請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29208完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李芳仁(FANG-JEN, LEE) | |
| dc.contributor.author | Kuan-Yu Chen | en |
| dc.contributor.author | 陳冠毓 | zh_TW |
| dc.date.accessioned | 2021-06-13T01:02:49Z | - |
| dc.date.available | 2016-10-05 | |
| dc.date.copyright | 2011-10-05 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-04 | |
| dc.identifier.citation | Reference
Ambroggio, E., Sorre, B., Bassereau, P., Goud, B., Manneville, J. B. and Antonny, B. (2010). ArfGAP1 generates an Arf1 gradient on continuous lipid membranes displaying flat and curved regions. EMBO J 29, 292-303. Amor, J. C., Harrison, D. H., Kahn, R. A. and Ringe, D. (1994). Structure of the human ADP-ribosylation factor 1 complexed with GDP. Nature 372, 704-8. Barr, F. A. (1999). A novel Rab6-interacting domain defines a family of Golgi-targeted coiled-coil proteins. Curr Biol 9, 381-4. Behnia, R., Panic, B., Whyte, J. R. and Munro, S. (2004). Targeting of the Arf-like GTPase Arl3p to the Golgi requires N-terminal acetylation and the membrane protein Sys1p. Nat Cell Biol 6, 405-13. Benjamin, J. J., Poon, P. P., Drysdale, J. D., Wang, X., Singer, R. A. and Johnston, G. C. (2011). Dysregulated Arl1, a regulator of post-Golgi vesicle tethering, can inhibit endosomal transport and cell proliferation in yeast. Mol Biol Cell. Bigay, J., Casella, J. F., Drin, G., Mesmin, B. and Antonny, B. (2005). ArfGAP1 responds to membrane curvature through the folding of a lipid packing sensor motif. EMBO J 24, 2244-53. Bigay, J., Gounon, P., Robineau, S. and Antonny, B. (2003). Lipid packing sensed by ArfGAP1 couples COPI coat disassembly to membrane bilayer curvature. Nature 426, 563-6. Bremond, A., Meynet, O., Mahiddine, K., Coito, S., Tichet, M., Scotlandi, K., Breittmayer, J. P., Gounon, P., Gleeson, P. A., Bernard, A. et al. (2009). Regulation of HLA class I surface expression requires CD99 and p230/golgin-245 interaction. Blood 113, 347-57. Brown, H. A., Gutowski, S., Moomaw, C. R., Slaughter, C. and Sternweis, P. C. (1993). ADP-ribosylation factor, a small GTP-dependent regulatory protein, stimulates phospholipase D activity. Cell 75, 1137-44. Burguete, A. S., Fenn, T. D., Brunger, A. T. and Pfeffer, S. R. (2008). Rab and Arl GTPase family members cooperate in the localization of the golgin GCC185. Cell 132, 286-98. Chardin, P., Paris, S., Antonny, B., Robineau, S., Beraud-Dufour, S., Jackson, C. L. and Chabre, M. (1996). A human exchange factor for ARF contains Sec7- and pleckstrin-homology domains. Nature 384, 481-4. Chen, K. Y., Tsai, P. C., Hsu, J. W., Hsu, H. C., Fang, C. Y., Chang, L. C., Tsai, Y. T., Yu, C. J. and Lee, F. J. (2010). Syt1p promotes activation of Arl1p at the late Golgi to recruit Imh1p. J Cell Sci 123, 3478-89. Cockcroft, S., Thomas, G. M., Fensome, A., Geny, B., Cunningham, E., Gout, I., Hiles, I., Totty, N. F., Truong, O. and Hsuan, J. J. (1994). Phospholipase D: a downstream effector of ARF in granulocytes. Science 263, 523-6. Cox, R., Mason-Gamer, R. J., Jackson, C. L. and Segev, N. (2004). Phylogenetic analysis of Sec7-domain-containing Arf nucleotide exchangers. Mol Biol Cell 15, 1487-505. Cukierman, E., Huber, I., Rotman, M. and Cassel, D. (1995). The ARF1 GTPase-activating protein: zinc finger motif and Golgi complex localization. Science 270, 1999-2002. Derby, M. C., Lieu, Z. Z., Brown, D., Stow, J. L., Goud, B. and Gleeson, P. A. (2007). The trans-Golgi network golgin, GCC185, is required for endosome-to-Golgi transport and maintenance of Golgi structure. Traffic 8, 758-73. Donaldson, J. G. and Jackson, C. L. (2000). Regulators and effectors of the ARF GTPases. Curr Opin Cell Biol 12, 475-82. Donaldson, J. G. and Jackson, C. L. (2011). ARF family G proteins and their regulators: roles in membrane transport, development and disease. Nat Rev Mol Cell Biol 12, 362-75. Drin, G., Bigay, J. and Antonny, B. (2009). [Regulation of vesicular transport by membrane curvature]. Med Sci (Paris) 25, 483-8. Drin, G., Morello, V., Casella, J. F., Gounon, P. and Antonny, B. (2008). Asymmetric tethering of flat and curved lipid membranes by a golgin. Science 320, 670-3. Eugster, A., Frigerio, G., Dale, M. and Duden, R. (2000). COP I domains required for coatomer integrity, and novel interactions with ARF and ARF-GAP. EMBO J 19, 3905-17. Frigerio, G., Grimsey, N., Dale, M., Majoul, I. and Duden, R. (2007). Two human ARFGAPs associated with COP-I-coated vesicles. Traffic 8, 1644-55. Gillingham, A. K. and Munro, S. (2003). Long coiled-coil proteins and membrane traffic. Biochim Biophys Acta 1641, 71-85. Gillingham, A. K. and Munro, S. (2007a). Identification of a guanine nucleotide exchange factor for Arf3, the yeast orthologue of mammalian Arf6. PLoS One 2, e842. Gillingham, A. K. and Munro, S. (2007b). The small G proteins of the Arf family and their regulators. Annu Rev Cell Dev Biol 23, 579-611. Gillingham, A. K., Tong, A. H., Boone, C. and Munro, S. (2004). The GTPase Arf1p and the ER to Golgi cargo receptor Erv14p cooperate to recruit the golgin Rud3p to the cis-Golgi. J Cell Biol 167, 281-92. Goldberg, J. (1998). Structural basis for activation of ARF GTPase: mechanisms of guanine nucleotide exchange and GTP-myristoyl switching. Cell 95, 237-48. Goldberg, J. (1999). Structural and functional analysis of the ARF1-ARFGAP complex reveals a role for coatomer in GTP hydrolysis. Cell 96, 893-902. Graham, T. R. (2004). Membrane targeting: getting Arl to the Golgi. Curr Biol 14, R483-5. Harbury, P. B., Zhang, T., Kim, P. S. and Alber, T. (1993). A switch between two-, three-, and four-stranded coiled coils in GCN4 leucine zipper mutants. Science 262, 1401-7. Honda, R. and Yasuda, H. (1999). Association of p19(ARF) with Mdm2 inhibits ubiquitin ligase activity of Mdm2 for tumor suppressor p53. EMBO J 18, 22-7. Houghton, F. J., Chew, P. L., Lodeho, S., Goud, B. and Gleeson, P. A. (2009). The localization of the Golgin GCC185 is independent of Rab6A/A' and Arl1. Cell 138, 787-94. Jackson, C. L. and Casanova, J. E. (2000). Turning on ARF: the Sec7 family of guanine-nucleotide-exchange factors. Trends Cell Biol 10, 60-7. Jones, S., Jedd, G., Kahn, R. A., Franzusoff, A., Bartolini, F. and Segev, N. (1999). Genetic interactions in yeast between Ypt GTPases and Arf guanine nucleotide exchangers. Genetics 152, 1543-56. Kahn, R. A. and Gilman, A. G. (1986). The protein cofactor necessary for ADP-ribosylation of Gs by cholera toxin is itself a GTP binding protein. J Biol Chem 261, 7906-11. Kakinuma, T., Ichikawa, H., Tsukada, Y., Nakamura, T. and Toh, B. H. (2004). Interaction between p230 and MACF1 is associated with transport of a glycosyl phosphatidyl inositol-anchored protein from the Golgi to the cell periphery. Exp Cell Res 298, 388-98. Kjer-Nielsen, L., Teasdale, R. D., van Vliet, C. and Gleeson, P. A. (1999). A novel Golgi-localisation domain shared by a class of coiled-coil peripheral membrane proteins. Curr Biol 9, 385-8. Kliouchnikov, L., Bigay, J., Mesmin, B., Parnis, A., Rawet, M., Goldfeder, N., Antonny, B. and Cassel, D. (2009). Discrete determinants in ArfGAP2/3 conferring Golgi localization and regulation by the COPI coat. Mol Biol Cell 20, 859-69. Lewis, S. M., Poon, P. P., Singer, R. A., Johnston, G. C. and Spang, A. (2004). The ArfGAP Glo3 is required for the generation of COPI vesicles. Mol Biol Cell 15, 4064-72. Lieu, Z. Z., Derby, M. C., Teasdale, R. D., Hart, C., Gunn, P. and Gleeson, P. A. (2007). The golgin GCC88 is required for efficient retrograde transport of cargo from the early endosomes to the trans-Golgi network. Mol Biol Cell 18, 4979-91. Lieu, Z. Z., Lock, J. G., Hammond, L. A., La Gruta, N. L., Stow, J. L. and Gleeson, P. A. (2008). A trans-Golgi network golgin is required for the regulated secretion of TNF in activated macrophages in vivo. Proc Natl Acad Sci U S A 105, 3351-6. Liu, Y. W., Huang, C. F., Huang, K. B. and Lee, F. J. (2005). Role for Gcs1p in regulation of Arl1p at trans-Golgi compartments. Mol Biol Cell 16, 4024-33. Liu, Y. W., Lee, S. W. and Lee, F. J. (2006). Arl1p is involved in transport of the GPI-anchored protein Gas1p from the late Golgi to the plasma membrane. J Cell Sci 119, 3845-55. Lock, J. G., Hammond, L. A., Houghton, F., Gleeson, P. A. and Stow, J. L. (2005). E-cadherin transport from the trans-Golgi network in tubulovesicular carriers is selectively regulated by golgin-97. Traffic 6, 1142-56. Lu, L. and Hong, W. (2003). Interaction of Arl1-GTP with GRIP domains recruits autoantigens Golgin-97 and Golgin-245/p230 onto the Golgi. Mol Biol Cell 14, 3767-81. Lu, L., Tai, G., Wu, M., Song, H. and Hong, W. (2006). Multilayer interactions determine the Golgi localization of GRIP golgins. Traffic 7, 1399-407. Makler, V., Cukierman, E., Rotman, M., Admon, A. and Cassel, D. (1995). ADP-ribosylation factor-directed GTPase-activating protein. Purification and partial characterization. J Biol Chem 270, 5232-7. Misumi, Y., Miki, K., Takatsuki, A., Tamura, G. and Ikehara, Y. (1986). Novel blockade by brefeldin A of intracellular transport of secretory proteins in cultured rat hepatocytes. J Biol Chem 261, 11398-403. Natarajan, P., Liu, K., Patil, D. V., Sciorra, V. A., Jackson, C. L. and Graham, T. R. (2009). Regulation of a Golgi flippase by phosphoinositides and an ArfGEF. Nat Cell Biol 11, 1421-6. Nie, Z. and Randazzo, P. A. (2006). Arf GAPs and membrane traffic. J Cell Sci 119, 1203-11. Noritake, J., Watanabe, T., Sato, K., Wang, S. and Kaibuchi, K. (2005). IQGAP1: a key regulator of adhesion and migration. J Cell Sci 118, 2085-92. Panic, B., Whyte, J. R. and Munro, S. (2003). The ARF-like GTPases Arl1p and Arl3p act in a pathway that interacts with vesicle-tethering factors at the Golgi apparatus. Curr Biol 13, 405-10. Pasqualato, S., Renault, L. and Cherfils, J. (2002). Arf, Arl, Arp and Sar proteins: a family of GTP-binding proteins with a structural device for 'front-back' communication. EMBO Rep 3, 1035-41. Peyroche, A., Paris, S. and Jackson, C. L. (1996). Nucleotide exchange on ARF mediated by yeast Gea1 protein. Nature 384, 479-81. Poon, P. P., Cassel, D., Spang, A., Rotman, M., Pick, E., Singer, R. A. and Johnston, G. C. (1999). Retrograde transport from the yeast Golgi is mediated by two ARF GAP proteins with overlapping function. EMBO J 18, 555-64. Ramirez, I. B. and Lowe, M. (2009). Golgins and GRASPs: holding the Golgi together. Semin Cell Dev Biol 20, 770-9. Reddy, J. V., Burguete, A. S., Sridevi, K., Ganley, I. G., Nottingham, R. M. and Pfeffer, S. R. (2006). A functional role for the GCC185 golgin in mannose 6-phosphate receptor recycling. Mol Biol Cell 17, 4353-63. Renault, L., Guibert, B. and Cherfils, J. (2003). Structural snapshots of the mechanism and inhibition of a guanine nucleotide exchange factor. Nature 426, 525-30. Robert, C. H., Cherfils, J., Mouawad, L. and Perahia, D. (2004). Integrating three views of Arf1 activation dynamics. J Mol Biol 337, 969-83. Serafini, T., Orci, L., Amherdt, M., Brunner, M., Kahn, R. A. and Rothman, J. E. (1991). ADP-ribosylation factor is a subunit of the coat of Golgi-derived COP-coated vesicles: a novel role for a GTP-binding protein. Cell 67, 239-53. Setty, S. R., Shin, M. E., Yoshino, A., Marks, M. S. and Burd, C. G. (2003). Golgi recruitment of GRIP domain proteins by Arf-like GTPase 1 is regulated by Arf-like GTPase 3. Curr Biol 13, 401-4. Setty, S. R., Strochlic, T. I., Tong, A. H., Boone, C. and Burd, C. G. (2004). Golgi targeting of ARF-like GTPase Arl3p requires its Nalpha-acetylation and the integral membrane protein Sys1p. Nat Cell Biol 6, 414-9. Spang, A., Shiba, Y. and Randazzo, P. A. (2010). Arf GAPs: gatekeepers of vesicle generation. FEBS Lett 584, 2646-51. Stearns, T., Kahn, R. A., Botstein, D. and Hoyt, M. A. (1990a). ADP ribosylation factor is an essential protein in Saccharomyces cerevisiae and is encoded by two genes. Mol Cell Biol 10, 6690-9. Stearns, T., Willingham, M. C., Botstein, D. and Kahn, R. A. (1990b). ADP-ribosylation factor is functionally and physically associated with the Golgi complex. Proc Natl Acad Sci U S A 87, 1238-42. Takai, Y., Sasaki, T. and Matozaki, T. (2001). Small GTP-binding proteins. Physiol Rev 81, 153-208. Tamkun, J. W., Kahn, R. A., Kissinger, M., Brizuela, B. J., Rulka, C., Scott, M. P. and Kennison, J. A. (1991). The arflike gene encodes an essential GTP-binding protein in Drosophila. Proc Natl Acad Sci U S A 88, 3120-4. Tsukada, M. and Gallwitz, D. (1996). Isolation and characterization of SYS genes from yeast, multicopy suppressors of the functional loss of the transport GTPase Ypt6p. J Cell Sci 109 ( Pt 10), 2471-81. Tsukada, M., Will, E. and Gallwitz, D. (1999). Structural and functional analysis of a novel coiled-coil protein involved in Ypt6 GTPase-regulated protein transport in yeast. Mol Biol Cell 10, 63-75. Watson, K. E. and Fonarow, G. C. (2004). Cardiovascular disease in African Americans. Closing the knowledge, treatment, and outcome gap. Rev Cardiovasc Med 5 Suppl 3, S42-4. Weimer, C., Beck, R., Eckert, P., Reckmann, I., Moelleken, J., Brugger, B. and Wieland, F. (2008). Differential roles of ArfGAP1, ArfGAP2, and ArfGAP3 in COPI trafficking. J Cell Biol 183, 725-35. Wennerberg, K., Rossman, K. L. and Der, C. J. (2005). The Ras superfamily at a glance. J Cell Sci 118, 843-6. Wolf, E., Kim, P. S. and Berger, B. (1997). MultiCoil: a program for predicting two- and three-stranded coiled coils. Protein Sci 6, 1179-89. Wolf, J., Nicks, M., Deitz, S., van Tuinen, E. and Franzusoff, A. (1998). An N-end rule destabilization mutant reveals pre-Golgi requirements for Sec7p in yeast membrane traffic. Biochem Biophys Res Commun 243, 191-8. Wu, M., Lu, L., Hong, W. and Song, H. (2004). Structural basis for recruitment of GRIP domain golgin-245 by small GTPase Arl1. Nat Struct Mol Biol 11, 86-94. Zhang, B., Wang, Z. X. and Zheng, Y. (1997). Characterization of the interactions between the small GTPase Cdc42 and its GTPase-activating proteins and putative effectors. Comparison of kinetic properties of Cdc42 binding to the Cdc42-interactive domains. J Biol Chem 272, 21999-2007. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29208 | - |
| dc.description.abstract | 第一腺嘌呤核苷二磷酸核醣化因子相似蛋白(ARL1)是腺嘌呤核苷二磷酸核醣化因子(ADP-ribosylation factor, ARF)家族的一員。它們皆為小型鳥糞嘌呤核苷結合蛋白。ARF家族成員負責著細胞內的囊泡運輸、磷脂酶的活化、參與磷脂三激酶的訊息調控等等的功能。目前雖然已知有許多ARL的存在但對其功能卻仍幾乎是一無所知。近來,我們實驗室已經發現了Syt1p是Arl1p蛋白的鳥糞嘌呤核苷三磷酸(GTP)交換蛋白(GEF)。他會促使Arl1p與鳥糞嘌呤核苷三磷酸結合,並吸引其下游作用蛋白 Imh1p至高基氏體上,最後經由其活化蛋白(GAP)Gcs1p水解鳥糞嘌呤核苷三磷酸。Imh1p是高基氏體蛋白(golgin)的一種。而雖然在動物細胞中,高基氏體蛋白已被報導與調控、維持高基氏體的功能有關,但在酵母菌中,Imh1p的功能仍然不清楚。在本篇論文裡,我發現Imh1p在調控Arl1p的去活化中扮演一定的腳色。在酵母菌中去除IMH1基因會造成Arl1p失去與鳥糞嘌呤核苷三磷酸的結合,而造成Arl1p失去其正常應位於高基氏體的位置。在生體外,Imh1p與Gcs1p會互相競爭與Arl1p結合,Arl1p與Imh1p的結合會減少Gcs1p去活化Arl1p-GTP的能力。此外,Imh1p二聚體(dimer)的能力也對於Imh1p穩定Arl1p的功能是很重要的。因此,在本篇論文證明了Imh1p參與了Gcs1p於時間、空間上所調控Arl1p的鳥糞嘌呤核苷三磷酸循環。 | zh_TW |
| dc.description.abstract | ARF-like proteins (ARLs) are one of the ADP-ribosylation factors (ARFs) family that are small GTP-binding proteins. Arf proteins enhance the ADP-ribosyltransferase activity of c0060holera toxin and have an important role in vesicular transport. Several ARLs have been cloned from different organisms. However, the biological functions of ARLs and its interacting protiens remain largely unknown. Recently, we have shown that Syt1p function as a GEF that promotes activation of Arl1p and recruitment of a golgin protein, Imh1p, to the Golgi. Gcs1p hydrolyzes GTP of Arl1p to inactivate Arl1p at later stage. Although mammalian golgins are proposed to regulate structure and function of the TGN, the physiological function of Imh1p remains not clear. Here, we report that Imh1p has a role on modulating inactivation of Arl1p on the Golgi. Deletion of IMH1 decreases the level of GTP-bound form Arl1p resulting in less amounts of Arl1p resided on TGN. Imh1p competes with Gcs1p in interacting with Arl1p and decreases Gcs1p GAP activity on Arl1p in vitro. Furthermore, the dimerization of Imh1p is necessary for its function on Arl1p. Our findings demonstrate that Imh1p participates in regulating Gcs1p-depndent spatial and temporal control of the GTP hydrolysis cycle of Arl1p. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T01:02:49Z (GMT). No. of bitstreams: 1 ntu-100-D94448007-1.pdf: 14595055 bytes, checksum: 493c0531c3f347560820e2bc8f9e2d2c (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 謝誌 ---------------------------------------------------------------------------------------------- I
Table of Contents-------------------------------------------------------------------------------- II Abstract ----------------------------------------------------------------------------------------- IV 中文摘要 --------------------------------------------------------------------------------------- V Abbreviations -------------------------------------------------------------------------------- VI Introduction ---------------------------------------------------------------------------------- 1 Materials and Methods --------------------------------------------------------------------- 18 Results 1. Imh1p is needed for the Golgi localization of Arl1p -------------------------------- 34 2. Dimerization of Imh1p attenuates GTP hydrolysis of Arl1p --------------------- 36 3. Imh1p is involved in regulating the GTP hydrolysis of Arl1p. --------------------- 40 4. Imh1p-dependent Golgi localization of Arl1p specifically requires Gcs1p ----- 41 5. Imh1p competes with Gcs1p to interact with Arl1p in vitro ---------------------- 43 6. Imh1-C177 alerts the GAP activity of Gcs1p to Arl1p. ------------------------- 44 7. Both Imh1-C177 and mCherry-Imh1 fail to suppress temperature sensitivity in ypt6 cell. ---------------------------------------------------------------------------------- 45 Discussion ------------------------------------------------------------------------------------ 46 Tables Table 1. Yeast strains used in this study ------------------------------------------------ 54 Table 2. Primers used in this study ------------------------------------------------------- 55 Figures Figure 1. Regulation of ARF activity by GEFs that accelerate GTP binding and GAPs that activate GTP hydrolysis by ARF---------------------- 57 Figure 2. Structures of the Arf family G protein Arf1 in GDP- and GTP-bound states---------------------------------------------------------- 58 Figure 3. Schematic view of ArfGAP1/Gcs1p activation by ALPS motif recognizes curved membranes-------------------------------------------- 59 Figure 4. Model of golgin GMAP-210--------------------------------------------- 60 Figure 5. Model for the role of Arf1-GTP in the generation of transport vesicles---------------------------------------------------------------------- 61 Figure 6. Schematic model of recruitment of Golgin-245 to the Golgi membrane by Arl1--------------------------------------------------------- 63 Figure 7. A model for the Arl3p-Syt1p-Arl1p-Imh1p pathway----------------- 64 Figure 8. Imh1p is involved in the localization of Arl1p and Imh1p to the Golgi------------------------------------------------------------------------ 65 Figure 9. Imh1p affected the Golgi localization of endogenous Arl1-HA---- 66 Figure 10. Imh1p specifically affects the localization of Arl1p------------------- 67 Figure 11. Imh1p requires GRIP domain for the localization of Arl1p to the Golgi------------------------------------------------------------------------ 68 Figure 12. Dimerization force in coiled-coil region is required for stabilizin TGN---------------------------------------------------------------- 69 Figure 13. Structure prediction of Imh1p C terminus------------------------------ 73 Figure 14. mCherry-Imh1-C177N779S,L782S fails to stabilize Arl1p at TGN----- 71 Figure 15. Self-interaction and localization of mCherry/DsRed-tagged Imh1p 72 Figure 16. DsRed-Imh10C89, but not mCherry-Imh1-C89, stabilize Arl1p at Golgi------------------------------------------------------------------------ 73 Figure 17. DsRed-Imh1-C177, but not mCherry-Imh1-C177, remains localizing to the Golgi in Gcs1p-everexpressing cell----------------- 74 Figure 18. Activated Arl1p decreased in imh1 cell------------------------------ 75 Figure 19. Knockout GCS1 suppressed the dissociation of Arl1p from TGN in imh1 cells ------------------------------------------------------------- 76 Figure 20. Gcs1p is specifically required for the dissociation of Arl1p from TGN in imh1 cells-------------------------------------------------------- 77 Figure 21. Arl1-QL interact with Gcs1p and Imh1-C177 in vitro---------------- 78 Figure 22. Imh1-C177, but not Imh1-C177 GRIP, competes with Gcs1 to interact with Arl1----------------------------------------------------------- 79 Figure 23. Imh1-C177 alerts the GAP activity of Gcs1p to Arl1p--------------- 80 Figure 24. Imh1-FL (full length), but not Imh1-C177 or mCherry-Imh1-FL, suppresses temperature sensitivity in ypt6 cell---------------------- 82 Figure 25. A model for the Imh1p involved in stabilizing Arl1-GTP------------ 83 Reference ------------------------------------------------------------------------------------ 84 Syt1p promotes activation of Arl1p at the late Golgi to recruit Imh1p -------------- 90 | |
| dc.language.iso | en | |
| dc.title | 酵母菌第一腺嘌呤核苷二磷酸核醣化因子相似蛋白與其結合蛋白的功能性探討 | zh_TW |
| dc.title | Functional Characterization of ADP-Ribosylation Factor-Like Protein 1 and its Interacting Proteins in Saccharomyces cerevisiae | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 陳瑞華,張智芬,施修明,鄧述諄,王昭雯 | |
| dc.subject.keyword | 第一腺嘌呤核苷,二磷酸核醣化因子相似蛋白,腺嘌呤核苷,二磷酸核醣化因子,高基氏體蛋白, | zh_TW |
| dc.subject.keyword | ARL1,ARF,golgin,Imh1, | en |
| dc.relation.page | 89 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-08-04 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 分子醫學研究所 | zh_TW |
| 顯示於系所單位: | 分子醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 14.25 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
