請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29263
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 呂紹俊 | |
dc.contributor.author | Zhong-Hao Chien | en |
dc.contributor.author | 簡仲豪 | zh_TW |
dc.date.accessioned | 2021-06-13T01:03:34Z | - |
dc.date.available | 2016-10-05 | |
dc.date.copyright | 2011-10-05 | |
dc.date.issued | 2011 | |
dc.date.submitted | 2011-08-03 | |
dc.identifier.citation | Ahmed, M.H., and Byrne, C.D. (2007). Modulation of sterol regulatory element binding proteins (SREBPs) as potential treatments for non-alcoholic fatty liver disease (NAFLD). Drug Discov Today 12, 740-747.
Altmann, S.W., Davis, H.R., Jr., Zhu, L.J., Yao, X., Hoos, L.M., Tetzloff, G., Iyer, S.P., Maguire, M., Golovko, A., Zeng, M., et al. (2004). Niemann-Pick C1 Like 1 protein is critical for intestinal cholesterol absorption. Science 303, 1201-1204. Awazawa, M., Ueki, K., Inabe, K., Yamauchi, T., Kubota, N., Kaneko, K., Kobayashi, M., Iwane, A., Sasako, T., Okazaki, Y., et al. (2011). Adiponectin enhances insulin sensitivity by increasing hepatic IRS-2 expression via a macrophage-derived IL-6-dependent pathway. Cell Metab 13, 401-412. Barham, D., and Trinder, P. (1972). An improved colour reagent for the determination of blood glucose by the oxidase system. Analyst 97, 142-145. Basch, E., Gabardi, S., and Ulbricht, C. (2003). Bitter melon (Momordica charantia): a review of efficacy and safety. Am J Health Syst Pharm 60, 356-359. Belury, M.A. (2002). Dietary conjugated linoleic acid in health: physiological effects and mechanisms of action. Annu Rev Nutr 22, 505-531. Biddinger, S.B., and Kahn, C.R. (2006). From mice to men: insights into the insulin resistance syndromes. Annu Rev Physiol 68, 123-158. Brown, M.S., and Goldstein, J.L. (2008). Selective versus total insulin resistance: a pathogenic paradox. Cell Metab 7, 95-96. Carmona, M.C., Louche, K., Nibbelink, M., Prunet, B., Bross, A., Desbazeille, M., Dacquet, C., Renard, P., Casteilla, L., and Penicaud, L. (2005). Fenofibrate prevents Rosiglitazone-induced body weight gain in ob/ob mice. Int J Obes (Lond) 29, 864-871. Castelein, H., Declercq, P.E., and Baes, M. (1997). DNA binding preferences of PPAR alpha/RXR alpha heterodimers. Biochem Biophys Res Commun 233, 91-95. Castro, J., Amigo, L., Miquel, J.F., Galman, C., Crovari, F., Raddatz, A., Zanlungo, S., Jalil, R., Rudling, M., and Nervi, F. (2007). Increased activity of hepatic microsomal triglyceride transfer protein and bile acid synthesis in gallstone disease. Hepatology 45, 1261-1266. Chan, W.Y., Tam, P.P., and Yeung, H.W. (1984). The termination of early pregnancy in the mouse by beta-momorcharin. Contraception 29, 91-100. 59 Chao, C.Y., and Huang, C.J. (2003). Bitter gourd (Momordica charantia) extract activates peroxisome proliferator-activated receptors and upregulates the expression of the acyl CoA oxidase gene in H4IIEC3 hepatoma cells. J Biomed Sci 10, 782-791. Chaput, E., Saladin, R., Silvestre, M., and Edgar, A.D. (2000). Fenofibrate and rosiglitazone lower serum triglycerides with opposing effects on body weight. Biochem Biophys Res Commun 271, 445-450. Chen, Q., Chan, L.L., and Li, E.T. (2003). Bitter melon (Momordica charantia) reduces adiposity, lowers serum insulin and normalizes glucose tolerance in rats fed a high fat diet. J Nutr 133, 1088-1093. Chen, Q., and Li, E.T. (2005). Reduced adiposity in bitter melon (Momordica charantia) fed rats is associated with lower tissue triglyceride and higher plasma catecholamines. Br J Nutr 93, 747-754. Cicero, A.F.G., Derosa, G., and Gaddi, A. (2004). What do herbalists suggest to diabetic patients in order to improve glycemic control? Evaluation of scientific evidence and potential risks. Acta Diabetol 41, 91-98. Cummings, M.H., Watts, G.F., Umpleby, A.M., Hennessy, T.R., Naoumova, R., Slavin, B.M., Thompson, G.R., and Sonksen, P.H. (1995). Increased hepatic secretion of very-low-density lipoprotein apolipoprotein B-100 in NIDDM. Diabetologia 38, 959-967. Davies, J.P., Scott, C., Oishi, K., Liapis, A., and Ioannou, Y.A. (2005). Inactivation of NPC1L1 causes multiple lipid transport defects and protects against diet-induced hypercholesterolemia. J Biol Chem 280, 12710-12720. Davis, H.R., Jr., Zhu, L.J., Hoos, L.M., Tetzloff, G., Maguire, M., Liu, J., Yao, X., Iyer, S.P., Lam, M.H., Lund, E.G., et al. (2004). Niemann-Pick C1 Like 1 (NPC1L1) is the intestinal phytosterol and cholesterol transporter and a key modulator of whole-body cholesterol homeostasis. J Biol Chem 279, 33586-33592. Denechaud, P.D., Dentin, R., Girard, J., and Postic, C. (2008). Role of ChREBP in hepatic steatosis and insulin resistance. FEBS Lett 582, 68-73. Dentin, R., Benhamed, F., Hainault, I., Fauveau, V., Foufelle, F., Dyck, J.R., Girard, J., and Postic, C. (2006). Liver-specific inhibition of ChREBP improves hepatic steatosis and insulin resistance in ob/ob mice. Diabetes 55, 2159-2170. Dentin, R., Pegorier, J.P., Benhamed, F., Foufelle, F., Ferre, P., Fauveau, V., Magnuson, M.A., Girard, J., and Postic, C. (2004). Hepatic glucokinase is required for the 60 synergistic action of ChREBP and SREBP-1c on glycolytic and lipogenic gene expression. J Biol Chem 279, 20314-20326. Diehl, A.M. (2002). Nonalcoholic steatosis and steatohepatitis IV. Nonalcoholic fatty liver disease abnormalities in macrophage function and cytokines. Am J Physiol Gastrointest Liver Physiol 282, G1-5. Donnelly, K.L., Smith, C.I., Schwarzenberg, S.J., Jessurun, J., Boldt, M.D., and Parks, E.J. (2005). Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin Invest 115, 1343-1351. Duan, L.P., Wang, H.H., and Wang, D.Q. (2004). Cholesterol absorption is mainly regulated by the jejunal and ileal ATP-binding cassette sterol efflux transporters Abcg5 and Abcg8 in mice. J Lipid Res 45, 1312-1323. Duvnjak, M., Lerotic, I., Barsic, N., Tomasic, V., Virovic Jukic, L., and Velagic, V. (2007). Pathogenesis and management issues for non-alcoholic fatty liver disease. World J Gastroenterol 13, 4539-4550. Fleury, C., Neverova, M., Collins, S., Raimbault, S., Champigny, O., Levi-Meyrueis, C., Bouillaud, F., Seldin, M.F., Surwit, R.S., Ricquier, D., et al. (1997). Uncoupling protein-2: a novel gene linked to obesity and hyperinsulinemia. Nat Genet 15, 269-272. Gill, S., Chow, R., and Brown, A.J. (2008). Sterol regulators of cholesterol homeostasis and beyond: the oxysterol hypothesis revisited and revised. Prog Lipid Res 47, 391-404. Guilherme, A., Virbasius, J.V., Puri, V., and Czech, M.P. (2008). Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat Rev Mol Cell Biol 9, 367-377. Hamaguchi, M., Kojima, T., Takeda, N., Nakagawa, T., Taniguchi, H., Fujii, K., Omatsu, T., Nakajima, T., Sarui, H., Shimazaki, M., et al. (2005). The metabolic syndrome as a predictor of nonalcoholic fatty liver disease. Ann Intern Med 143, 722-728. Jakulj, L., Vissers, M.N., van Roomen, C.P., van der Veen, J.N., Vrins, C.L., Kunne, C., Stellaard, F., Kastelein, J.J., and Groen, A.K. (2010). Ezetimibe stimulates faecal neutral sterol excretion depending on abcg8 function in mice. FEBS Lett 584, 3625-3628. Jia, W., Gao, W., and Tang, L. (2003). Antidiabetic herbal drugs officially approved in China. Phytother Res 17, 1127-1134. 61 Johnson, E.F., Palmer, C.N., Griffin, K.J., and Hsu, M.H. (1996). Role of the peroxisome proliferator-activated receptor in cytochrome P450 4A gene regulation. Faseb J 10, 1241-1248. Jou, J., Choi, S.S., and Diehl, A.M. (2008). Mechanisms of disease progression in nonalcoholic fatty liver disease. Semin Liver Dis 28, 370-379. Knobler, H., Schattner, A., Zhornicki, T., Malnick, S.D., Keter, D., Sokolovskaya, N., Lurie, Y., and Bass, D.D. (1999). Fatty liver--an additional and treatable feature of the insulin resistance syndrome. Qjm 92, 73-79. Lazo, M., and Clark, J.M. (2008). The epidemiology of nonalcoholic fatty liver disease: a global perspective. Semin Liver Dis 28, 339-350. Leatherdale, B.A., Panesar, R.K., Singh, G., Atkins, T.W., Bailey, C.J., and Bignell, A.H. (1981). Improvement in glucose tolerance due to Momordica charantia (karela). Br Med J (Clin Res Ed) 282, 1823-1824. Lee, C.H., Olson, P., Hevener, A., Mehl, I., Chong, L.W., Olefsky, J.M., Gonzalez, F.J., Ham, J., Kang, H., Peters, J.M., et al. (2006). PPARdelta regulates glucose metabolism and insulin sensitivity. Proc Natl Acad Sci U S A 103, 3444-3449. Lee-Huang, S., Huang, P.L., Bourinbaiar, A.S., Chen, H.C., and Kung, H.F. (1995). Inhibition of the integrase of human immunodeficiency virus (HIV) type 1 by anti-HIV plant proteins MAP30 and GAP31. Proc Natl Acad Sci U S A 92, 8818-8822. Lee-Huang, S., Huang, P.L., Sun, Y., Chen, H.C., Kung, H.F., and Murphy, W.J. (2000). Inhibition of MDA-MB-231 human breast tumor xenografts and HER2 expression by anti-tumor agents GAP31 and MAP30. Anticancer Res 20, 653-659. Letteron, P., Sutton, A., Mansouri, A., Fromenty, B., and Pessayre, D. (2003). Inhibition of microsomal triglyceride transfer protein: another mechanism for drug-induced steatosis in mice. Hepatology 38, 133-140. Leung, L., Birtwhistle, R., Kotecha, J., Hannah, S., and Cuthbertson, S. (2009). Anti-diabetic and hypoglycaemic effects of Momordica charantia (bitter melon): a mini review. Br J Nutr 102, 1703-1708. Lipka, L.J. (2003). Ezetimibe: a first-in-class, novel cholesterol absorption inhibitor. Cardiovasc Drug Rev 21, 293-312. Liu, Q., Bengmark, S., and Qu, S. (2010). The role of hepatic fat accumulation in pathogenesis of non-alcoholic fatty liver disease (NAFLD). Lipids Health Dis 9, 42. 62 McGarry, J.D., and Brown, N.F. (1997). The mitochondrial carnitine palmitoyltransferase system. From concept to molecular analysis. Eur J Biochem 244, 1-14. Michael, M.D., Kulkarni, R.N., Postic, C., Previs, S.F., Shulman, G.I., Magnuson, M.A., and Kahn, C.R. (2000). Loss of insulin signaling in hepatocytes leads to severe insulin resistance and progressive hepatic dysfunction. Mol Cell 6, 87-97. Moya-Camarena, S.Y., Vanden Heuvel, J.P., Blanchard, S.G., Leesnitzer, L.A., and Belury, M.A. (1999). Conjugated linoleic acid is a potent naturally occurring ligand and activator of PPARalpha. J Lipid Res 40, 1426-1433. Nakamuta, M., Fujino, T., Yada, R., Yada, M., Yasutake, K., Yoshimoto, T., Harada, N., Higuchi, N., Kato, M., Kohjima, M., et al. (2009). Impact of cholesterol metabolism and the LXRalpha-SREBP-1c pathway on nonalcoholic fatty liver disease. Int J Mol Med 23, 603-608. Oka, K., Kobayashi, K., Sullivan, M., Martinez, J., Teng, B.B., Ishimura-Oka, K., and Chan, L. (1997). Tissue-specific inhibition of apolipoprotein B mRNA editing in the liver by adenovirus-mediated transfer of a dominant negative mutant APOBEC-1 leads to increased low density lipoprotein in mice. J Biol Chem 272, 1456-1460. Oliver, W.R., Jr., Shenk, J.L., Snaith, M.R., Russell, C.S., Plunket, K.D., Bodkin, N.L., Lewis, M.C., Winegar, D.A., Sznaidman, M.L., Lambert, M.H., et al. (2001). A selective peroxisome proliferator-activated receptor delta agonist promotes reverse cholesterol transport. Proc Natl Acad Sci U S A 98, 5306-5311. Park, S.Y., Kim, H.J., Wang, S., Higashimori, T., Dong, J., Kim, Y.J., Cline, G., Li, H., Prentki, M., Shulman, G.I., et al. (2005). Hormone-sensitive lipase knockout mice have increased hepatic insulin sensitivity and are protected from short-term diet-induced insulin resistance in skeletal muscle and heart. Am J Physiol Endocrinol Metab 289, E30-39. Pessin, J.E., and Saltiel, A.R. (2000). Signaling pathways in insulin action: molecular targets of insulin resistance. J Clin Invest 106, 165-169. Postic, C., and Girard, J. (2008). The role of the lipogenic pathway in the development of hepatic steatosis. Diabetes Metab 34, 643-648. Saito, T., Misawa, K., and Kawata, S. (2007). 1. Fatty liver and non-alcoholic steatohepatitis. Intern Med 46, 101-103. 63 Salen, G., von Bergmann, K., Lutjohann, D., Kwiterovich, P., Kane, J., Patel, S.B., Musliner, T., Stein, P., and Musser, B. (2004). Ezetimibe effectively reduces plasma plant sterols in patients with sitosterolemia. Circulation 109, 966-971. Samuel, V.T., Liu, Z.X., Qu, X., Elder, B.D., Bilz, S., Befroy, D., Romanelli, A.J., and Shulman, G.I. (2004). Mechanism of hepatic insulin resistance in non-alcoholic fatty liver disease. J Biol Chem 279, 32345-32353. Sane, A.T., Sinnett, D., Delvin, E., Bendayan, M., Marcil, V., Menard, D., Beaulieu, J.F., and Levy, E. (2006). Localization and role of NPC1L1 in cholesterol absorption in human intestine. J Lipid Res 47, 2112-2120. Sartipy, P., and Loskutoff, D.J. (2003). Monocyte chemoattractant protein 1 in obesity and insulin resistance. Proc Natl Acad Sci U S A 100, 7265-7270. Saryusz-Wolska, M., Szymanska-Garbacz, E., Jablkowski, M., Bialkowska, J., Pawlowski, M., Kwiecinska, E., Omulecka, A., Borkowska, A., Ignaczak, A., Loba, J., et al. (2011). Rosiglitazone treatment in nondiabetic subjects with nonalcoholic fatty liver disease. Pol Arch Med Wewn 121, 61-66. Seo, Y.S., Kim, J.H., Jo, N.Y., Choi, K.M., Baik, S.H., Park, J.J., Kim, J.S., Byun, K.S., Bak, Y.T., Lee, C.H., et al. (2008). PPAR agonists treatment is effective in a nonalcoholic fatty liver disease animal model by modulating fatty-acid metabolic enzymes. J Gastroenterol Hepatol 23, 102-109. Seol, H.S., Sato, K., Matsubara, Y., Schneider, W.J., and Akiba, Y. (2007). Modulation of sterol regulatory element binding protein-2 in response to rapid follicle development in chickens. Comp Biochem Physiol B Biochem Mol Biol 147, 698-703. Shimano, H., Yahagi, N., Amemiya-Kudo, M., Hasty, A.H., Osuga, J., Tamura, Y., Shionoiri, F., Iizuka, Y., Ohashi, K., Harada, K., et al. (1999). Sterol regulatory element-binding protein-1 as a key transcription factor for nutritional induction of lipogenic enzyme genes. J Biol Chem 274, 35832-35839. Shimomura, I., Matsuda, M., Hammer, R.E., Bashmakov, Y., Brown, M.S., and Goldstein, J.L. (2000). Decreased IRS-2 and increased SREBP-1c lead to mixed insulin resistance and sensitivity in livers of lipodystrophic and ob/ob mice. Mol Cell 6, 77-86. Song, M.J., Kim, K.H., Yoon, J.M., and Kim, J.B. (2006). Activation of Toll-like receptor 4 is associated with insulin resistance in adipocytes. Biochem Biophys Res Commun 346, 739-745. 64 Suganami, T., Tanimoto-Koyama, K., Nishida, J., Itoh, M., Yuan, X., Mizuarai, S., Kotani, H., Yamaoka, S., Miyake, K., Aoe, S., et al. (2007). Role of the Toll-like receptor 4/NF-kappaB pathway in saturated fatty acid-induced inflammatory changes in the interaction between adipocytes and macrophages. Arterioscler Thromb Vasc Biol 27, 84-91. Tanaka, T., Yamamoto, J., Iwasaki, S., Asaba, H., Hamura, H., Ikeda, Y., Watanabe, M., Magoori, K., Ioka, R.X., Tachibana, K., et al. (2003). Activation of peroxisome proliferator-activated receptor delta induces fatty acid beta-oxidation in skeletal muscle and attenuates metabolic syndrome. Proc Natl Acad Sci U S A 100, 15924-15929. Tarantino, G., Savastano, S., and Colao, A. (2010). Hepatic steatosis, low-grade chronic inflammation and hormone/growth factor/adipokine imbalance. World J Gastroenterol 16, 4773-4783. Temel, R.E., Tang, W., Ma, Y., Rudel, L.L., Willingham, M.C., Ioannou, Y.A., Davies, J.P., Nilsson, L.M., and Yu, L. (2007). Hepatic Niemann-Pick C1-like 1 regulates biliary cholesterol concentration and is a target of ezetimibe. J Clin Invest 117, 1968-1978. Tennekoon, K.H., Jeevathayaparan, S., Angunawala, P., Karunanayake, E.H., and Jayasinghe, K.S. (1994). Effect of Momordica charantia on key hepatic enzymes. J Ethnopharmacol 44, 93-97. Tilg, H., and Moschen, A.R. (2006). Adipocytokines: mediators linking adipose tissue, inflammation and immunity. Nat Rev Immunol 6, 772-783. Tomas, E., Kelly, M., Xiang, X., Tsao, T.S., Keller, C., Keller, P., Luo, Z., Lodish, H., Saha, A.K., Unger, R., et al. (2004). Metabolic and hormonal interactions between muscle and adipose tissue. Proc Nutr Soc 63, 381-385. Tontonoz, P., Hu, E., and Spiegelman, B.M. (1994). Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor. Cell 79, 1147-1156. Tulenko, T.N., and Sumner, A.E. (2002). The physiology of lipoproteins. J Nucl Cardiol 9, 638-649. Uyeda, K., and Repa, J.J. (2006). Carbohydrate response element binding protein, ChREBP, a transcription factor coupling hepatic glucose utilization and lipid synthesis. Cell Metab 4, 107-110. 65 van der Veen, J.N., Kruit, J.K., Havinga, R., Baller, J.F., Chimini, G., Lestavel, S., Staels, B., Groot, P.H., Groen, A.K., and Kuipers, F. (2005). Reduced cholesterol absorption upon PPARdelta activation coincides with decreased intestinal expression of NPC1L1. J Lipid Res 46, 526-534. van der Veen, J.N., van Dijk, T.H., Vrins, C.L., van Meer, H., Havinga, R., Bijsterveld, K., Tietge, U.J., Groen, A.K., and Kuipers, F. (2009). Activation of the liver X receptor stimulates trans-intestinal excretion of plasma cholesterol. J Biol Chem 284, 19211-19219. van Heek, M., Austin, T.M., Farley, C., Cook, J.A., Tetzloff, G.G., and Davis, H.R. (2001a). Ezetimibe, a potent cholesterol absorption inhibitor, normalizes combined dyslipidemia in obese hyperinsulinemic hamsters. Diabetes 50, 1330-1335. van Heek, M., Compton, D.S., and Davis, H.R. (2001b). The cholesterol absorption inhibitor, ezetimibe, decreases diet-induced hypercholesterolemia in monkeys. Eur J Pharmacol 415, 79-84. Vrins, C.L., van der Velde, A.E., van den Oever, K., Levels, J.H., Huet, S., Oude Elferink, R.P., Kuipers, F., and Groen, A.K. (2009). Peroxisome proliferator-activated receptor delta activation leads to increased transintestinal cholesterol efflux. J Lipid Res 50, 2046-2054. Wang, M.Y., Lee, Y., and Unger, R.H. (1999). Novel form of lipolysis induced by leptin. J Biol Chem 274, 17541-17544. Wang, Y.X., Lee, C.H., Tiep, S., Yu, R.T., Ham, J., Kang, H., and Evans, R.M. (2003). Peroxisome-proliferator-activated receptor delta activates fat metabolism to prevent obesity. Cell 113, 159-170. Yasutake, K., Nakamuta, M., Shima, Y., Ohyama, A., Masuda, K., Haruta, N., Fujino, T., Aoyagi, Y., Fukuizumi, K., Yoshimoto, T., et al. (2009). Nutritional investigation of non-obese patients with non-alcoholic fatty liver disease: the significance of dietary cholesterol. Scand J Gastroenterol 44, 471-477. Yeh, M.M., and Brunt, E.M. (2007). Pathology of nonalcoholic fatty liver disease. Am J Clin Pathol 128, 837-847. Yessoufou, A., and Wahli, W. (2010). Multifaceted roles of peroxisome proliferator-activated receptors (PPARs) at the cellular and whole organism levels. Swiss Med Wkly 140, w13071. 66 Zheng, S., Hoos, L., Cook, J., Tetzloff, G., Davis, H., Jr., van Heek, M., and Hwa, J.J. (2008). Ezetimibe improves high fat and cholesterol diet-induced non-alcoholic fatty liver disease in mice. Eur J Pharmacol 584, 118-124. Zhou, Y.T., Shimabukuro, M., Koyama, K., Lee, Y., Wang, M.Y., Trieu, F., Newgard, C.B., and Unger, R.H. (1997). Induction by leptin of uncoupling protein-2 and enzymes of fatty acid oxidation. Proc Natl Acad Sci U S A 94, 6386-6390. Zhu, Y., Alvares, K., Huang, Q., Rao, M.S., and Reddy, J.K. (1993). Cloning of a new member of the peroxisome proliferator-activated receptor gene family from mouse liver. J Biol Chem 268, 26817-26820. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29263 | - |
dc.description.abstract | 非酒精性脂肪肝被認為是由非酗酒過量造成肝臟脂質累積超過肝重5%,產生的肝臟代謝性疾病。國內成人人口脂肪肝盛行率高達26~34%,許多臨床研究顯示,非酒精性脂肪肝與肥胖、糖尿病及代謝症候群相關疾病有高度正相關。當脂肪累積過多時會促使肝臟產生發炎,已知非酒精性脂肪肝透過促使肝臟發炎形成非酒精性脂肪肝炎,有機會進一步造成肝硬化、肝纖維化甚至肝功能喪失以及肝癌。目前為止,非酒精性脂肪肝的治療仍無有效的藥物,因此,透過保健食品預防非酒精性脂肪肝的形成,有相當大的開發空間。在許多國家包含亞洲、南美以及東非,苦瓜已有被用來治療糖尿病及相關的代謝疾病,因此苦瓜是否具有預防脂肪肝的功效是相當有趣並且值得深入研究的課題。
首先,在動物實驗的預實驗部份,我們以八週大C57BL/6雄性小鼠分為五組,分別餵與低脂控制飼料(每克飼料熱量約4大卡,12% 熱量來自脂質)、高脂高膽固醇飼料(每克飼料熱量約5大卡,54%熱量來自脂質)、高脂高膽固醇飼料+5%花蓮一號山苦瓜乾燥粉末、 高脂高膽固醇飼料+5%花蓮二號山苦瓜乾燥粉末、 高脂高膽固醇飼料+5%花蓮四號山苦瓜乾燥粉末;高脂高膽固醇飼料由脂質提供之熱量佔飼料總熱量的54%,碳水化合物佔飼料總熱量25%。餵食四週後犧牲,發現花蓮一號及花蓮四號山苦瓜組在體重、副睪脂肪、血糖、肝臟總膽固醇都有顯著的下降,在組織切片染色我們也觀察到肝臟脂肪顆粒的堆積顯著的減少了。此外,以RT-qPCR分析肝臟中與脂質合成相關基因的表現量,結果顯示,相較於高脂高膽固醇組,餵食花蓮一號及四號山苦瓜乾燥粉末組肝臟中SREBP-1c、FAS及ACC等的mRNA表現量明顯的較少,特別是花蓮四號山苦瓜組改善最為明顯。相較之下,花蓮二號山苦瓜組體重、附睪脂肪、肝脂累積、血糖值等則是沒有顯著改善,這也顯示了並非所有品系的山苦瓜皆具有預防脂肪肝的功效。但由於飼料中添加苦瓜粉末使攝食量明顯降低,因此不能排除攝食量減少的影響。 由於在第一次動物實驗中觀察到餵食苦瓜乾燥粉末能有效減少肝臟中膽固醇的累積,為了探討膽固醇在非酒精性脂肪肝的形成是否扮演重要的角色,並控制攝食量。在第二次動物實驗的部份,我們將九週大之C57BL/6雄性小鼠分為七組,以高 IV 脂飼料作為控制組,其他組別分別為高脂高膽固醇組、高脂高膽固醇+2.5%花蓮一號山苦瓜乾燥粉末組、 高脂高膽固醇+5%花蓮一號山苦瓜乾燥粉末組、 高脂高膽固醇+2.5%花蓮四號山苦瓜乾燥粉末組、高脂高膽固醇+5%花蓮四號山苦瓜乾燥粉末組 、高脂高膽固醇+Ezetimibe組,以上七組脂質提供之熱量皆佔飼料總熱量約54%。經過兩週適應期,使其適應配方飼料後,再以實驗飼料以pair-feeding的方式餵養四週。餵食山苦瓜乾燥粉末可顯著降低血糖值及肝臟總膽固醇的含量。從肝臟組織切片結果也可發現脂肪顆粒累積情形有明顯地改善,並且有明顯的劑量關係。在腸道膽固醇運輸部份,我們可以發現餵食花蓮一號及四號山苦瓜,有效地降低了與膽固醇運輸相關的通道蛋白NPC1L1、ABCG5、ABCG8以及與脂肪酸運輸相關的通道蛋白CD36的mRNA表現量。推測花蓮一號及四號降低脂肪肝的功效有可能是透過抑制腸道膽固醇及部份脂肪酸的吸收,其中又以花蓮四號的效果最為顯著。 在兩次動物實驗的結果皆顯示了在餵食含有花蓮一號及花蓮四號苦瓜乾燥粉末飼料的情況下,從組織切片或是生化分析來觀察,都可顯著的預防脂肪肝的形成,然而苦瓜改善脂肪肝的確切機制仍未清楚。 從高脂飼料與高脂高膽固醇飼料餵食組的比較,可知肝臟膽固醇的累積在脂肪肝的形成扮演相當重要的角色,在腸道抑制膽固醇的吸收可能為苦瓜改善脂肪肝的重要機制之一。但苦瓜預防脂肪肝的發生可能是透過多重的作用(例如血糖值的改善),在肝臟是否具有抑制脂肪肝形成隨後引起的發炎反應也是日後研究的重點。此外,在細胞實驗的部分,我們發現花蓮四號山苦瓜的We-EA萃取物具有活化PPARδ的能力,並且We-EA萃取物並無明顯的細胞毒性,PPARδ的活化已被發現與腸道膽固醇吸收有關。因此,給予花蓮一號及花蓮四號山苦瓜具有降低小鼠肝臟膽固醇的累積,是否透過PPARδ的活化所致也是之後研究的重點之一。 | zh_TW |
dc.description.abstract | Nonalcoholic fatty liver disease (NAFLD) is regarded as a liver metabolic syndrome that the fat accumulation over 5% of the total liver weight. The prevalence of NAFLD in Taiwan is high to 26~34%. Many researches have demonstrated that NAFLD is highly associated with obesity, diabetes and metabolic disorders. Notably, NAFLD has potential to progress through the inflammatory phase of nonalcoholic steatohepatitis (NASH) to fibrosis, cirrhosis (20%), and in some cases to liver failure (9%) or hepatocellular carcinoma (HCC) (1%). Nevertheless, there is no drug for treating NAFLD effectively. Therefore, dietary treatment becomes more important for prevention of NAFLD. Bitter melon (BM) is a popular vegetable that has been used to treat diabetes and metabolic disorder in Asia, South America and East Africa. Since NAFLD is part of the metabolic disorder, in this study we investigated if bitter melon can prevent the development of NAFLD.
In animal experiments, we used male C57BL/6 mice as animal model. Mice were fed with low fat (LF), high fat/high cholesterol (HFC), or HFC diet supplemented with 5% Hualien No.1 (H1), No.2 (H2) or No.4 (H4) BM powder (HFC+H1, HFC+H2 or HFC+H4). After 4 weeks feeding, body weight, epididymal fat, plasma glucose level and liver cholesterol were significantly decreased in mice fed with HFC+H1 or HFC+H4 diet. The beneficial effect of BM was also observed in histology analyses by decrease accumulation of lipid droplets in the liver. Hepatic expression levels of SREBP-1c, FAS and ACC mRNA were also decreased in mice fed with diet containing BM powders, especially those fed diet containing H4. However, H2 did not improve body weight, epididymal fat weight or plasma glucose level. VI To exclude that the beneficial effects of BM is due to lower food intake; in experiment 2, HFC+2.5%H1, HFC+5%H1, HFC+2.5%H4 or HFC+5%H4 diets were given by pair feeding. In order to test the role of dietary cholesterol in the development of NAFLD, a group of control mice were fed with HFC diet supplemented with 10 μg ezetimibe/g diet. Similar to the results of experiment 1, diet containing H1 or H4 BM lowered plasma glucose and liver cholesterol. Histological analyses also showed that BM feeding resulted in less lipid accumulation in the liver. Moreover, intestinal NPC1L1 mRNA was decreased in mice fed with H1 or H4 BM. These results suggest that BM ameliorated NAFLD may due to decrease intestinal cholesterol absorption. In addition, intestinal CD36 mRNA was decreased in mice fed with diet containing BM powder. It is possible that fatty acid absorption was also decreased in mice fed diet containing BM powder. In conclusion, our results show that cholesterol plays a pivotal role in the development of NAFLD. And H1 and H4 BM decrease hepatic expression of lipogenic enzymes, cholesterol accumulation and thus ameliorate NAFLD; possibly through decrease intestinal cholesterol absorption. However, the mechanisms underlie require further investigation. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T01:03:34Z (GMT). No. of bitstreams: 1 ntu-100-R98442031-1.pdf: 2022888 bytes, checksum: c934a7abe167a8aec30ebf481d7e8dde (MD5) Previous issue date: 2011 | en |
dc.description.tableofcontents | 圖表目錄........................................................................................................................................................................... II
摘要 ....................................................................................................................................................................................III Abstract .............................................................................................................................................................................. V 縮寫對照表 .................................................................................................................................................................. VII 第一章、序論 .................................................................................................................................................................1 第一節、文獻回顧..................................................................................................................................................... 2 第二節、研究動機與實驗目的 ......................................................................................................................... 11 第二章、材料與方法 ..............................................................................................................................................12 第一節、 實驗材料 .......................................................................................................................................... 13 第二節、 細胞實驗 .......................................................................................................................................... 14 第二節、 苦瓜改善脂肪肝形成之動物實驗.......................................................................................... 20 第三節、 統計分析 .......................................................................................................................................... 26 第三章、實驗結果 ...................................................................................................................................................27 第一節、 C57BL/6雄性小鼠動物實驗一............................................................................................... 28 第二節、 C57BL/6雄性小鼠動物實驗二............................................................................................... 30 第三節、 293T細胞實驗 ............................................................................................................................... 33 第四章、圖表 ..............................................................................................................................................................34 第五章、討論 ..............................................................................................................................................................50 第一節、 總結 .................................................................................................................................................... 51 第二節、 實驗討論 .......................................................................................................................................... 51 參考文獻.........................................................................................................................................................................52 附錄 ...................................................................................................................................................................................52 | |
dc.language.iso | zh-TW | |
dc.title | 苦瓜預防脂肪肝功效之研究 | zh_TW |
dc.title | The potential of bitter melon in prevention of nonalcoholic fatty liver disease (NAFLD) | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 黃伯超,黃青真,吳文惠 | |
dc.subject.keyword | 非酒精性脂肪肝,山苦瓜,膽固醇,NPC1L1,lipogenesis, | zh_TW |
dc.subject.keyword | nonalcoholic fatty liver disease,bitter melon,cholesterol,NPC1L1,lipogenesis, | en |
dc.relation.page | 71 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2011-08-04 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 生物化學暨分子生物學研究所 | zh_TW |
顯示於系所單位: | 生物化學暨分子生物學科研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-100-1.pdf 目前未授權公開取用 | 1.98 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。