請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29325
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳永傳 | |
dc.contributor.author | Chih-Wei Cheng | en |
dc.contributor.author | 鄭至偉 | zh_TW |
dc.date.accessioned | 2021-06-13T01:04:36Z | - |
dc.date.available | 2007-07-30 | |
dc.date.copyright | 2007-07-30 | |
dc.date.issued | 2007 | |
dc.date.submitted | 2007-07-24 | |
dc.identifier.citation | 參考文獻
1.“冷鍛模具設計手冊”,金屬工業發展中心,民國79年 2. 許源泉,“鍛造學理論與學習”,三民書局,民國79年 3. 黃振賢,“金屬熱處理”, 文京圖書公司,pp.115-157. 4. 黃振賢,“金屬熱處理”, 文京圖書公司,pp.159-160. 5. Michel J. Korwin, “Controlled gas nitriding ︰old process has new potential” . Heat Treating, 1989.pp.32-35 6. 陳繁雄,“氣體滲氮與氣體軟滲氮熱處理”, 金屬熱處理期刊,第5期,民國70年,pp.58 7. 黃振賢,“金屬熱處理”, 文京圖書公司,pp.165-166. 8. 陳繁雄,“氣體滲氮與氣體軟滲氮熱處理”, 金屬熱處理期刊,第5期,民國70年,pp.59-60 9. 吳文傑等,“AISI 8620滲碳及滲氮零件之機械性質的比較評估”,金屬熱處理期刊,第67期,2000,pp.60 10. 張薰圭 譯,“冷加工工具鋼的革新於日本”,金屬熱處理期刊,第65期,2000,pp.74-78 11. 王文雄等,“SKD11模具鋼之熱處理”,金屬熱處理期刊,第34期,民國81年,pp.31 12. 陳繁雄,“AISI8620滲碳及滲氮零件之機械性質的比較評估”,金屬熱處理期刊,第67期,民國89年,pp.61 13. 詹金生等,“離子滲氮處理實驗及研討”,金屬熱處理期刊,第8期,民國71年,pp.101 14. 陳繁雄等,“滲碳與滲碳氮化零件之耐疲勞性及耐磨耗性之評估”,金屬熱處理期刊,第65期,民國89年,pp.18 15. GEORGE KRAUSS, Heat Treatment and Processing Principles, pp.310-312 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29325 | - |
dc.description.abstract | 本研究主要是在探討固體粉末滲氮法之特性,研究固體粉末滲氮應用於冷作工具鋼SKD11、SKH51、DC53時,對其耐磨性的影響。以不同的滲氮溫度和時間實施滲氮,探討此氮化法的處理條件對氮化層的顯微組織、硬度分布、含氮量分布及耐磨性的影響,進而了解固體粉末滲氮法的最佳實用條件,並和傳統 氣體滲氮法作比較,以了解兩者之間的不同之處。由實驗結果得知,固體粉末滲氮具有下列特點︰
1.為了使表層有效硬化且得到較緻密的化合物層,500~550℃為此固 體粉末滲氮法之最佳滲氮溫度。 2.鋼料經固體粉末滲氮後,其化合物層較緻密,使用上不易破碎或 剝離,在應用上不需另行後續處理將化合物層磨除。 3.鋼料在480℃以上經固體粉末滲氮後即有硬化效果,隨著滲氮溫度 的提高和滲氮時間的增長,耐磨性皆有明顯的提升,可依使用需 求,做適當的調整,使模具或零件等產品達到最高的效益。其 中,以550℃左右進行滲氮者,耐磨性最佳。但在600℃處理者, 其化合物層較鬆散且亦會出現孔洞,再加上氮化物變得粗大,導 致表層硬度無法提升,試片所能承受的磨耗荷重和滑動距離有 限,故實用性較差。 4.在480~500℃實施固體粉末滲氮,由於滲氮溫度低不易產生變形, 適用於精密模具或零件,且短時間內即有硬化效果,對於耐磨性 有顯著之提升。 5.經固體粉末滲氮後,其化合物層除了有氮原子滲入外,亦有碳原 子滲入,雖然滲氮層不如傳統氣體滲氮來得厚,但此混合的化合 物層具有較佳之韌性,可有效提升耐磨性,此點和軟氮化有類似 之處。 | zh_TW |
dc.description.abstract | The purpose of this study is to understand the characteristics of solid nitriding. The effect of solid nitriding on the wear resistance of cold working tool steel such as SKD11, SKH51 and DC53 will be discussed in this article. The above steel sample was nitrided at various temperatures for different time. Then, the microstructure, hardness distribution, nitrogen contents and wear resistance of the nitrided layer was examined for each solid nitriding condition. Moreover, above experimental data was compared with those of conventional NH3 gas nitriding. The results were summarized as follows:
1.In order to obtain an effective surface hardness and the more dense compound layer, the temperature ranging from 500℃ to 550℃ was the optimal temperature for the solid nitriding. 2.The compound layer of steel after the solid nitriding was rather dense and not easy to crack or spall off. It is not necessary to remove the layer by grinding before application. 3.The steel has hardening effect as long as the solid nitriding temperature over 480℃. The wear resistance of nitrided layer increases with increasing nitriding temperature or time. The dies and machine parts should be nitrided under appropriate conditions depending on their application reguirement. Besides, the wear resistance of the nitrided layer was the best for the steel nitrided at 550℃. As to the steel nitrided at 600℃, the holes will appear in the compound layer and nitrides will become coarse. Therefore, both the surface hardness and the wear resistance will decrease. 4.The nitriding at low temperature 480℃~500℃ was not easy to produce deformation, so this method could be applied to the precision machine parts. 5.The compound layer of solid nitriding was permeated with not only nitrogen but also carbon. Although the nitrided layer was not as thick as that of the gas nitriding, the compound layer had better toughness and wear resistance.This point was similar to Tufftriding. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T01:04:36Z (GMT). No. of bitstreams: 1 ntu-96-R94522724-1.pdf: 11887015 bytes, checksum: 248221f7051a38584acc2e462c467c9c (MD5) Previous issue date: 2007 | en |
dc.description.tableofcontents | 目 錄
口試委員審定書....................................i 誌謝.............................................ii 中文摘要........................................iii 英文摘要.........................................iv 表目錄..........................................vii 圖目錄.........................................viii 第一章 緒論.....................................1 1-1 前言....................................1 1-2 研究動機................................3 第二章 實驗理論.................................4 2-1 氣體滲氮法...............................4 2-2 軟氮化...................................5 2-3 氣體軟氮化...............................5 2-4 磨耗機構.................................6 第三章 實驗設備與方法...........................8 3-1 實驗規劃.................................8 3-2 實驗設備.................................8 3-2-1 粉末滲氮處理設備..................8 3-2-2 氣體滲氮處理設備..................8 3-2-3 實驗儀器..........................9 3-3 實驗方法.................................9 3-3-1 試片種類及前處理..................9 3-3-2 粉末滲氮處理.....................10 3-3-3 氣體滲氮處理.....................10 3-4 鋼料經滲氮處理後之試驗與分..............10 3-4-1 氮化層硬度分布量測...............10 3-4-2 氮化層厚度之觀察.................11 3-4-3 電子微探儀(EPMA)試驗.............11 3-4-4 X-Ray繞射(XRD)試驗...............12 3-4-5 顯微組織觀察與EDX成分分析........12 3-4-6 磨耗試驗.........................12 第四章 結果與討論..............................14 4-1 固體粉末滲氮法..........................14 4-1-1 滲氮處理條件.....................14 4-1-2 滲氮時間對硬度分布之影響.........14 4-1-3 滲氮溫度對硬度分布之影響.........15 4-1-4 滲氮層之顯微組織觀察.............16 4-1-5 電子微探儀(EPMA)試驗.............17 4-1-6 X-Ray繞射(XRD)試驗...............17 4-2 磨耗試驗...............................19 4-3 固體粉末滲氮法與傳統 氣體滲氮法之比較..21 4-3-1 硬度分佈的之比較................21 4-3-2 顯微組織之比較..................21 4-3-3 耐磨性之比較....................23 第五章 結論....................................24 參考文獻.........................................85 | |
dc.language.iso | zh-TW | |
dc.title | 冷作工具鋼經固體粉末滲氮後之耐磨性研究 | zh_TW |
dc.title | Improving Wear Resistance of Cold Working Tool Steel by Solid Nitriding | en |
dc.type | Thesis | |
dc.date.schoolyear | 95-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 黃振賢,陳繁雄,周挺正 | |
dc.subject.keyword | 固體粉末滲氮法;氣體滲氮法;軟氮化;磨耗試驗;冷作工具鋼, | zh_TW |
dc.subject.keyword | Solid nitriding;Gas nitriding;Tufftriding;Wear experiment;Cold working tool steel, | en |
dc.relation.page | 85 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2007-07-24 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-96-1.pdf 目前未授權公開取用 | 11.61 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。