請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29332完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 魏國彥(Kuo-Yen Wei) | |
| dc.contributor.author | Li Lo | en |
| dc.contributor.author | 羅立 | zh_TW |
| dc.date.accessioned | 2021-06-13T01:04:44Z | - |
| dc.date.available | 2007-07-27 | |
| dc.date.copyright | 2007-07-27 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-07-22 | |
| dc.identifier.citation | Anand, P., Elderfield, H., and Conte, M. H., 2003. Calibration of Mg/Ca thermometry in planktonic foraminifera from a sediment trap time series. Paleoceanography, 18, doi: 10.1029/2002PA000846
Anderson, D. M., Prell, W. L., and Barratt, N. J., 1989. Estimates of sea surface temperature in the Coral Sea at the last glacial maximum. Paleoceanography, 4, 615-627 Andreasen, D. J., Ravelo, A. C., and Broccoli, A., 2001. Remote forcing at the last glacial maximum in the tropical Pacific Ocean. Journal of Geophysical Research, 106, 879-897 Barker, S., 2003. A study of cleaning procedures used for foraminiferal Mg/Ca paleothermometry. Geochemistry, Geophysics, and Geosystems, 4, 2003GC000559 Barker, S., Archer, D., Booth, L., Elderfield, H., Henderiks, J., and Rickaby, R. E. M., 2006. Globally increased pelagic carbonate production during the Mid-Brunhes dissolution interval and CO2 paradox of MIS 11. Quaternary Science Reviews, 25, p.3278-3293 Bemis, B. E., Spero, H. J., Bijma, J., and Lea, D. W., 1998. Reevaluation of the oxygen isotopic composition of planktonic foraminifera: experimental results and revised paleotemperature equations. Paleoceaonagraphy, 13, p.150-160 Bender, M. L., 1975. Sodium, Magnesium and Strontium in the tests of planktonic foraminifera. Micropaleontology, 21, p.448-459 Berger,W. H., 1979. Stable isotopes in foraminifera. Foraminiferal Ecology and Paleocology, SEPM Short Course, No. 6 Brown, S. J., & Elderfield, H., 1996. Variation in Mg/Ca and Sr/Ca ratios of planktonic foraminifera caused by post deposition dissolution: Evidence of shallow Mg-dependent dissolution. Paleoceanography, 11, p.543-551 Cane, M. A., 1998. Climate change: a role for the tropical Pacific. Science, 282, 59-61 Cane, M. A., & Clement, A. C., 1999. A role for the tropical Pacific coupled ocean-atmosphere system on Milankovitch and Millennial timescales: Part 2: Global Impacts. Mechanisms of global climate change at millennial time scales. Geophysical Monograph, 112, 373-384 Clement, A. C., Seager, R., and Cane, M., 1999. Orbital control on the tropical climate. Plaeoceanography, 14, 441-456 Clement, A. C., Cane, M., and Seager, R., 2001. An orbitally driven tropical source for abrupt climae change. journal of Climate, 14, 2369-2375 Chiu, H. I., 2004. High-precision determination of Mg/Ca and Sr/Ca ratios in carbonates by cool plasma quadrupole ICPMS. M.Sc. Thesis, National Taiwan Taiwan University Chiyonobu, S., Sato, T., Narikiyo, R., and Ymasaki, M., 2006. Floral change in calcareous nannofossils and their paleoceanographic significance in the equatorial Pacific Ocean during the last 500,000 years. Island Arc, 15, p.476-482 CLIMAP Project Members, 1976. The surface of the ice age Earth. Science, 191, 1131-1137 Craig, H., 1961. Isotopic variations in meteoric waters, Science, 133, p.1702-1703 Cronblad, H. G., & Malmgren, B. A. 1981. Climatically controlled variation of Sr and Mg in Quaternary planktonic foraminifera. Nature, 291, p.61-64 Dansgaard, W., 1964. Stable isotopes in precipitation. Tellus, 16, p.436-447 Dekens, R. S., Lea, D. W., Pak, D. K., and Spero, H. J., 2002. Core top calibration of Mg/Ca in tropical foraminifera: Refining paleotemperature estimation. Geochemistry, Geophysics, and Geosystems, 3, 2002GC000169 Delaney, M., 1985. Li, Sr, Mg and Na in foraminiferal calcite shells from laboratory culture, sediment traps and sediment cores. Geochimica et Cosmochimica Acta, 49, p.1327-1341 de Viller, S., 2003. Dissolution effects on foraminiferal Mg/Ca records of sea surface temperature in the western equatorial Pacific. Paleoceanography, 18, doi:10.1029/2002PA000862 de Garidel-Thoron, T., Rosenthal, Y., Bassinot, F., and Beaufort, L., 2005. Stable sea surface temperatures in the western Pacific warm pool over the past 1.75 million years. Nature, 433, 294-298 Droxler, A. W., & Farrell, J. W., 2000. Marine isotope stage 11 (MSI11), new insights a warm future. Global planet change, 24, p.1-5 Droxler, A. W., Poore, R. Z., and Burckle, L. H. (Eds), 2003. Earth’ Climate and Orbital Eccentricity: the Marine Isotope Stage 11 Question. Geophysics monograph series, 137, 240 pp., AGU, Washington, D. C. Elderfield, H., Vautravers, M., and Cooper, M., 2002. The relationship between shell size and Mg/Ca, Sr/Ca, delta O-18, and delta 13-C of species of planktonic foraminifera. Geochemistry, Geophysics, and Geosystems, 3, 2002GC000194 Eggins, S., de Deckker, P., and Marshall, J., 2003. Mg/Ca variation in planktonic foraminiferal tests: implication for reconstructing palaeo-seawater temperature and habitat migration. Earth and Planetary Science Letters, 212, p.291-306 Eggins, S. M., Sadekov, A., de Deckker, P., 2004. Modulation and daily banding of Mg/Ca in Orbulina universa tests by symbiont photosynthesis and respiration: A complication for seawater thermometry? Earth and Planetary Science Letters, 225, p.411-419 Emiliani, C., 1955. Mineralogical and chemical composition of the tests of certain pelagic foraminifera. Micropaleontology, 1, p.277-280 Erez, J. & Luz, B., 1983. Experimental paleotemperature equation for planktonic foraminifera. Geochimica et Cosmochimica Acta, 47, p.1025-1031 Fairbanks, R. G., Sverdlove, M., Free, R., Wiebe, P. H., and Be, A. W. H., 1982. Vertical distribution and isotopic fractionation of living planktonic foraminifera from the Panama Basin. Nature, 298, p.841-844 Farrell, J. W., & Prell, W. L., 1989. Climatic change and CaCO3 preservation: An 800,000 year bathymetric reconstruction from the central equatorial Pacific Ocean. Paleoceanography, 4, p. 447-466 Guilderson, T. P., Schrag, D. P., and Cane, M. A., 2000. Surface water mixing in the Solomon Sea as documented by high-resolution coral 14C record. Journal of Climate, 17, p.1147-1156 Hearty, P. J., Kinder, P., Cheng, H., and Edwards, R. L., 1999. A +20 m middle Pleistocene sea-level high-stand (Bermuda and the Bahamas) due to partial collapse of Antarctic ice. Geology, 27, p.375-378 Hemleben, C., Spindier, M., and Anderson, O. R., 1989. Modern Planktonic Foraminifera, pp.363. Halpert, M. S., & Ropelewski, C. F., 1992. Surface temperature patterns associated with the Southern Oscillation. Journal of Climate, 5, 577-593 Hoogakker, B. A. A., Rohling, E. J., Palmer, M. R., Tyrrell, T., and Rothwell, R. G., 2006. Underlying causes for long-term global ocean d13C fluctuations over the last 1.20 Myr. Earth and Planetary Science Letters, 248, p.1-15 Horng, C. S., Lee, M. Y., Palike, H, Wei K. Y., Liang, W. T., Izuka, T., and Torii, M., 2002. Astronomically calibrated ages for geomagnetic reversals within the Matuyama chron. earth Planets Space, 54, p. 679-690 Huybers, P. & Wunch, C. 2005. Obliquity pacing of the late Pleistocene glacial terminations. Nature, 434, p.491-494 International Consortium for Great Barrier Reef Drilling, Alxender, I., Andres, M. S., Braithwaite, C. J. R., Braga, J. C., Davies, P. J., Elderfield, H., Gilmour, M. A., Kay, R. L., Kroon, D., McKenzie, J. A., Montaggioni, L. F., Skinner, A., Thompson, R., Vasconcelos, C., Webster, J. M., and Wilson, P. A., 2001. New constraints on the origin of the Australian Great Barrier Reef: Results from an international project of deep coring. Geology, 29, p. 483-486 Jansen, J. H. F., Kuijpers, S. R., and Troelstra, S. R., 1986. A Mid-Brunhes climatic event: Long-term changes in global atmosphere and ocean circulation. Science, 232, p.619-622 Katz, A., 1973 The interaction of magnesium with calcite during crystal growth at 25-90 ℃ and one atmosphere. Geochimica et Cosmochimica Acta, 37, p.1563-1586 Kennett, J. P. & Srinivasan, 1983. Neogene Planktonic Foraminifera. pp. 67 Koutavas, A., Lynch-Stieglitz, J., Marchitto, T. M., and Sachs, J. P., 2002. El Ni?o-like pattern in ice age tropical Pacific sea surface temperature. Science, 297, 226-230 Lea, D. W., Mashiotta, T. A., and Spero, H. J., 1999. Controls on magnesium and strontium uptake in planktonic foraminifera determined by living culture. Geochimica et Cosmochimica Acta, 63, p.2369-2379 Lea, D. W., Pak, D. K., and Spero, H. J., 2000. Climate impact of late quaternary equatorial Pacific sea surface temperature variation. Science, 289, p.1719-1724 Lee, M. Y., Wei, K. Y., and Chen, Y, G., 2001. Astronomically tuned late Plio-Pleistocene benthic d18O chronostratigraohy for the subtropical western Pacific and its paleoclimatic significance. Western Pacific Earth Sciences, 1, p. 443-458 Lee, S. Y., & Poulsen, C. J., 2005. Tropical Pacific climate response to obliquity forcing in the Pleistocene. Paleoceanography, 20, doi:10.1029/2005PA001161 Liu, Z., & Herbert, T. D., 2004. High latitude influence on the eastern equatorial Pacific climate in the early Pleistocene epoch. Nature, 427, p.720-723 Loutre, M. F., Paillard, D., Vimeux, F., and Cortijo, E., 2004. Does mean annual insolation have the potential to change the climate? Earth and Planetary Science Letters, 221, p.1-14 Martin, P. A., & Lea, D. W., 2002. A simple evaluation of cleaning procedure on fossil benthic foraminiferal Mg/Ca ratios. Geochemistry, Geophysics, and Geosystems, 3, 2002GC000280 Martinez, J. I., 1994. Late Pleistocene palaeoceanography of the Tasmam Sea: Implications fro the dynamics of the warm pool in the western Pacific. Palaeogeography, Palaeoclimatology, Palaeoecology, 112, 19-62 Martinez, J. I., Deckker, P. D., and Chivas, A. R., 1997. New estimates for salinity changes in the Western Pacific Warm Pool during the Last Glacial Maximum, Marine Micropaleontology, 32, 311-340 Medina-Elizalde, M., & Lea, D. W., 2005. The mid-Pleistocene transition in the tropical Pacific. Science, 310, p.1009-1012 Mix, A. C., Pisas, N. G., Rugh, W., Wilson, J., Morey, A., and Hagelberg, T. K., 1995a. Benthic foraminifer stable isotope record from Site 849 (0-5 Ma): local and global climate changes. Proceeding of the Ocean Drilling Program Scientific Results, 138: 317-412, Texas A&M University, College Station, TX77845-9547, U.S.A. Mix, A. C., Le, J., Shackleton, N. J., 1995b. Benthic foraminiferal stable isotope stratigraphy of Site 846: 0-1.8 Ma. Proceeding of the Ocean Drilling Program Scientific Results, 138: 839-854, Texas A&M University, College Station, TX77845-9547, U.S.A. Morey, S. L., Shriver, J. F., and O’Brien, J. J., 1999. The effects of Halmahera on the Indonesian throughflow. Journal of Geophysical Research, 104, C10, p.23,281-23,296 Mothadi, M., Hebbeln, D., Ricardo, S. N., and Lange, C. B., 2006. El Ni?o-like pattern in the Pacific during marine isotope stages (MIS) 13 and 11? Paleoceanography, 21, doi: 10.1029/2005PA001190 N?rnberg, D., Bijma, J., and Hemleben, C., 1996. Assessing the reliability of magnesium in foraminiferal calcite as a proxy for water mass temperature. Geochimica et Cosmochimica Acta, 60, p.803-814 N?rnberg, D., Bijma, J., and Hemleben, C., 1996. Erratum: Assessing the reliability of magnesium in foraminiferal calcite as a proxy for water mass temperature. Geochimica et Cosmochimica Acta, 60, p.2483-2484 Oomori, T., 1987 Distribution coefficient of Mg ions between calcite and solution at 10-50 ℃. Marine Chemistry, 20, p.327-336 Pena, L. D., Calvo, E., Cacho, I., Eggins, S., and Pelejero, C., 2005. Identification and removal of Mn-Mg-rich contaminant phases on foraminiferal tests: Implication for Mg/Ca past temperature reconstructions. Geochemistry, Geophysics, and Geosystems, 6, 2005GC000930 Petit, J. R., Jouzel, J., Raynaud, D., Barkov, N. I., Barnola, J. M., Basile, I., Bender, M., Chappellaz, J., Davis, M., Delaygue, G., Delmotte, M., Kotlyakov, V. M., Legrand, M., Lipenkov, V. Y., Lorius, C., Pepin, L., Ritz, C., Saltzman, E., and Stievenard, M., 1999. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature, 399, p.429-436 Ropelewski, C. F., & Halpert, M. S, 1987. Global and regional precipitation pattern associated with El Ni?o/Southern Oscillation. Monthly Weather Report, 115, 1606-1626 Rosenthal, Y., Field, M. P., and Sherrell, R. H., 1999. Precise determination of element/calcium ratios in calcareous samples using sector field inductively coupled plasma mass spectrometry. Analytical Chemistry, 71, p.3248-3253 Rosenthal, Y., Lohmann, G. P., Lohmann, K. C., and Sherrell, R. M., 2000. Incorporation and preservation of Mg in Globigerinoides sacculifer: Implications for reconstructing the temperature and 18O/16O of seawater. Paleoceanography, 15, p.135-145 Rosenthal, Y., Oppo, D. W., and Linsley, B. K., 2003. The amplitude and phasing of climate change during the last deglaciation in the Sulu Sea, western equatorial Pacific. Geophysical Research Letters, 30, 1428-14XX Ruddiman, W. F., 2001. Earth’s Climate: Past and Future. pp.465 Shen, C. C., Hastings, D. W., Lee, T., Chiu, C. H., Lee, M. Y., Wei, K. Y., and Edwards, R. L., 2001. High precision glacial-interglacial benthic foraminiferal Sr/Ca records form the eastern equatorial Atlantic Ocean and Caribbean Sea. Earth and Planetary Sciences Letters, 190, p.197-209 Shen, C. C., Chiu, H. I., Chiang, H. W., Chu, M. F., Wei, K. Y., Steinke, S., Chen, M. T., Lin, Y. S., and Lo, L., 2007. High precision determination of Mg/Ca and Sr/Ca ratios in carbonates by cool plasma quadrupole inductively coupled mass spectrometry. Chemical Geology 236, p.339-349 Shipboard Scientific Party, 1998. Leg 180 summary: Active Continental Extension in the Western Woodlark Basin, Papua new Guinea, Proceeding of the Ocean Drilling Program Initial Reports., 180: 1-77, Texas A&M University, College Station, TX77845-9547, U.S.A. Shipboard Scientific Party, 1998. Leg 180 summary: Active Continental Extension in the Western Woodlark Basin, Papua new Guinea, Proceeding of the Ocean Drilling Program Scientific Results., 180: 1-77, Texas A&M University, College Station, TX77845-9547, U.S.A. Siegenthaler, U., Stocker, T. f., monnin, E., Luthi, D., Schwander, J., Stauffer, B., Raynaud, D., Barnola, J.-M., Fischer, H., Masson-Delmotte, V., and Jouzel, J., 2005. Stable carbon cycle-climate relationship during the late Pleistocene. Science, 310, p.1313-1317 Smith, T. M., & Reynolds, R. W., 2004. Improved extended reconstruction of SST (1854-1997). Journal of Climate, 17, 2466-2477 Stott, L., Poulsen, C., Lund, S., and Thunell, R., 2002. Super ENSO and global climate oscillations at millennial time scales. Science, 297, 222-226 Stuiver, M., Reimer, P. J., and Reimer, R. W., 2005. CALIB 5.0 Sun, D. Z., 2003. A possible effect of an increase in the warm-pool SST on the magnitude of El Ni?o warming. Journal of Climate, 16, 185-205 Thunell, R., Anderson, D., Geller, D., Miao, Q., 1994. Sea-surface temperature estimates for the tropical western Pacific during the last glaciation and their implications for the Pacific warm pool. Quaternary Research, 41, 255-264 Vimeux, F., Masson, V., Jouzel, J., Stievenard, M., and Petit, J R., 1999. Glacial-interglacial changes in ocean surface conditions in the Southern Hemisphere. Nature, 398, p.410-413 Vimeux, F., Masson, V., Delaygue, G., Jouzel, J., Petit, J. R., and Stievenard, M., 2001. A 420,000 year deuterium excess record from East Antarctic: Information on past changes in the origin of precipitation at Vostok. Journal of Geophysical Research, 106, 31,863-31,873 Vimeux, F., Cuffey, K. M., and Jouzel, J., 2002. New insights into Southern Hemisphere temperature changes from Vostok ice cores using deuterium excess correction. Earth and Planetary Science Letters, 203, p.829-843 Wang, P., Tian, J., Cheng, X., Liu, C. Xu, J., 2003, Carbon reservoir changes preceded major ice-sheet expansion at the mid-Brunhes event. Geology, 32, p.239-242 Yan, X. H., Ho, C. R., Zheng, Q., and Klemas, V., 1992. Temperature and size variabilities of the western Pacific warm pool. Science, 258, p.1643-1645 Yin, J. H., and Battisti, D. S., 2001. The importance of tropical sea surface temperature patterns in simulations of the last Glacial Maximum. Journal of Climate, 14, 565-581 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29332 | - |
| dc.description.abstract | 根據海洋鑽探計畫(Ocean Drilling Program, ODP)位於所羅門海(Solomon Sea)的1115B岩芯(151o34’E, 9o14’S, 水深1149米)中浮游性有孔蟲Globigerinoides sacculifer鎂鈣元素比(Mg/Ca elemental ratios)分析,我們重建了西南赤道太平洋地區七十四萬年來連續的古海水表面溫度(Paleo-sea surface temperature)記錄。ODP 1115B岩芯位於年平均海表溫28℃的邊緣,為一絕佳監測暖池南北分佈範圍的站位,在此我們重新調整年代模式後經由計算得到了西太平洋暖池南北溫度差的紀錄,將其視為暖池範圍改變的代用指標;並利用前人已發表的赤道太平洋西側與東側的古海表溫度記錄得到太平洋東西側的溫度差。
74萬年來暖池南北溫差與太平洋東西溫差的演變可約略分為四期:(1)74-58萬年、(2)58-32萬年、(3)32-21萬年以及(4)21-0萬年。(1)74-58萬年,此段時期中,暖池南北與太平洋東西之溫度差改變幅度小,但並沒有同步,此時在北大西洋生物生產力上升,全球底棲性以及浮游性有孔蟲碳同位素值皆開始上升,太平洋碳酸鈣沈積速率開始降彽但大西洋開始上升,暗示著一個全球碳儲藏庫的重新分布事件(global carbon reservoir redistribution event)的開始。(2)58-32萬年,暖池南北與太平洋東西側溫差改變幅度增強並且呈現同步的趨勢,暖池南北溫度差出現四萬一千年周期,但是與地軸傾角呈正相關;全球底棲與浮游有孔蟲碳同位素值達到頂峰,並在海洋氧同位素期13之後開始下降,全球性的碳酸鈣溶解事件,大規模的現代珊湖礁群生長,間冰期二氧化碳平均濃度升高,全球冰帽擴張都在這一時段中發生。(3)32-21萬年:此階段早期, 32-25萬年, 仍延續上一期的趨勢,但太平洋東西溫度差開始呈現長期的下降,而暖池南北的溫度差卻開始增加。到此階段晚期, 25-21萬年, 暖池南北的溫度差開始與地軸傾角呈現良好的負相關,而太平洋東西側的溫度差達到最彽並且持續到下一期。(4)21萬年以來暖池南北溫差與南緯三十度與六十度之年平均日照量差,呈現良好的負相關,日照量差越大,暖池南北溫度差越小,反之亦然,並且都具有四萬一千年周期,據此推論,當地球自轉傾角較小時,中緯度與高緯度地區之日照量差增大,致使南半球中緯度海環 (gyre) 環流增強,並導致更多的暖水團增疊至暖池區域,使暖池範圍增大,暖池邊緣地區海表溫升高。在這段時間中,暖池南北溫度差與太平洋東西兩側溫度差並沒有同步改變,根據東西兩側鈣質超微化石群集研究指出,這一段時間內太平洋地區貿易風減弱,導致湧升流減少,東西溫度差變小,與此觀察吻合。中-高緯度日照量的差值變大會增加跨緯度間水氣傳送的強度,過去25萬年來的南極冰芯(Vostok)的重氫過剩值(deuterium excess values, d),與地軸傾角有良好的負相關,暗示與水氣來源區及來源區的海水表面溫度有關。25萬年來的暖池範圍改變,的確與南極冰芯重氫過剩值的紀錄有良好的對比。 由上述的比較,我們認為暖池範圍的確受控於天文軌道力的改變,但氣候系統內部的振盪與調整亦會調整暖池範圍的改變周期;全球碳儲藏庫與暖池大小亦有關連,推測與生物生產力改變,大規模造礁事件,造成海洋中超過冰期-間冰期旋回尺度的長時間碳儲藏庫改變有關。 | zh_TW |
| dc.description.abstract | Magnesium/calcium ratios of planktonic foraminifer Globigerinoides. sacculifer in Ocean Drilling Project Leg 180 Core 1115B (ODP 180, 151o34’E, 9o14’S, water depth 1149 m) from the Solomon Sea were used to reconstruct paleo-sea surface temperature (paleo-SST) records in the western Pacific warm pool (WPWP) area over the past 740 kyrs. ODP 1115B locates at the marginal area of the annual 28℃ isotherms, thus severs as an excellent monitor to detect past warm pool extent variations. We can derive center-southern margin SST (ΔSSTC-S) gradient as an indicator of warm pool extent change, and to compare it with previous studies of western and eastern SST gradient (ΔSSTW-E) to yield a more comprehensive understanding the change in past warm pool extent variations.
The dynamic history of the WPWP can be subdivided into 4 Intervals: (1) 740-580 ka, (2) 580-320 ka, (3) 320-210 ka, and (4) 210-0 ka. (1) 740-580 ka: ΔSSTW-E and ΔSSTC-S fluctuated with relatively small amplitudes but did not covary at the same pacing. Northern Atlantic surface productivity increased, global benthic and planktonic carbon isotope values increased, and carbonate accumulation rate in eastern Pacific decreased but increased in Atlantic. These changes mark the beginning of a carbon reservoir redistribution event. (2) 580-320 ka: ΔSSTW-E and ΔSSTC-S covaried with each other and show positive correlation with obliquity. Both SST gradients reached the peak values with global benthic and planktonic carbon isotope values at Marine Isotope Stage 13 and gradually decreased then. Building of modern coral reef, strong carbonate dissolution, and establishment of modern interglacial CO2 level all took place at this Interval. (3) 320-210 ka: in the early period of this Interval, 250-320 ka, both SST gradients show similar pattern of the previous interval, following by long-term decreasing trends of both gradients. (4) 210-0 ka: ΔSSTW-E decreased through this interval, in consistent with previous study results of coccolith floral assemblages of the western and eastern equatorial Pacific. ΔSSTC-S shows good negative correlation with obliquity cycles. Annual insolation gradient between 30o and 60oS drives south Pacific gyre circulation. When insolation gradient is large, the enhancement of gyre circulation may be induced which resulting in large-scale warm pool with profound of warm water and a decreasing ΔSSTC-S. The implication is supported by Vostok ice core deuterium excess (d) data, reflecting moisture source changes and SST of source areas. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T01:04:44Z (GMT). No. of bitstreams: 1 ntu-96-R93224101-1.pdf: 9145083 bytes, checksum: 8eddd25eaf4a1d6b83158db23e68c8d4 (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | Chapter 1 Introduction 01
Chapter 2 Material and Methods Chapter 3 Results and Discussions 2.1 ODP Site 1115B 07 2.2 Modern Oceanography 12 2.3 Species 13 2.4 Sample preparation 15 2.5 Stable Isotope Analysis 16 2.6 Mg/Ca analysis 18 2.7 Age Model 21 3.1 Stable Isotope and Mg/Ca Ratios Results of ODP 1115B 23 3.2 Seawater oxygen isotopic values 24 3.3 Comparison to Other Equatorial Pacific Records 25 3.4 Orbital Forcing on Warm Pool Extent Variations 33 3.5 Long-term Climate System Oscillation and Warm Pool 41 Chapter 4 Conclusions 48 Reference 50 Appendix a. Data Table 57 b. Principal 1. Planktonic foraminiferal Mg/Ca ratios as SST proxy 63 | |
| dc.language.iso | en | |
| dc.subject | 晚第四紀 | zh_TW |
| dc.subject | 學 古海洋學 | zh_TW |
| dc.subject | 古氣候 | zh_TW |
| dc.subject | 西太平洋暖池 | zh_TW |
| dc.subject | late Quaternary | en |
| dc.subject | paleoceanography | en |
| dc.subject | paleoclimatology | en |
| dc.subject | western Pacific warm pool | en |
| dc.title | 七十四萬年來地軸傾角與西太平洋暖池擴張-收縮史 | zh_TW |
| dc.title | Obliquity pacing of the expansion and contraction of the Western Pacific Warm Pool during the past 740,000 years | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 沈川洲,米泓生,李孟陽 | |
| dc.subject.keyword | 西太平洋暖池,古氣候,學 古海洋學,晚第四紀, | zh_TW |
| dc.subject.keyword | western Pacific warm pool,paleoclimatology,paleoceanography,late Quaternary, | en |
| dc.relation.page | 56 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-07-24 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 地質科學研究所 | zh_TW |
| 顯示於系所單位: | 地質科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 8.93 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
