請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29340
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 王暉 | |
dc.contributor.author | Shih-Fong Chao | en |
dc.contributor.author | 趙世峰 | zh_TW |
dc.date.accessioned | 2021-06-13T01:04:53Z | - |
dc.date.available | 2008-07-27 | |
dc.date.copyright | 2007-07-27 | |
dc.date.issued | 2007 | |
dc.date.submitted | 2007-07-24 | |
dc.identifier.citation | [1] I. Telatar, Capacity of multiple antenna Gaussian channels,' AT and T Tech. Memo,
NJ, June 1995. [2] G. Foschini and M. Gans, On limits of wireless communications in fading environ- ment when using multiple antennas,' Wireless Pers. Commun., vol. 6, pp. 311-335, Mar. 1998. [3] L. M. Franca-Neto, R. E. Bishop, and B. A. Bloechel, 64 GHz and 100 GHz VCOs in 90 nm CMOS using optimum pumping method,' in IEEE Int. Solid-State Circuit Conf. (ISSCC) Dig. Tech. Papers, Feb. 2004, pp. 444-445. [4] M. D. Tsai, H.Wang, J. F. Kuan, and C. S. Chang, A 70 GHz cascaded multi-stage distributed amplifier in 90nm CMOS technology,' in IEEE Int. Solid-State Circuit Conf. ISSCC Dig. Tech. Papers, Feb. 2005, pp. 402-404. [5] M. J. Schindler, and A. Morris, DC-40 GHz and 20-40 GHz MMIC SPDT switches,' IEEE Trans. on Microwave Theory and Tech., vol. 35, no. 12, pp. 1486- 1493, December 1987. [6] G. L. Lan, D. L. Dunn, J. C. Chen, C. K. Pao and D. C.Wang, A high performance V-band monolithic FET transmit-receive switch,' IEEE Microwave and Millimeter- wave Monolithic Circuits Symposium Digest, pp. 99-101, June 1988. [7] D. C. W. Lo, H. Wang, B. R. Allen, G. S. Dow, K. W. Chang, M. Biedenbender, and R. Lai, A novel monolithic multi-functional balanced switching low noise am- plifiers,' IEEE Trans. on Microwave Theory and Tech., vol. 42, no. 12, part 2, pp. 2629-2634, December 1994. [8] D. L. Ingram, K. Cha, K. Hubbard, and R. Lai, Q-band high isolation GaAs HEMT switches,' IEEE GaAs IC Symposium Digest, Orlando, FL, pp. 282-289, November. 1996. [9] H. Mizutani, M. Funabashi and et al., Compact DC-60-GHz HJFET MMIC switches using ohmic electrode-sharing technology,' IEEE Trans. on Microwave Theory and Tech, vol. 46, no. 11, pp.1597-1603, November 1998. [10] K. Y. Lin, Y. J. Wang, D. C. Niu, and H. Wang, 'Millimeter-wave MMIC single- pole-double throw passive HEMT switches using impedance-transformation net- works,' IEEE Trans. on Microwave Theory and Tech., vol. 51, no. 4, pp. 1076-1085, April 2003. [11] T. Shimura, Y. Mimino, K. Nakamura, Y. Aoki, and S. Kuroda, High isolation V-band SPDT switch MMIC for high power use,' in IEEE MTT-S International Microwave Symposium Dig., June 2001. [12] K. Y. Lin, W. H. Tu, P. Y. Chen, H. Chen, H. Wang and R. B. Wu, Millimeter- wave MMIC passive HEMT switches using traveling-wave concept,' IEEE Trans. on Microwave Theory and Tech., vol. 52, no. 8, pp.1798-1808, August 2004. [13] J. Kim, W. Ko, S. H. Kim, J. Jeong and Y. Kwon, A high-performance 40-85 GHz MMIC SPDT switch using FET-integrated transmission line structure,' IEEE Microw. Wireless Compon. Lett., vol. 13, no. 12, pp.505-507, December 2003. [14] Z. M. Tsai, M. C. Yeh, M. F. Lei, H. Y. Chang, C. S. Lin, and H. Wang, FET- integrated CPW and the application in filter synthesis design method on traveling- wave switch above 100 GHz,' IEEE Trans. on Microwave Theory and Tech., vol. 54, no. 5, pp.2090-2097, May 2006. [15] 'Advanced Monolithic Microwave Millimeter-Wave Integrated Circuits,' Program for Promoting Academic Excellence of Universities, NSC93-2752-E-002- 002-PAE, NSC94-2752-E-002-003-PAE. [16] G.-L. Tan, R. E. Mihailovich, J. B. Hacker, J. F. DeNatale, and G. M. Rebeiz, Low-loss 2- and 4-bit TTD MEMS phase shifters based on SP4T switches,' IEEE Trans. Microwave Theory Tech.,vol. 51, no. 1, pp. 297-304, Jan. 2003. [17] J. Lee, C. H. Je, S. Kang, and C.-A. Choi, A low-loss single-pole six-throw switch based on compact RF MEMS switches,' IEEE Trans. Microwave Theory Tech.,vol. 53, no. 11, pp. 3335-3344, Nov. 2005. [18] J. Smuk, and M. Shifrin, Monolithic GaAs multi-throw switches with integrated low-power decoder driver logic,' in IEEE Radio Frequency Integrated Circuits, June 1997. [19] H. Kamitsuna, Y. Yamane, M. Tokumitsu, H. Sugahara, and M. Muraguchi, A miniaturized wideband 4x4 switch matrix IC using four InP-HEMT SP4T switches,' in IEEE MTT-S International Microwave Symposium Dig., June 2005. [20] D. L. Ingram, K. Cha, K. Hubbard, and R. Lai, Q-band high isolation GaAs HEMT switches,' IEEE GaAs IC Symposium Digest, Orlando, FL, pp. 282-289, Nov. 1996. [21] F. J. Huang and K. O, A 0.5um CMOS TR switch for 900-MHz wireless appli- cations,' IEEE J. Solid-State Circuits, vol. 35, pp. 486-492, March 2001. [22] C. Tinella, J. M. Fournier,D. Belot, and V. Knopik, A high-performance CMOS- SOI antenna switch for the 2.5-5-GHz band,' IEEE J. Solid- State Circuits, vol. 38, pp. 1279-1283, July 2003. [23] Z. Li, and K. K. O, 15-GHz Fully integrated nMOS switches in a 0.13um CMOS process,' IEEE J. Solid-State Circuits, vol. 40, no. 11, pp. 2323-2328, November 2005. [24] M. C. Yeh, Z. M. Tsai, H. Wang, C. Y. Su, and C. P. Chao, Design and analysis for a miniature CMOS SPDT switch using body-floating technique to improve power performance,' IEEE Trans. on Microwave Theory and Tech., vol. 54, no. 1, pp.31- 39, January 2006. [25] M. C. Yeh, Z. M. Tsai, H. Wang, A miniature DC-to-50 GHz CMOS SPDT dis- tributed switch,' in European Microwave Conf., Oct. 2005. [26] M. C. Yeh, Z. M. Tsai, R. C. Liu, K. Y. Lin, Y. T. Chang, H. Wang, A millimeter- wave wideband SPDT switch with traveling-wave concept using 0.13um CMOS Process,' in IEEE MTT-S International Microwave Symposium Dig., June 2005. [27] K. Jung, and K. K. O, A CMOS single-pole-four-throw switch,' IEEE Microwave Wireless Compon. Lett., vol. 16, no. 3, pp. 128-130, March 2006. [28] T. S. Martin, F. Wang, and K. Chang, Theoretical and experimental investigation of novel varactor-tuned switchable microstrip ring resonator circuits,' IEEE Trans. Microwave Theory Tech., vol. 36, no. 12, pp. 1733-1739, Dec. 1988. [29] Y. H. Shu, J.A. Navarro, and K. Chang, Electronically switchable and tun- able coplanar waveguide-slotline band-pass filters,' IEEE Trans. Microwave Theory Tech., vol. 39, no. 3, pp. 548-554, March 1991. [30] J. Lee, Z. M. Tsai, and H. Wang, A band-pass filter-integrated switch using field- effect transistors and its power analysis,' in 2006 IEEE MTT-S Int. Microw. Symp. Dig., June 2006, pp.768-771. [31] S. F. Chang, W.-L. Chen, J.-L. Chen, H.-W. Kung, and H.-Z. Hsu, New millimeter- wave MMIC switch design using the image-filter synthesis method,' IEEE Mi- crowave Wireless Compon. Lett., vol. 14, no. 3, pp. 103-105, March 2004. [32] Z.-M. Tsai, Y.-S. Jiang, Jeffrey Lee, K.-Y. Lin, and H. Wang, Band-pass single- pole-double-throw FET quarter-wavelength band-pass filter-integrated-switch,' to appear IEEE Trans. Microwave Theory Tech. [33] H. Takasu, F. Sasaki, H. Kawasaki, H. Tokuda, and S. Kamihashi, W-band SPST transistor switches,' IEEE Microwave Guided Wave Lett., vol. 6, pp. 315-316, Sept. 1996. [34] M. Madihian, L. Desclos, K. Maruhashi, K. Onda, and M. Kuzuhara, A sub- nanosecond resonant-type monolithic TR switch for millimeter-wave systems ap- plications,' IEEE Trans. Microwave Theory Tech., vol. 46, pp. 1016-1019, July 1998. [35] C. H. Doan, S. Emari, A. M. Neknejad, and R. WB. Brodersen, Millimeter-wave CMOS design,' IEEE J. Solid-State Circuits, vol. 40, no. 1, pp. 144-155, January 2005. [36] F. J. Huang and K. O, A 0.5-1 m CMOS TR switch for 900-MHz wireless appli- cations,' IEEE J. Solid-State Circuits, vol. 36, no. 3, pp. 486-492, March 2001. [37] C. Tinella, J. M. Fournier,D. Belot, and V. Knopik, A high-performance CMOS- SOI antenna switch for the 2.5 and 5-GHz band,' IEEE J. Solid-State Circuits, vol. 38, no. 7, pp. 1279-1283, July 2003. [38] Z. Li, and K. K. O, 15-GHz Fully Integrated nMOS Switches in a 0.13um CMOS Process,' IEEE J. Solid-State Circuits, vol. 40, no. 11, pp. 2323-2328, November 2005. [39] J. Kim, W. Ko, S. H. Kim, J. Jeong and Y. Kwon, A high-performance 40-85 GHz MMIC SPDT switch using FET-integrated transmission line structure,' IEEE Microwave Wireless Compon. Lett., vol. 13, no. 12, pp.505-507, December 2003. [40] K. Y. Lin , W. H. Tu , P. Y. Chen, H. Chen, H. Wang and R. B. Wu, Millimeter- wave MMIC passive HEMT switches using traveling-wave concept,' IEEE Trans. on Microwave Theory and Tech., vol. 52, no. 8, pp.1798-1808, August 2004. [41] M. C. Yeh, Z. M. Tsai, H. Wang, C. Y. Su, and C. P. Chao, A millimeter-wave wideband SPDT switch with traveling-wave concept using 0.13um CMOS Process,' in IEEE MTT-S International Microwave Symposium Dig., June 2005. [42] S.-F. Chao, H. Wang, C.-Y. Su, and J. G. J. Chern, 'A 50-94 GHz CMOS SPDT switch using traveling-wave concept,' IEEE Microwave Wireless Compon. Lett., vol. 17, no. 2, pp.130-132, Febuary 2007. [43] M. J. Roberts, S. Iezekiel, and C. M. Snowden, A W-band self-oscillating sub- harmonic MMIC mixer,' IEEE Trans. Microw. Theory Tech., vol. 46, no. 12, pp. 2104V2018, Dec. 1998. [44] J. R. Long, A low-voltage 5.1-5.8-GHz image-reject downconverter RF IC,'IIEEE J. Solid-State Circuits, vol. 35, no. 9, pp. 1320-1328, Sep. 2003. [45] I-J. Chen, H. Wang, and P. Hsu, A V -Band quasi-optical GaAs HEMT monolithic integrated antenna and receiver front end,'IEEE Trans. Microw. Theory Tech., vol. 51, no. 12, pp. 2461-2468, Dec. 2003. [46] T. P. Wang, C.-C. Chang, R.-C. Liu; M.-D. Tsai, K.-J. Sun, Y.-T. Chang, L.-H. Lu, and HueiWang, A low-power oscillator mixer in 0.18um CMOS technology,'IEEE Trans. Microw. Theory Tech., vol. 54, no. 1, pp. 88-95, Jan. 2006. [47] G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave filters, impedance- matching networks, and coupling structures, Artech House, Dedham, Mass., 1980. [48] David M. Pozar, Microwave engineering, New York: Wiley, 1998, 2nd ed.. [49] J. S. Hong and M. J. Lancaster, Microstrip Filter for RF Microwave Applications. New York: Wiley, 2001, ch. 8. [50] A. E. Atia, and A. E. Williams, Narrow-bandpass waveguide filters,' IEEE Trans. Microwave Theory Tech.,vol. 20, no. 4, pp. 258-265, April 1972. [51] L. Accatino, G. Bertin, and M. Mongiardo, A four-pole dual mode elliptic filter re- alized in circular cavity without screws,' IEEE Trans. Microwave Theory Tech.,vol. 44, no. 12, pp. 2680-2687, Dec. 1996. [52] C. Wang, H.-W. Yao, K. A. Zaki, and R. R. Mansour Mixer modes cylindrical pla- nar dielectric resonator filters with rectangular enclosure,' IEEE Trans. Microwave Theory Tech.,vol. 43, no. 12, pp. 2817-2823, Dec. 1995. [53] H.-W. Yao, C.Wang, and K. A. Zaki Quarter wavelength ceramic combline filters,' IEEE Trans. Microwave Theory Tech.,vol. 44, no. 12, pp. 2673-2679, Dec. 1996. [54] J.-S Hong, and M. J. Lancaster, Couplings of microstrip square open-loop res- onators for cross-coupled planar microwave filters,' IEEE Trans. Microwave Theory Tech.,vol. 45, no. 12, pp. 2099-2109, Dec. 1996. [55] J.-S Hong, and M. J. Lancaster, Theory and experiment of novel microstrip slow- wave open-loop resonator filters,' IEEE Trans. Microwave Theory Tech.,vol. 45, no. 12, pp. 2358-2665, Dec. 1997. [56] J.-S Hong, and M. J. Lancaster, Cross-coupled microstrip hairpin-resonator filters,' IEEE Trans. Microwave Theory Tech.,vol. 46, no. 1, pp. 118-122, Jan. 1998. [57] J.-S Hong, M. J. Lancaster, D. Jedamzki, and R B. Greed, On the development of superconducting microstrip filters for mobile communication applications,' IEEE Trans. Microwave Theory Tech.,vol. 47, no. 9, pp. 1656-1663, Sep. 1999. [58] P. Blondy, A. R. Brown, D. Cros, and G. M. Rebeiz, Low loss micromachined filters for millimeter-wave telecommunication systems,' in IEEE MTT-S International Microwave Symposium Dig., pp. 1181-1184, June 1998. [59] G. L. Mattaei, L. Young, and E. M. T. Jones, Microwave filters, impedance-matching newworks, and Coupling Structures, Artech House, Dedham, Mass., 1998. [60] M. Makimoto, and S. Yamashita, Bandpass filters suihng parallel coupled stripline stepped impedance resonators,' IEEE Trans. Microwave Theory Tech.,vol. 28, no. 12, pp. 1413-1417, Dec. 1980. [61] M. Sagawa, M. Makimoto, and S. Yamashita, Geometrical structures and fun- dametal characteristics of microwave stepped-impedance resonators,' IEEE Trans. Microwave Theory Tech.,vol. 45, no. 7, pp. 1078-1085, July 1997. [62] S. B. Cohn, Parallel coupled transmission-line resonator filters,' IRE Trans. Mi- crowave Theory Tech., vol. MTT-6, no. 2, pp. 223-231, April 1958. [63] E. G. Cristal and S. Frankel, Hairpin-line and hybrid hairpin-line half-wave parallel-coipled-line filters,' IEEE Trans. Microwave Theory Tech., vol. MTT-20, no. 11, pp. 719-728, November 1972. [64] J. G. Garca, F. Martn, F. Falcone, J. Bonache, I. Gil, T. Lopetegi, M. A. G. Laso, M. Sorolla, and R. Marqus, Spurious passband suppression in microstrip coupled line band pass filters by means of split ring resonators,' IEEE Microwave Wireless Compon. Lett., vol. 14, no. 9, pp. 416-418, September 2004. [65] T. Lopetegi, M. A. G. Laso, F. Falcone, F. Martin, J. Bonache, J. Garcia, L. Perez- Cuevas, M. Sorolla, and M. Guglielmi, Microstrip wigglyline bandpass filters with multispurious rejection,' IEEE Microwave Wireless Compon. Lett., vol. 14, no. 11, pp. 531-533, November 2004. [66] K. F. Chang, and K. W. Tam, Miniaturized cross-coupled filter with second and third spurious responses suppression,' IEEE Microwave Wireless Compon. Lett., vol. 15, no. 2, pp. 122-124, Febuary 2005. [67] P. Cheong, S. W. Fok, and K. W. Tam, Miniaturized parallel coupled-line bandpass filter with spurious-response suppression,' IEEE Trans. Microwave Theory Tech., vol. 53, no. 5, pp. 1810-1816, May 2005. [68] C. F. Chen, T. Y. Huang, and R. B. Wu, Design of microstrip bandpass filters with multiorder spurious-mode suppression,' IEEE Trans. Microwave Theory Tech., vol. 53, no. 12, pp. 3788-3793, December 2005. [69] S. C. Lin, P. H. Deng, Y.S. Lin, C.H. Wang, and C. H. Chen, Wide-stopband microstrip bandpass filters using dissimilar quarter-wavelength stepped-impedance resonators,' IEEE Trans. Microwave Theory Tech., vol. 54, no. 3, pp. 1011-1018, March 2006. [70] Datasheet for BAR65 Series,' Infineon, Maunchen, German Online. Avail- able:www.infineon.com [71] Sonnet User's Manual, Release 10.0.Sonnet Software Inc., North Syracuse, NY, 2004. [72] B. Strassner and K. Chang, Wide-band low-loss high-isolation microstrip periodic- stub diplexer for multiple-frequency applications,' IEEE Trans. Microwave Theory Tech., vol. 49, no. 10, pp. 1818-1820, October 2001. [73] S. Srisathit, S. Patisang, R. Phromloungsri, S. Bunnjaweht, S. Kosulvit, and M. Chongcheawchamnan, High isolation and compact size microstrip hairpin diplexer,' IEEE Microwave Wireless Comp. Lett., vol. 15, no. 2, pp. 101-103, Febuary 2005. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29340 | - |
dc.description.abstract | This dissertation includes the design of millimeter-wave switches and band-pass filter integrated switches for RF front end applications.
The first part of the dissertation focuses on the design of millimeter-wave switches. Since the millimeter-wave witches are designed for applications above 50 GHz, the traveling-wave concept is utilized to minimize the insertion loss and achieve wideband performances. A single-pole-quadruple-throw (SPQT) using GaAs HEMT process is developed at W-band for automotive radar applications. Moreover, a multiple-port millimeter-wave switch using GaAs HEMT process is developed for the beam-former array at the RF front end of a 60-GHz communication system. A 50-95 GHz single-pole-double-throw (SPDT) using 90 nm bulk CMOS process is developed with competitive performances to those in GaAs HEMT process. The second part of the dissertation presents a new method to design band-pass filter-integrated switches. The bandpass filter-integrated switch integrates the functions a switch and a bandpass filter into a single circuit component, which can provide bandpass response with harmonic suppression in on-state and wideband isolation in off-state. The filter-integrated switches in this ertation are designed based on loaded stepped-impedance resonators to achieve narrow band pass frequency responses. The loaded stepped-impedance resonators behave as switchable sonators, which can change their resonant conditions under different bias voltage. Both the theories and design procedures of the filter-integrated switches are provided. Several design examples of the filter-integrated switches (SPST, SPDT, DPQT) are given to demonstrate their lications in communication systems. There are two 1.5 GHz hybrid SPST filter-integrated switches, which have 5% 3dB bandwidth with spurious suppression of 30 dB up to 7f0 and 10f0 in on-state, respectively. In off-state, their isolations are both greater than 30 dB from dc to 8f0. Another example is a 1.5 GHz hybrid SPDT filter-integrated switch. By roducing the shared resonator technique, the SPDT circuit can share the common resonators of the constituted SPST filter-integrated switches and save the area for a matching T-junction. Thus, a significant circuit size reduction can be achieved. Finally, a compact 40 GHz MMIC SPDT and amultiple-port filter-integrated switches aredeveloped for high level of SOC (system-on-chip) integrations. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T01:04:53Z (GMT). No. of bitstreams: 1 ntu-96-F91942042-1.pdf: 7283860 bytes, checksum: 504e322a92d29193b0dce9684072fc43 (MD5) Previous issue date: 2007 | en |
dc.description.tableofcontents | Acknowledgements i
List of Tables ix List of Figures x Chapter 1. Introduction 1 1.1 Research Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Literature Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.1 Millimeter-Wave Switches . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.2 Filter-Integrated Switches . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3.1 Multiple-port Switch Using Traveling-wave Concept . . . . . . . . 7 1.3.2 Bandpass Filter-Integrated Switch Using Loaded SIRs . . . . . . . 7 1.4 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Chapter 2. Millimeter-wave Switches 9 2.1 Introduction of Passive FET Switches . . . . . . . . . . . . . . . . . . . . 9 2.1.1 Series-Shunt Switch . . . . . . . . . . . . . . . . . . . . . 9 2.1.2 Resonant-Type Switch . . . . . . . . . . . . . . . . . . . 10 2.1.3 Distributed-Type Switch . . . . . . . . . . . . . . . . . . . 11 2.1.4 Transmission Line-Integrated Switch . . . . . . . . . . . . 12 2.2 Multiple-Port Millimeter-wave Switch Using Traveling-Wave Concept . . 14 2.3 W-band SPQT Switch in pHEMT Technology . . . . . . . . . . . . . . . 18 2.4 60 GHz Six-Port Switch in pHEMT Technology . . . . . . . . . . . . . . 26 2.5 50-94 GHz SPDT Switch in CMOS Technology . . . . . . . . . . . . . . . 32 Chapter 3. Basic Concept and Theory of Filter-Integrated Switches 42 3.1 Introduction of Filter Integrated Switch . . . . . . . . . . . . . . . . . . . 42 3.2 Basic Theory of Bandpass Filters [48] . . . . . . . . . . . . . . . . . . . . 44 3.3 Coupled-Resonator Bandpass Filter [49] . . . . . . . . . . . . . . . . . . . 54 3.3.1 Formulation and Extraction of Coupling Coe±cient . . . . . . . . 57 3.3.2 Formulation and Extraction of External Quality Factor . . . . . . 64 Chapter 4. Analysis of Loaded Stepped-Impedance-Resonators 67 4.1 Half-wavelength Loaded SIRs . . . . . . . . . . . . . . . . . . . . . . . . 67 4.1.1 Open-circuit Load . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.1.2 Short-circuit Load . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 4.1.3 Capacitive Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4.1.4 Inductive Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 4.2 Quarter-wavelength Loaded SIRs . . . . . . . . . . . . . . . . . . . . . . 75 4.2.1 Open-circuit Load . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 4.2.2 Short-circuit Load . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 4.2.3 Capacitive Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 4.2.4 Inductive Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Chapter 5. Design of Millimeter-wave Filter Integrated Switches 83 5.1 1.5 GHz Hybrid Filter Integrated Switch . . . . . . . . . . . . . . . . . . 83 5.1.1 Fourth-order SPST Switchable Filter with Two Diode-loaded Stepped- impedance Resonators . . . . . . . . . . . . . . . . . . . . . . . . . 87 5.1.2 Fourth-order SPST Switchable Filter with Three Diode-loaded Stepped- impedance Resonators . . . . . . . . . . . . . . . . . . . . . . . . . 92 5.1.3 1.5 GHz Hybrid Single-Pole-Double-Throw Filter Integrated Switch 97 5.2 40-GHz MMIC Filter Integrated Switches . . . . . . . . . . . . . . . . . . 107 5.2.1 40 GHz MMIC Single-Pole-Double-Throw Filter-Integrated Switch 111 5.2.2 40-GHz MMIC Multiple-Port Filter-Integrated Switch . . . . . . . 119 Chapter 6. Conclusion 131 Bibliography 134 | |
dc.language.iso | en | |
dc.title | 毫米波切換器與帶通濾波整合切換器之設計 | zh_TW |
dc.title | Design of Millimeter-wave Switches and Bandpass Filter-Integrated Switches | en |
dc.type | Thesis | |
dc.date.schoolyear | 95-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 陳俊雄,瞿大雄,黃天偉,張志揚,林坤佑,張鴻埜,陳咨吰 | |
dc.subject.keyword | 毫米波,切換器, | zh_TW |
dc.subject.keyword | milllimeter-wave,switch, | en |
dc.relation.page | 141 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2007-07-24 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
顯示於系所單位: | 電信工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-96-1.pdf 目前未授權公開取用 | 7.11 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。