多元膠,缺水逆境與鋅, | zh_TW |
| dc.subject.keyword | cadmium,iron,oxidative stress,polyamine,polyethylene glycol,water stress,zinc, | en |
| dc.relation.page | 68 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-07-24 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 農藝學研究所 | zh_TW |
| 顯示於系所單位: | 農藝學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 96.63 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
