Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 森林環境暨資源學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29320
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor胡弘道(Hung-Tao Hu)
dc.contributor.authorKuei-Lien Hsuen
dc.contributor.author許桂蓮zh_TW
dc.date.accessioned2021-06-13T01:04:31Z-
dc.date.available2007-07-27
dc.date.copyright2007-07-27
dc.date.issued2007
dc.date.submitted2007-07-22
dc.identifier.citation弓明欽、陳應龍、仲崇祿(1997)菌根研究及應用,中國林業出版社,北京,pp. 223。
呂斯文(1985)蘆筍菌根之生長反應、酵素組織化學及構造變化,國立台灣大學園藝研究所碩士論文,pp. 112。
沈明來(2005)試驗設計學(第三版),九州圖書文物有限公司,台北,pp. 515。
李明仁(1996)彩色豆馬勃對松樹及相思樹幼苗生長抗猝倒病之效應,嘉義農專學報,49: 1-23。
李明仁、蘇碧華、王露儀(1998)接種囊叢枝菌根菌對台灣泡桐感染根瘤線蟲之影響, 中華林學會87年年會及會員大會,70 p.。
周綠蘋(1983)台灣松口磨之基本研究,台灣大學植物學研究所碩士論文,pp. 105。
林瑞進(2000)青剛櫟外生菌根苗在貧瘠地造林之研究,國立台灣大學森林學研究所碩士論文,pp. 67。
邵佐謙(1992)溫度及pH 值對黑孢塊菌生長之效應及菌根合成試驗,國立台灣大學森林學研究所碩士論文,pp. 55。
胡弘道(1976)臺灣二葉松幼苗菌根之研究(一)分離、接種與形態,臺大實驗林研究報告,118: 17-30。
胡弘道(1987a)塊菇與林木共生關係之研究(I)菌根合成試驗,台大實驗林研究報告,1 (1): 1-6。
胡弘道(1987b)塊菇與林木共生關係之研究(II)4號塊菇之特徵及其與夏塊菇之菌根合成,國立台灣大學實驗林研究報告,1(3): 17-26。
胡弘道(1989)塊菇之培育,台灣區第七屆食用菌研討會報告,p. 34- 40。
胡弘道(1990)林木菌根,國立編譯館主編,台北,pp. 666。
胡弘道(1992)台灣塊菇(新種)及其菌根關係,台大實驗林研究報告,6(4): 79-88。
胡弘道、劉啟福(1995)臺灣二葉松與松茸共生關係之研究(二)pH及溫度對松茸菌落生長之效應,臺大實驗林研究報告,9(3): 21-27。
洪玲玲(1977)兩種外生菌根之生理及其對台灣二葉松之菌根誘導,東海大學生物學研究所碩士論文。
高嘉鴻(2005)中果塊菌(Tuber mesentericum Vitt.)之分離、菌落生長及半無菌菌根合成,國立台灣大學森林環境暨資源學研究所碩士論文,pp. 74。
許碧如(1987)溫度、pH值及葡萄糖濃度對夏塊菇菌生長之效應,國立台灣大學森林學研究所碩士論文,pp. 55。
陸家云(2001)植物病原真菌學,中國農業出版社,北京,p. 10-38。
陳應龍(2002)黑孢塊菌的菌根合成及其超微結構研究,中國食用菌,21(5): 15-17。
陳珈后(2003)砂粒大小對刺繡球菌孢子繁殖之影響及偽孔塊菌之半無菌合成試驗,國立台灣大學森林學研究所碩士論文,pp. 88。
陳怡君(2004)意大利白塊菇之半無菌菌根合成與不同pH 介質對其菌根形成與青剛櫟葉部大量養分元素之效應,國立台灣大學森林學研究所碩士論文,pp. 71。
陳家全、李家維、楊瑞森(2004)生物電子顯微鏡學,行政院國家科學委員會精密儀器發展中心,新竹,pp. 266。
黃瓊瑤(1993)松茸、牛肝菌與鬚腹菌之半無菌合成試驗及台灣二葉松白色外生菌根的比較,國立台灣大學森林學研究所碩士論文,pp. 57。
黃鏡諺(2002)印度塊菌及台灣塊菌與青剛櫟形成菌根形態之比較及光黑腹菌與鱗蓋紅菇之菌根純合成,國立台灣大學森林學研究所碩士論文,pp. 104。
張耀聰(2001)松樹類及耳莢相思樹之菌根合成,國立台灣大學森林學研究所碩士論文,pp. 104。
曾顯雄(1985)菌根菌之最近研究發展,真菌學之最近發展,國科會生物科學研究中心專刊,12: 45-70。
趙維良(2003)土壤微生物與其它生物之互動關係,台灣土壤微生物之收集應用,中正基金會專題研究報告,7: 13-34。
劉士旺(1998)真菌形態的幾種觀察方法,生物學通報,33(10): 45。
顏江河(1981)外生與外內生菌根之純合成及外生菌根接種對台灣二葉松幼苗生長之效應,國立台灣大學森林學研究所碩士論文,pp. 76。
Abbott, L. K. and A. D. Robson (1984) Colonization of the root system of subterranean clover by three species of vesicular-arbuscular mycorrhizal fungi. New phytol. 96(2): 275-281.
Agerer, R. (1986) Studies of ectomycorrhizae II. Introducing remarks on characterization and identification. Mycotaxon 26: 473-492.
Agerer, R. (1988) Colour atlas of ectomycorrhizae. Einhorn-Verlag Eduard Dientenberger. pp. 145.
Agerer, R. (1995) Anatomical Characteristics of Identified Ectomycorrhizas: An Attempt Towards a Natural Classification. In: A. Varma and B. Hock (Eds.), Mycorrhiza Structure, Function, Molecular Biology and Biotechnology. pp. 685-734.
Allen, M. F. (1992) Mycorrhizal functioning. Chapman and Hall pp. 534.
Alloway, B. J. and B. D. Davies (1971) Heavy metal content of plants growing on soils contaminated by lead mining. J. Agric Sci. 76: 321-323.
Amaranthus, M. P., D. Page-Dumroese, A. Harvey, E. Cazares and L. F. Bednar ( 1996) Soil compaction and organic matter affect conifer seedling nonmycorrhizal and ectomycorrhizal root tip abundance and diversity. Pacific Northwest Research Station p. 16.
Arnebrant, K. (1994) Nitrogen amendments reduce the growth of extrametrical ectomycorrhizal myceliaum. Mycorrhiza 5: 7-15.
Amicucci, A., C. Guidi, A. Zambonelli, L. Potenza and V. Stocchi (2000) Multiplex PCR for the identification of white Tuber species. FEMS Microbiology Letters 189: 265-269.
Amicucci, A., A. Zambonelli, C. Guidi and V. Stocchi (2001) Morphological and molecular characterization of Pulvinula constellatio ectomycorrhizae. FEMS Microbiology Letters 194: 121-125.
Atlas, R. M. and R. Bartha (1997) Microbial Ecology: Fundamentals and application. Benjamin/Cummings Publishing Co., Menlo Park, California.
Azcón, R. and J. A. Ocampo (1981) Factors affecting the vesicular-arbuscular infection and mycorrhizal dependency of thirteen wheat cultivars. New Phytol. 87(4): 677-685.
Bâ, A. M., B. Balaji and Y. Piche (1994) Effect of time of inoculation on in vitro ectomycorrhizal colonization and nodule initiation in Acacia holosericea seedling. Mycorrhiza 4(3): 109-119.
Bartschi, H., V. Gianinazzi-Pearson and I. Vegh (1981) Vesicular-arbuscular mycorrhiza formation and root rot disease (Phytophthora cinnamomi) development in Chamaecyparis lawsoniana. Phytopatol Z. 102: 213-218.
Bryan, W. C. and B. Zak (1961) Synthetic culture of mycorrhizas of Southern pines. For. Sci. 7: 123-129.
Bonfante-Fasolo, P. and S. Scannerini (1977) Cytological observations on the mycorrhiza ‘Endogone flammicorona-Pinus strobus’. Allionia 22: 23-34.
Bonkowski, M., G. Jentschke and S. Scheu (2001) Contrasting effects of micobial partners in the rhizosphere interactions between Norway spruce seedlings(Picea abies Karst.), mycorrhiza(Paxillus involutus (Batsch)Fr.) and naked amoebae (protozoa). Applied Soil Ecology 18: 193-204.
Bougher, N. L., T. S. Groves and N. Malajczuk (1994) A practical guide for working with mycorrhizal fungi in forestry and agriculture. CSIRO. W. A. 6014. Australia. pp. 1-81.
Bowen, G. D. and C. Theodorou (1973) Growth of ectomycorrhizal fungi around seeds and roots. In: Kozlowsky T.T. (Ed.), Ectomycorrhizae, their ecology and phisiology. New York, Academic Press pp. 107-150.
Bowen, G. D., C. Theodorou and M. F. Skinner (1973) Towards a mycorrhizal inoculateion programe. Proc. Amer.-Aust. Forest Nutr. Conf., Canberra. Aust. 1971 (inpress).
Ceccaroli, P., R. Saltarelli, P. Cesari, R. Pierleoni, C. Sacconi, L. Vallorani, P. Rubini, V. Stocchi and F. Martin (2003) Carbohydrate and amino acid metabolism in Tuber borchii mycelium during glucose utilization: a ¹³C NMR study. Fungal Genetics and Biology 39: 168-175.
Chevalier, G. and A. Pollacsék (1972) Obtention de cultures de mycelium de truffe á partir du carpophore et des mycorhizes. Compes Rendus des Séances de l’Académie d’ Agriculture de France 58: 981-989.
Chevalier, G., D. Mousain and Y. Couteaudier (1975) Associations ectomycorhiziennes entre Tuberacees at Cistacees. Annales de Phytopatjologie 7(4): 355-365.
Chou, L. G. and A. F. Schmitthenner (1974) Effect of Rhizobium japonicum and Endogone mosseae on soybean root rot caused by Pythium ultimum and Phytophthora megasperma var. sojae. Plant Dis. Reptr. 58: 221-225.
Comandini, O. and G. Pacionu (1997) Mycorrhizae of Asian black truffles, Tuber himalayense and T. indicum. Mycotaxon 9(3): 77-86.
Danell, E. and N. Fries (1990) Methods for isolation of Cantharellus species, and the synthesis of ectomycorrhizae with Picea abies. Mycotaxon 38: 141-148.
Danielson, R. M., S. Visser and D. Parkinson (1984) Production of ectomycorrhizae on container-grown jack pine seedlings. Can. J. For. Res. 14: 33-36.
Daza, A., J. L. Manjón, M. Camacho, L. Romero de la Osa, A. Aguilar and C. Santamaría (2006) Effect of carbon and nitrogen sources, pH and temperature on in vitro culture of several isolates of Amanita caesarea (Scop.:Fr.) Pers. Mycorrhiza 16: 133-136.
Dehne, H-W. (1982) Interaction between vesicular-arbuscular mycorrhizal fungi and plant pathogens. Phytopathological Society. 72: 1115-1119.
Delmas, J. (1983) La truffle et sa culture. Institute National de la Recherche Agronomibue 149. Rue da Grenelle-75341 Paris Cedex 7: 7-14.
Dewey, F. M., C. R. Thornton and C. A. Gilligan (1997) Use of monoclonal antibodies to detect, quantify and visualize fungi in soils. Advances in Botanical Research incorporating Advances in Plant Pathology 24: 275-308.
Dighton, J. and R. A. Skeffington (1987) Effects of artificial acid precipitation on the mycorrhizas of Scots pine seedlings. New Phytol. 107(1): 191-202.
Dixon, R. K. and C. A. Buschena (1988) Response of ectomycorrhizal Pinus banksiana and Picea glaucato heavy metals in soil. Plant and soil. 105: 265-271.
Dominik, T. (1969) Key to ectotrophic mycorrhizae. Folia. For. Pol. Ser. A. Lesn. 15: 309-328.
Duñabeitia, M. K., S. Hormilla, I. Salcedo and J. I. Peña (1996) Ectomycorrhizae synthesized between Pinus radiata and eight fungi associated with Pinus spp. Mycologia 88(6): 897-908.
Duñabeitia, M. K., S. Hormilla, J. I. Garchia-Plazaola, K. Txarterina, U. Arteche and M. Becerril (2003) Differential responses of three fungal species to environmental factors and their role in the mycorrhization of Pinus radiate D.Don. Mycorrhiza Springer (3).
Edmonds, A. S., J. M. Wilson and J. L. Harley (1976) Factors affecting potassium uptake and loss by beech mycorrhiza. New Phytol. 76(2): 307-315.
Ferry, B. W. and N. Das (1968) Carbon nutrition of some mycorrhizal Boletus species. Trans. Br. Mycol. Soc. 51: 795-798.
Erland, S. and B. Söderström (1990) Effects of liming on ectomycorrhizal fungi infecting Pinus sylvestris L. I: Mycorrhizal infection in limed humus in the laboratory and isolation of fungi from mycorrhizal roots. New Phytol. 115(4): 675-682.
Fischer, C. and C. Colinas (1996) Methodology for certification of Quercus ilex seedlings inoculated with Tuber melanosporum for commercial application. Proceedings of the First International Conference on Mycorrhiza, Berkeley, Calif., 4-9 August.
Fontana, A. (1968) Miceli di funghi ipogei in coltura pura. Atti Del I° Congresso Internazionale Sul Tartufo -Spoleto, 24-25 Maggio, 127-133.
Fontana, A. (1971) Il micelio di Tuber melanosporum Vitt. in coltura pura. Allionia 17: 19-23.
Fontana, A. and G. Giovannetti (1978~1979) Simbiosi micorrizica tra Cistus incavus L. ssp. incanus e Tuber melanosporum Vitt. Allionia 23: 5-11.
Fontana, A. and M. Palenzona (1979) Synthése des mycorhizes de Tuber magnatum Pico avec semis de Quercus pubescens Willd. Mushroom Sci. 10: 1007-1012.
Fontana, A. and G. Giovannetti (1982) Mycorrhizal synthesis between Cistaceae and Tuberaceae. New Phytol. 92: 533-537.
Foster, R. C. and G. C. Marks (1966) The fine structure of the mycorrhizas of Pinus radiate D. Don. Aust. J. Biol. Sci. 19: 1027.
Frank, A. B. (1885) Über die auf Wurzelsymbiose beruende Ernährung gewisser bäume durch unterirdische Pilze. Ber. Deut. Bot. Ges. 3: 128-145.
Frankland, J. C. and A. F. Harrison (1985) Mycorrhizal infection of Betula penduka and Acer pseudoplantanus: relationships with seedling growth and soil factors. New Phyol. 101(1): 133-151.
Garbaye, J. (1991) Biological interactions in the mycorrhizosphere. Experientia 47: 370-375.
Gardes, M. and T. D. Bruns (1996) Community structure of ectomycorrhizal fungi in a Pinus muricata forest: above and below-ground views. Can. J. Bot. 74: 1572-1583.
Gandeboeuf, D., D. C. Battista, C. Dupré, M-C. Bardet, F. Martin and G. Chevalier (1998) Identification of Tuber species in nursery seedlings by PCR for certification program. Proceedings of the second International Coference on Mycorrhiza, Uppsala, Sweden, 5-10 July.
Gerdemann, J. W. (1968) Vesicular-arbuscular mycorrhiza and plant growth. Ann. Rev. Phytopathol. 6: 397-418.
Gildon, A. and P. B. Tinker (1983) Interaction of vesicular-arbuscular mycorrhizal infection and heavy metals in plants. Ⅰ. The effect of heavy metals on the development of vesicular-arbuscular mycorrhizas. New Phytol. 95(2): 247-267.
Giltrap, N. J. (1979) Experimental studies on the establishment and stability of ectomycorrhizas. Ph. D. thesis, Sheffield University, Sheffield.
Giltrap, N. J. and D. H. Lewis (1981) Inhibition of growth of ectomycorrhizal fungi in culture by phosphate. New Phytol. 87(4): 669-675.
Giomaro, G., A. Zambonelli, D. Sisti, M. Cecchini, V. Evangelista and V. Stocchi (2000) Anatomical and morphological characterization of mycorrhizas of five strains of Tuber borchii Vittad. Mycorrhiza 10: 107-114.
Giovannetti, D. and A. Fontanna (1982) Mycorrhizal synthesis between Cistaceae and Tuberaceae. New Phytol. 92(4): 533-537.
Giraud, M. (1990) Mycorhizes: prelevement et analyse. In: Verlhac A., Geraud M., Lateinturnier J. (eds) La truffe guide pratique. Ctifl Publ, FPGV Reims, pp. 77-88.
Gisela, D. and M. Honrubia (1999) Factors affecting mycorrhizal infection of containerized Pinus halepensis by Suillus sp., Rhizopogon sp. and Pisolithus tinctorius in nursery conditions. ICOM II 3: 23-32.
Godbout, C. and J. A. Fortin (1985) Synthesized ectomycorrhizae of aspen: fungal genus level of structural characterization. Con. J. Bot. 63: 252-262.
Govi, G., M. Bencivenga, B. Granetti, G. Pacioni, M. Palenzona, A. Tocci and A. Zambonelli (1997) Metodo basato sulla caratterizzazione morfologica delle micorrize. In: Regione Toscana: II tartufo. Compagnia delle Foreste, Arezzo, pp. 148-155.
Granetti, B. (1995) Caratteristiche morfologiche, biometriche e strutturali delle micorrize di Tuber di interesse economico. Mycorrhiza 6: 227-235.
Hacskaylo, E. (1953) Pure culture synthesis of pine mycorrhizae in Terra-Lite. Mycologia 45: 971-975.
Hacskaylo, E. and J. G. Palmer (1955) Hymenomycetous species forming mycorrhizae with Pinus virginiana. Mycologia 47: 145-147.
Hacskaylo, E., J. G. Palmer and J. A. Vozzo (1965) Effect of temperature on growth and respiration of ectotrophic mycorrhizal fungi. Mycologia 57(5): 748-756.
Halle, A. S. (1891) Die Hypogaeen Deutschlands. Verlag von Ludw. Hofstetter. 1-133.
Halle, A. S. (1894) Die Hypogaeen Deutschlands. Bd. II. Verlag von Ludw. Hofstetter. 1-140.
Harley, J. L. (1970) Mycorrhiza and nutrient uptake of forest tress. Physiology of Tree Crops. Academic Press. London. pp. 163-178.
Harley, J. L. and S.E. Smith (1983) Mycorrhizal Symbiosis. Academic Press, London.
Harley, J. L. and S.E. Smith (1984) Mycorrhizal Symbiosis. Academic Press, New York.
Harley, J. L. and C. C. McCready (1952) The uptake of phosphate by excised mycorrhizal roots of the beech II. Distribution of phosphorus between host and fungus. New Phytol. 51(1): 56-64.
Harley, J. L. and J. K. Brierley (1954) The uptake of phosphate by excised mycorrhizal roots of the beech VI. Active transport of phosphorus from fungal sheath into the host tissue. New Phytol. 54(2): 296-301.
Harley, J. L. and J. K. Brierley (1955) The uptake of phosphate by excised mycorrhizal roots of the beech VII. Active transport of 32P from fungus to host during uptake of phosphate from solution. New Phytol. 54(3): 296-301.
Harley, J. L. and J. M. Wilson (1959) The absorption of potassium by beech mycorrhiza. New Phytol. 58(3): 281-298.
Harley, J. L. and B. C. Loughman (1963) The uptake of phosphate by excised mycorrhizal roots of the beech. IX. The nature of the phosphate compounds passing into the host. New Phytol. 62(3): 350-359.
Harrison, K. A., A. Kelly and D. W. Grund (1984) A Tuber from Nova Scotia. Mycotaxon 19: 81-84.
Hasija, S. K. and H. C. Agarwal (1978) Nutritional physiology of Trichothecium roseum. Mycologia 70: 47-60.
Haug, I. and F. Oberwinkler (1987) Some distinctive types of spruce mycorrhiza. Trees 1: 172-188.
Horton, T. R. and T. D. Bruns (2001) The molecular revolution in ectomycorrhizal ecology: peeking into the black-box. Mol. Ecol. 10: 1855-1871.
Hung, L. L. and J. M. Trappe (1983) Growth variation between and within species of ectomycorrhizal fungi in response to pH in vitro. Mycologia 75(2): 234-241.
Iotti, M., A. Amicucci, V. Stocchi and A. Zambonelli (2002) Morphological and molecular characterization of mycelia of some Tuber species in pure culture. New Phytol. 155(3): 499-505.
Kingleby, P. A., F. T. Mason and L. V. Fleming (1990) Identification of ectomycorrhizas. Institute of Terrestrial Ecology. Edinburgh Research Station 5-13.
Klngleby, P. A., F. T. Mason and L. V. Fleming (1990) Identification ofectomycorrhizae of Abies lasiocarpa and Picea engelmannii. Can. J. Bot. 75: 1843-1850.
Kottke, I. and F. Oberwinkler (1986a) Mycorrhiza of forest trees-structure and function. Tree: 1-24.
Kottke, I. and F. Oberwinkler (1986b) Root-fungus interactions observed on initial stages of mantle formation and Hartig net establishment in mycorrhizas of Amanita muscaria on Picea abies in pure culture. Can. J. Bot. 64(10): 2348-2354.
Laiho, O. (1970) Paxillus involutus as a mycorrhizal symbiont of forest tree. Acta For. Fenn. 106: 1-73.
Lamb, R. J. (1974) Effects of D-glucose on utilization of single carbon sources by ectomycorrhizal fungi. Tran. Br. Mycol. Soc. 63: 295-306.
Lewis, D. H. and J. L. Harley (1965a) Carbohydrate physiology of mycorrhizal roots of beech II. Utilization of exogenous sugars by uninfected and mycorrhizal roots. New Phytol. 64(2): 238-255.
Lewis, D. H. and J. L. Harley (1965b) Carbohydrate physiology of mycorrhizal roots of beech III. Movement of sugars between host and fungus. New Phytol. 64(2): 256-269.
Littke, W. R., C. S. Bledsoe and R. L. Edmonds (1984) Nitrogen uptake and growth invitro by Hebeloma crustuliniforme and other Pacific Northwest mycorrhizal fungi. Can. J. Bot. 62: 647-652.
Lorio, P. J., V. K. Howe and C. N. Martin (1972) Loblolly pine rooting varies with micro-relief on wet sites. Ecology 53: 1134-1140.
Lundeberg, G. (1970) Utilization of various nitrogen sources, in particular bound soil nitrogen, by mycorrhizal fungi. Stud Forest. Suec. 79: 1-95.
Machado, H. and H. Bragança (1994) In vitro study of ectomycorrhiza formation under drought stress conditions. In: Azcón-Aguilar C, Barea JM (eds) Mycorrhizas in integrated systems. From genes to plant development. Proceedings of the 4th European symposium on mycorrhizas, Granada, pp. 455-458.
Malajczuk, N., R. Molina and J. M. Trappe (1984) Ectomycorrhiza formation in Eucalyptus. II. The ultrastructure of compatible and incompatible mycorrhizal fungi and associated roots. New Phytol.. 96(1): 43-53.
Malajczuk, N, F. Lapeyrie and J. Garbaye (1990) Infectivity of pine and eucalypt isolates of Pisolithus tinctorius on roots of Eucalyptus urophylla in virto. I. Mycorrhizal formation in model systems. New Phytol. 114(4): 627-631.
Marcel, G. A. and V. D. Heijden (2002) Foraging and resource allocation strategies of mycorrhizal fungi in a patchy environment. Mycorrhizal Ecology. Verlag Berlin Heidelberg.
Martinez-Amores, E., M. Valdes and M. Quintos (1991) Seedling growth and ectomycorrhizal colonization of Pinus patula and P. radiate inoculated with spores of Helvella lacunosa, Russula brevipes or Lycoperdon perlatum. New Forest 4: 237-245.
Marx, D. H. and B. Zak (1965) Effect of pH on mycorrhizal formation of slash pine in aseptic culture. Forest Science 11: 66-75.
Marx, D. H. and W. J. Daniel (1976) Maintaining cultures of ectomycorrhizal and plant pathogenic fungi in sterile water cold storage. Can. J. Microbiol. 22: 338-341.
Marx, D. H., W. C. Bryan and C. B. Davey (1970) Influence of temperature on aseptic synthesis of ectomycorrhizae by Thelephora terrestris and Pisolithus tinctorius on loblolly pine. Forest Science 16: 424–431.
Marx, D. H., C. E. Cordell, S. B. Maul and J. L. Ruehie (1989) Ectomycorrhizal development on pine by Pisolithus tinctorius in bare-root and container seedling nurseries. I. Efficiency of various vegetative inoculm formulation. New Forest 3: 45-56.
Massicotte, H. B., R. L. Peterson and A. E. Ashford (1987) Ontogeny of Eucalyptus pilularis-Pisolithus tinctorius ectomycorrhizae,Ⅰ. Light microscopy and Scanning electron microscopy. Can. J. Bot. 65: 1827-1939.
Massicotte, H. B., R. L. Peterson and L. H. Melville (1989) Hartig net structure of ectomycorrhizae synthesized between Laccaria bicolor (Tricholomataceae) and two hosts: Betula alleghaniensis (Betulaceae) and Pinus resinosa (Pinaceae). Am. J. Bot. 76(11): 1654-1667.
Melin, E. (1921) Uber die Mykorrhizenpilze von Pinus silvestris L. und. Picea abies (L.) Karst. Svensk. Bot. Tidskr. 15: 192-203.
Melin, E. (1925) Untersuchungen über die Bedeutung der Baummykorriza G. Fischer, Jena, 152 p.
Melin, E. (1927) Studier Över barrtradsplants utvecking i olika råhumusformer. (German summary) Medd. Skogoforsoks anstalt, Stockholm 23: 433.
Melin, E. (1963) Some effects of forest tree roots on mycorrhizal Basidiomycetes. In: Symbiotic Associations ( Eds B. Mosse and P. S. Nutman 1963 ) pp. 124-145.
Melin, E. and H. Nilson (1957) Transport of C-14 labelled photosynthate to the fungal associate of pine mycorrhiza. Svenk. Bot. Tidskr 51: 165-186.
Melin, E., H. Nilson and E. Hacskaylo (1958) Translocation of cations to seedlings of Pinus virginiana through mycorrhizal mycelia. Bot. Gaz. 119: 241-246.
Mikolia, P. (1962) The bright yellow mycorrhiza of raw humus. XII Internat. Union Forest Research Organizations Cong. Proc. Part I. 24-49.
Mikolia, P. (1969) Mycorrhizal fungi of exotic forest plantations. Karsteina 10: 169-175.
Mischiati, P. and A. Fontana (1993) In vitro culture of Tuber magnatum mycelium isolated from mycorrhizas. Mycol. Res. 97(1): 40-44.
Molina, R. (1979) Pure culture synthesis and host specificity of red alder mycorrhizae. Can. J. Bot. 57: 1223-1228.
Molina, R. (1981) Ectomycorrhizal specificity in the genus Alnus. Can. J. Bot. 59: 325-334.
Moore, D. (1998) Funfal morphogenesis. Developmental and cell biology series. Cambridge, UK: Cambridge University Press.
Morrison, T. M. (1962) Absorption of phosphorus from soils by mycorrhizal plants. New Phytol. 61(1): 10-20.
Morrison, T. M. (1963) Uptake of sulfur by excised beech mycorrhizas. New Phytol. 62(1): 44-49.
Morton, J. B. (1990) Evolutionary relationships among arbuscular mycorrhizal fungi in the Endogonaceae. Mycologia 82: 192-207.
Nara, K., H. Nakaya and T. Hogetsu (2003) Ectomycorrhizal sporocarp succession and production during early primary succession on Mount Fuji. New Phytol. 158(1): 193-206.
Neuner-Plattner, I., T. Grabher, I. R. Hall, G. Stoffler, F. Griffin and K. Haselwandter (1999) A comparison of immunological assays for the identification of Tuber spp. and other edible ectomycorrhizal fungi. Myco. Res. 103(4): 403-412.
Norkrans, B. (1950) Studies in growth and cellulolytic enzymes of Tricholoma. Sym. Bot. Upsaliens 11: 1-126.
Palenzona, M. (1969) Sintesi micorrhizica tra Tuber aestivum Vitt., T. melanosporum Vitt. e semenzali di Corylus avellane L. Allionia 15: 121-131.
Palenzona, M. and A. Fontana (1979) Synthèse des mycorrhizes de Tuber magnatum Pico. avec semid de Quercus pubescens Willd. Mushroom Sci. 10: 1007-1012.
Palenzona, M., G. Chevalier and A. Fontana (1972) Sintesi micorrhizica tra i miceli in coltura di Tuber brumale, T. melanosporum, T. rufum e semenzali di coniferi e latifoglie. Allionia 18: 41-52.
Pera, J., J. Parladé and I. F. Alvarez (1996) Inoculation of containerized Pseudotsuga menziesii and Pinus pinaster seedlings with spores of five species of ectomycorrhizal fungi. Mycorrhiza 6: 237-245.
Pinkas, Y., M. Maimon, E. Shabi, S. Elisha, Y. Shmulewich and S. Freeman (2000) Inoculation, isolation and identification of Tuber melanosporum from old and new oak hosts in Israel. Mycil. Res. 104(4): 472-477.
Pirazzi, R. (1990) Micorrizazione artificiale con miceli isolati in vitro di Tuber melanosporum Vittad. e T. magnatum Pico. Atti Del 2° Congresso Internazionale Sul Tartufo – Spoleto, 24–27 Novembre 1988, 173-184.
Plattner, I. and I. R. Hall (1995) Parasitism of non-host plants by the mycorrhizal fungus Tuber melanosporum Vitt. Mycol. Res. 99: 1367-1370.
Potenza, L., A. Amicucci, I. Rossi, F. Palma, R. De Bellis, P. Cardoni and V. Stocchi (1994) Identification of Tuber magnatum pico DNA markers by RAPD analysis. Biotech. Tech. 8: 93-98.
Pyare, S. and W. S. Longland (2001) Mechanisms of truffle detection by northern flying squirrels. Canadian Journal of Zoology 79(6): 1007-1015.
Rauscher, T., R. Agerer and G. Chevalier (1995) Ekromycorrhizen von Tuber melanosporum, Tuber mesentericum und Tuber rufum ( Tuberales ) an Corylus avellana. Nove Hedwigia Kryptogamenkd. 61: 282-322.
Read, D. J. (1998) Mycorrhiza-the state of the art. In: Varma A, Hock B (eds) Mycorrhiza: Structure function, molecular biology and biotechnology, 2nd edn. Springer, Berlin Heidelberg New York.
Richter, D. L. and J. N. Bruhn (1989) Field survival of containerized red and jack pine seedlings inoculated with mycelial slurries of ectomycorrhizal fungi. New Forest 3: 247-258.
Rojas, N. S., D. A. Perry, C. Y. Li and L. M. Ganio (2002) Interactions among soil biology, nutrition, and performance of actinorhizal plant species in the H. J. Andrews Experimental Forest of Oregon. Applied Soil Ecology 19: 13-26 .
Rubini, A., F. Paolocci, B. Granetti and S. Acrioni (2001) Morphological characterization of molecular-typed Tuber magnatum ectomycorrhizae. Mycorrhiza 11: 179-185.
Samson, J. and J. A. Fortin (1988) Structural characterization of Fuscoboletinus and Suillus ectomycorrhizae synthesized on Larix laicina. Mycologia 80(3): 382-392.
Sánchez, F., M. Honrubia and P. Torres (2001) Effects of pH, water stress, and temperature on in vitro cultures of ectomycorrhizal fungi from Mediterranean forests. Cryptogamie Mycol. 22(4): 243-258.
Seviour, R. J., D. Hamilton and G. A. Chilvers (1978) Scanning electron microscopy of surface features of Eucalypt mycorrrhizas. New Phytol. 80(1): 153-156.
Scannarini, S. (1968) Sull ultrastruttura delle ectomicrorrize II. Ultrastruttura di una microriza di Ascomycete Tuber albidum×Pinus strobes. Allionia 14: 77.
Schenck, N. C. and M. K. Kellem (1978) The influence of vesicular-arbuscular mycorrhizae on disease development. Bull. 799 Florida Agric. Exp. Station No.798: 1-16.
Schenck, N. C., W. H. Ridings and J. A. Cornell (1977) Interaction of two vesicular-arbuscular mycorrhizal fungi and Phytophthora parasitica on two citrus root stocks. Abstr. of the 3rd N. Amer. Conf. on Mycorrhizae, p. 9.
Sharma, A., K. Johri and N. Gianinazzi (1992) Vesicular-arbuscular mycorrhizae in relation to plant disease. World J. Microbiol. and Biotechnol 8(6): 559-563.
Shuja, N., U. Gilani and A. G. Khan (1971) Mycorrhizal association in some angiosperm trees around New University campus, Lahore. Fakistan J. Forestry. (21): 367-373.
Skinner, M. F. and G. D. Bowen (1974) The uptake and translocation of phosphate by mycelial strands of pine mycorrhizas. Soil Biochem 6: 53-56.
Smith, S. E. and D. J. Read (1997) Mycorrhizal Symbiosis. London, UK, Academic Press.
Stroo, H. E., P. B. Reich, A. W. Schoettle and R. G. Amunson (1988) Effects of ozone and acid rain on white pine (Pinus strobus) seedlings grown in five soils. II. Mycorrhizal infection. Canadian Journal of Botany 66: 1510-1516.
Theodorou, C. (1978) Soil moisture and the mycorrhizal association of Pinus radiata. Soil Biol. Biochem. 10: 33-37.
Theodorou, C. and G. D. Bowen (1970) Mycorrhizal responses of radiate pine in experiments with different fungi. Aust. Forest 34: 183.
Theodorou, C. and G. D. Bowen (1971) Influence of temperature on the mycorrhizal associations of Pinus Radiata D. Don. Aust. J. Bot. 19(1): 13-20.
Theodorou, C. and P. Reddell (1991) In vitro synthesis of ectomycorrhizas on Casuarinaceae with a range of mycorrhizal fungi. New Phytol. 118(2): 279-288.
Trappe, J. M. (1967a) Principles of classifying ectotrophic mycorrhizae for identification of fungus symbionits. Proc. Int. Union. For. Res. Organ. 14th, Sect. 24: 46-59.
Trappe, J. M. (1967b) Pure culture synthesis of Douglas-fir mycorrhizae with species of Hebeloma, Suillus, Rhizopogon, Astraeus. For. Sci. 13: 121-130.
Trappe, J. M. and R. F. Strand (1969) Mycorrhizal deficiency in a Douglas-fir region nursery. For. Sci. 15: 381-389.
Trappe, J. M., R. Molina and M. Castellano (1984) Reation of gungi and mycorrhiza formation to pesticides. Ann. Rev. Phytolpathol 22: 331-359.
Tedersoo, L., U. Kõljalg, N. Hallenberg and K-H. Larsson (2003)Fine scale distribution of ectomycorrhizal fungi and roots across substrate layers including coarse woody debris in a mixed forest. New Phytol. 159: 153-165.
Wallander, H. and J. E. Nylund (1992) Effects of excess nitrogen and phosphorus starvation on the extrametrical mycelium of ecto-mycorrhizas of Pinus sylvestris L. New Phytol. 120(4): 495-503.
Warmbrodt, R. D. and W. Eschrich (1985) Studies on the mycorrhizas of Pinus sylvestris L. produced in vitro with the Basidiomycestes Suillus variegates (Sw. ex Fr.) O. Kuntze. II. Ultrastructural aspects of the endodermis and vasculas cylinder of the mycorrhizal rootlots. New Phytol. 100(3): 403-418.
Wills, B. J. and A. J. Cole (1978) A scanning electron microscopy study of ‘vesicular bodies’ in mycorrhizal roots of Pinus mugo (Turra). New Phytol. 80(3): 579-582.
Woodhead, S. H., J. W. Gerdemann, and J. D. Paxton (1977) Mycorrhizal infection of soybesn roots reduces Phytophthora root rot. Abstr. Of the 3rd N. Amer. Conf. on Mycorrhizae, p. 10.
Wu, B., K. Nara and T. Hogetsu (1999) Competition between ectomycorrhizal fungicolonizing Pinus densiflora. Mycorrhiza 9: 151-159.
Yano-Melo, A. M., O. J. S. Júnior, J. M. Lima –Filho, N. F. Melo and L. C. Maia (1999) Effect of arbuscular mycorrhizal fungi on the acclimatization of micropropagated banana plantlets. Mycorrhiza 9: 119-123.
Zak, B. (1973) Classification of ectomycorrhizae. In: Ectomycorrhizae-their ecology and physicalogy (G.C. Marks and T.T. Kozlowski, 1973. eds.) pp. 23-78. Academic Press. N.Y. 444 pp.
Zak, B. (1976) Pure culture synthesis of pacific madrone ectendomycorrhiza. Mycologia 68: 362-369.
Zambonelli, A., S. Salomoni and A. Pisi (1993) Caratterizzazione anatomo-morphologica delle micorrize di Tuber spp. Su Quercus pubescens Willd. Micol Ital. 3: 73-90.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29320-
dc.description.abstract塊菌為世界最珍貴之菌根食用菌,因經濟價值高,最近常被外生菌根研究者作為研究之材料。因此,本研究主要的目的為:(1)確定數種塊菌菌落生長之最適溫度及最高致死溫度;(2)確定夏塊菌(Tuber aestivum)與青剛櫟及台灣二葉松之半無菌苗共生形成的菌根形態。
首先將已分離成功之冬塊菌、印度塊菌、台灣塊菌、擬外孔塊菌、法國黑孢塊菌以及意大利白塊菌,6種塊菌菌落繼代培養作為培養基與溫度試驗之材料。將各塊菌菌落分別接種於YMT及YpSs培養基上,進行培養基之選定。接著,以YpSs培養基做為基質,將接種好之培養皿分別置於15℃、20℃、25℃、30℃以及34℃生長控制箱中培養至其中生長最快之一種菌落接近布滿整個培養皿時即終止此試驗;以33℃、34℃、35℃及36℃之溫度進行最高致死溫度之試驗,俾找出各塊菌菌落之最高致死溫度。以夏塊菌之孢子懸浮液分別接種台灣二葉松及青剛櫟之半無菌苗,待其菌根形成後,以立體顯微鏡、光學顯微鏡及掃描式電子顯微鏡進行菌根形態之觀察。
結果顯示不同培養基之間只有擬外孔塊菌菌落呈現顯著差異,即YMT中生長之菌落>YpSs中生長之菌落;在溫度試驗中,各塊菌菌落的直徑生長均以25℃生長最佳,34℃生長最差,其溫度處理之菌落生長優劣順序為25℃≧20℃>30℃≧15℃>34℃。其中,冬塊菌(Tuber brumale)於各溫度下,其菌落生長最佳且快速,其他塊菌菌落在34℃下均停止生長;35℃為意大利白塊菌與印度塊菌菌落之最高致死溫度,36℃是法國黑孢塊菌與台灣塊菌之最高致死溫度。
就菌落顏色言,無論是培養基試驗或溫度試驗其菌落大部分為白色。YpSs培養基上大多數的塊菌菌落生長均勻且緻密,YMT培養媒質則較稀且薄;溫度試驗中,各溫度下的塊菌菌落,除了30℃之印度塊菌為橘褐色,其餘皆呈現白色菌落,所有菌落均會分泌色素;擬外孔塊菌可耐短期的高溫,冬塊菌於36℃中始停止生長。
立體顯微鏡下觀察到夏塊菌之外生菌根有稀疏纖毛狀或羊毛狀之剛毛,分布於菌根頂端或前半部;菌根之顏色變化由幼至老能從淡黃色轉變為黃褐色至深褐色;其菌根形態與台灣二葉松形成分叉或單根棒狀,而與青剛櫟則形成單根棒狀或規則羽狀,菌根長度為500~3000 μm。
以光學顯微鏡觀察,發現其自菌毯延伸出的菌絲為波浪狀、具隔膜、該菌絲上有突起及菌絲囊形成。在掃描式電子顯微鏡下,發現其自菌毯延伸出的菌絲與囊狀體有菌絲融合之現象,菌絲表面平坦、葱形菌絲的形成、具發育良好菌毯、哈替氏網侵入至第一層皮層細胞,哈替氏網於皮層細胞壁間能形成指狀菌絲。
夏塊菌菌根形態特徵於光學顯微鏡下發現之突起與掃描式電子顯微鏡下發現之特徵相符,其菌根直徑為116~300 μm,菌絲直徑為1~2.3 μm,菌毯厚度為12~20 μm,菌毯為多角形或略圓形之細胞組成,屬規則密絲組織。
zh_TW
dc.description.abstractSome truffles are the most precious edible ectomycorrhizal muschrooms and with considerable economic importance in the world. Recently they were often used as materials for ectomycorrhizal research. Therefore, the purposes of this study were (1) to ascertain the optimum and the highest deadly temperature to the colony growth of some Tuber species, and (2) to describe the ectomycorrhizal morphology formed by Tuber aestivum on Cyclobalanopsis glauca and Pinus taiwanensis with semi-aseptic synthesis.
The materials used for culture medium and temperature test were the isolated Tuber brumale, Tuber indicum, Tuber formosanum, Tuber pseudo-excavatum, Tuber melanosoprum, and Tuber magnatum. The above-described six Tuber species were inoculated on the YMT and YpSs culture medium to compare which medium was better for their colony growth. The temperature treatment for each colony growth of each truffle species was set at 15℃, 20℃, 25℃, 30℃ and 34℃, respectively. Each treatment was triplicated. This test ended when one of the rapidly grown Tuber sp. colony reached to the edge of petri dish. The highest deadly temperature test was set at 33℃, 34℃, 35℃ and 36℃.
The spore suspension of T. aestivum was used to inoculate the semi-aseptic seedlings of C. glauca and P. taiwanensis. The mycorrhizal morphology was observed under stereomicroscope, light microscope and scanning electron microscope.
The results showed that only the colony growth of T. pseudo-excavatum had significant difference (P<0.05) between the YMT and YpSs medium. The most optimum colony growth temperature was at 25℃ for all Tuber species tested and at 34℃ the worst. The order for the colony growth magnitude at different temperatures was 25℃≧20℃>30℃≧15℃>34℃. Among which, the colony growth of T. brumale was the fastest. Except T. brumale, the colony growth of all other species ceased at 34℃. The highest deadly temperature was 35℃ for Tuber magnatum and Tuber indicum, and 36℃ for Tuber melanosoprum and Tuber formosanum.
In terms of colony color, most of their colonies were white in spite of culture medium test or temperature test. The colony growth was uniform and dense on the YpSs medium, but sparse and thin on the YMT medium. The colony color of all Tuber sp. is white, except the colony color of T. indicum at 30℃ was orange-brown. All colonies could secrete pigment. T. pseudo-excavatum could endure short-period high temperature, and the colony growth of T. brumale ceased at 36℃.
The ectomycorrhizal characteristics of Tuber aestivum observed under stereomicroscope were as followings: simple, regularly pinnate (for C. glauca only) or dichotomous (for P. taiwanensis only), 500~3000 μm in length, 114~300 μm in diameter; light yellow in the young age, yellow brown to brown when mature, dark brown in the wilted age; fungal mantle smooth or with sparse yellowish-golden or wooly yellowish setae on mycorrhizal top.
Under light microscope, the ectomycorrhizal characteristics of Tuber aestivum were: with wave-like extending hyphae, with septal hyphae, setae with vesicle or wewithout, hyphae sometimes with small warts.
The characteristics of ectomycorrhizae observed under scanning electron microscope re: fungus mantle 12~20 μm thick, regular synenchyma; hyphal surface smooth, 1~2.3 μm in diameter, occasionally with cystida at the top or with hyphal anastomoses. Hartig nets reached to the first layer of cortex cells, formed finger-like hyphae in the cortical cell wall.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T01:04:31Z (GMT). No. of bitstreams: 1
ntu-96-R94625018-1.pdf: 1470437 bytes, checksum: a96fe76ae687a29b02c3591735dde5dd (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents目 錄
中文摘要.................................................i
英文摘要.....................................................iii
第一章 前言............................................1
第二章 前人研究........................................3
2.1菌根的類型............................................3
2.2菌根的功能............................................4
2.3影響菌根形成的因子....................................5
2.3.1土壤溫度與pH值......................................6
2.3.2土壤含水量與土壤中的養分............................7
2.3.3其他因子............................................8
2.4菌根的鑑定............................................8
2.4.1外生菌根的形態分類..................................9
2.4.2外生菌根的鑑定與合成...............................13
2.4.3塊菌菌根的合成.....................................14
2.4.4塊菌菌根的鑑定.....................................15
2.5培養基對菌落生長的影響...............................17
2.6溫度對菌落生長的影響.................................18
第三章 材料與方法.....................................20
3.1溫度對塊菌菌落生長之效應.............................20
3.1.1塊菌菌絲分離與繼代培養.............................20
3.1.2培養基試驗.........................................20
3.1.3溫度試驗...........................................20
3.1.4各塊菌之最高致死溫度...............................21
3.1.5統計分析...........................................22
3.2塊菌菌落之菌絲特徵觀察...............................22
3.3夏塊菌之外生菌根合成試驗.............................22
3.3.1半無菌苗培育.......................................22
3.3.2塊菌之接種源.......................................23
3.3.3青剛櫟和台灣二葉松與夏塊菌之半無菌合成.............23
3.3.4立體顯微鏡之觀察...................................23
3.3.5光學顯微鏡之觀察...................................24
3.3.6掃描式電子顯微鏡之觀察.............................24
第四章 結果............................................26
4.1 YMT與YpSs培養基之菌落生長效應........................26
4.2溫度對不同塊菌之生長效應..............................29
4.3溫度對菌落形態之影響..................................35
4.4塊菌之最高致死溫度....................................36
4.5菌落之菌絲特徵........................................38
4.6夏塊菌之外生菌根形態特徵..............................40
4.6.1立體顯微鏡下特徵....................................40
4.6.2光學顯微鏡下之特徵..................................42
4.6.3掃描式電子顯微鏡下之特徵............................44
第五章 討論............................................47
5.1 YMT與YpSs培養基對塊菌菌落生長之效應..................47
5.2培養基成分對菌落生長之影響............................48
5.3溫度對塊菌菌落生長之效應..............................49
5.4不同塊菌菌落的菌絲特徵............................... 53
5.5夏塊菌之外生菌根..................................... 55
第六章 結論............................................60
參考文獻.................................................62
附錄.....................................................77

圖目錄
圖1. 六種類型菌根菌的鑑定特徵............................4
圖2. 外生菌根菌毯表面特徵...............................11
圖3. 外生菌根菌毯之切面特徵.............................11
圖4. 外生菌根的分枝形式.................................12
圖5. 六種塊菌菌落於不同培養基下之生長趨勢...............26
圖6. 六種塊菌菌落分別於YpSs與YMT培養基之生長差異........27
圖7. 不同培養基之六種塊菌菌落生長情形...................28
圖8. 各菌種於不同溫度處理下菌落直徑生長曲線.............31
圖9. 所有測試塊菌在不同溫度下之菌落總平均生長量.........32
圖10. 塊菌在各溫度累積下之菌落總平均生長量..............33
圖11. 塊菌在不同溫度處理之菌落直徑生長..................34
圖12. 溫度與菌落直徑生長之趨勢..........................35
圖13.~14. 不同溫度處理之各菌落生長情形..................36
圖15.~17. 菌落菌絲觀察...................................38
圖18.~20. 菌落菌絲觀察...................................39
圖21.~26. 夏塊菌外生菌根型態之立體顯微鏡觀察.............41
圖27.~29. 夏塊菌外生菌根型態之立體顯微鏡觀察.............42
圖30~35. 夏塊菌外生菌根型態之光學顯微鏡觀察.............43
圖36~37. 夏塊菌外生菌根型態之光學顯微鏡觀察.............44
圖38~43. 夏塊菌外生菌根型態之掃描式電子顯微鏡觀察.......45
圖44. 夏塊菌外生菌根型態之掃描式電子顯微鏡觀察.......44

表目錄
表1. 培養基之配方........................................21
表2. 六種塊菌菌落於YpSs與YMT之不同培養基生長30天之比較...28
表3. 各塊菌於不同溫度處理下對其菌落直徑生長之比較........30
表4. 溫度與菌落直徑之關係................................34
表5. 塊菌菌落於高溫處理之生長情形........................37
表6. 高溫處理後置於20℃之塊菌菌落恢復情形................37
dc.language.isozh-TW
dc.title溫度對塊菌菌落生長之效應及夏塊菌之外生菌根合成zh_TW
dc.titleEffect of Temperature on the Colony Growth of Tuber spp. and Ectomycorrhizal Synthesis of Tuber aestivumen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張東柱,顏江河,張焜標,李明仁
dc.subject.keyword塊菇,溫度,菌落生長,夏塊菌,外生菌根,zh_TW
dc.subject.keywordtruffles,temperature,colony growth,Tuber aestivum,ectomycorrhize.,en
dc.relation.page76
dc.rights.note有償授權
dc.date.accepted2007-07-24
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept森林環境暨資源學研究所zh_TW
顯示於系所單位:森林環境暨資源學系

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  目前未授權公開取用
1.44 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved