請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29204完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王根樹教授(Gen-Shuh Wang) | |
| dc.contributor.author | Miao-Ching Chi | en |
| dc.contributor.author | 紀妙青 | zh_TW |
| dc.date.accessioned | 2021-06-13T01:02:46Z | - |
| dc.date.available | 2008-08-08 | |
| dc.date.copyright | 2007-08-08 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-07-25 | |
| dc.identifier.citation | Adhikari, A., Reponen, T., Grinshpun, S. A., Martuzevicius, D., and LeMasters, G. (2006). Correlation of ambient inhalable bioaerosols with particulate matter and ozone: a two-year study. Environ Pollut. 140:16-28.
Alifano, P., Bruni, C. B., and Carlomagno, M. S. (1994). Control of mRNA Processing and Decay in Prokaryotes. Genetica. 94:157–172. Amann, R. I., Binder, B. J., Olson, R. J., Chisholm, S. W., Devereux, R., and Stahl, D. A. (1990). Combination of 16S rRNA-targeted Oligonucleotide Probes with Flow Cytometry for Analyzing Mixed Microbial Populations. Appl. Environ. Microbiol. 56:1919-1925. Amann, R.I., Stromley, J., Devereux, R., Key, R., and Stahl, D.A. (1992). Molecular and Microscopic Identification of Sulfate-reducing Bacteria in Multispecies Biofilms. Appl. Environ. Microbiol. Feb;58(2):614-623. Amann, R.I., Ludwig, W., and Schleifer, K.H. (1995). Phylogenetic Identification and in Situ Detection of Individual Microbial Cells without Cultivation. Microbiol. Rev. 59(1):143-169. Baeumner, A. J., Cohen, R. N., Miksic, V., and Min, J. (2003). RNA Biosensor for the Rapid detection of Viable Escherichia coli in Drinking Water. Biosensors and Bioelectronics. 18:405-413 Ballard, A. L., Fry, N. K., Surman, S. B., Lee, J. V., Harrison, T. G., and Towner, K. J. (2000). Detection of Legionella pneumophila Using a Real-time PCR Hybridization Assay. J. Clin. Microbiol. 38: 4215-4218. Bej, A. K., Ng, W.Y., Morgan,S., Jones, D., and Mahbubani, M. H. (1996). Detection of Viable Vibrio cholerae by Reverse-Transcriptase Polymerase Chain Reaction (RT-PCR). Mol. Biotechnol. 5:1–10. Bertrand, I., Gantzer, C., Chesnot, T., and Schwartzbrod, J. (2004). Improved Specificity for Giardia lamblia Cyst Quantification in Wastewater by Development of a Real-Time PCR Method. J. Microbiol. Methods. 57:41-53. Brinkman, N. E., Haugland, R. A., Wymer, L. J., Byappanahalli, M., Whitman, R. L., and Vesper, S. J. (2003). Evaluation of a Rapid, Quantitative Real-Time PCR Method for Enumeration of Pathogenic Candida Cells in Water. Appl. Environ. Microbiol. 69: 1775-1782. Burch, M., and Levetin, E. (2002) Effects of Meteorological Conditions on Spore Plumes. Int. J. Biometeorol. 46:107-117. Chang, C. W., Chung, H., Huang, C. F., and Su, H. (2001). Exposure of Workers to Airborne Microorganisms in Open-air Swine Houses. J.Appl Environ Microbiol. Jan;67(1):155-161. Chen, P.S., and Li, C.S. (2005a). Bioaerosol Characterization by Flow Cytometry with Fluorochrome. J Environ Monit. Oct;7(10):950-9 Chen, P. S., and Li, C. S. (2005b). Real-time Quantitative PCR with Gene Probe, Fluorochrome and Flow Cytometry for Microorganism Analysis. J. Environ. Monit. 7(3):257-262. Chen, P. S., and Li, C. S. (2005c). Sampling Performance of Impingement and Filtration for Bioaerosols by Viability using Fluorochrome and Flow Cytometry. Aerosol Sci. Tech. 39(2): 1-7. Chi, M. C., and Li, C. S. (2005). Fluorochrome and Fluorescent In Situ Hybridization to Monitor Bioaerosols in Swine Buildings. Aerosol Sci. Tech. 39: 1101-1110. Chi, M. C., and Li, C. S. (2006). Analysis of Bioaerosols from Chicken Houses by Culture and Non-culture Methods. Aerosol Sci. Tech. Inpress. Clark, S., Rylander, R., and Larsson, L. (1983). Airborne Bacteria, Endotoxin and Fungi in Dust in Poultry and Swine Confinement Buildings. Am. Ind. Hyg. Assoc. J. 44:537–541. Cormier, Y., Tremblay, G., Meriaux, A., Brochu, G., and Lavoie, J. (1990). Airborne Microbial Contents in Two Types of Swine Confinement Buildings in Quebec. Am. Ind. Hyg. Assoc. J. 51:304–309. Crook, B., Robertson, J. F., Glass, S. A., Botheroyd, E. M., Lacey, J., and Topping, M. D. (1991). Airborne dust, Ammonia, Microorganisms, and Antigens in Pig Confinement Houses and the Respiratory Health of Exposed Farm Workers. Am. Ind. Hyg. Assoc. J. 52:271–279. Danuser, B., Weber, C., Kunzli, N., Schindler, C., and Nowak, D. (2001). Respiratory Symptoms in Swiss farmers: an Epidemiological Study of Risk Factors. Am J Ind Med. 39: 410-418 Day, J. P., Kell, D. B., and Griffith, G. W. (2002). Differentiation of Phytophthora Infestans Sporangia from Other Airborne Biological Particles by Flow Cytometry. Appl. Environ. Microbiol. 68: 37-45. DeLeo, P. C., and Baveye, P. (1996). Enumeration and Biomass Estimation of Bacteria in Aquifer Microsom Studies by Flow Cytometry. Appl. Environ. Microbiol. 62:4580-4586. DeLong, E.F., Wickham, G.S., and Pace, N.R. (1989). Phylogenetic Stains: Ribosomal RNA-based Probes for the Identification of Single Cells. Science. Mar 10;243(4896):1360-3. Di Giorgio, C., Krempff, A., Guirauo, H., Binder, P., Tiret, C., and Dumeil, G. (1996). Atmospheric Pollution by Airborne Microorganisms in the City of Marseilles. Atmos. Environ. 30: 155-160. Donham, K. J., Cumro, D., Reynolds, S. J., and Merchant, J. A. (2000). Dose-response Relationships between Occupational Aerosol Exposures and Cross-shift Declines of Lung Function in Poultry Workers: Recommendations for Exposure Limits. J. Occup. Environ. Med. 42: 260-269. Donham, K. J., Reynolds, S. J., Whitten, P., Merchant, J. A., Burmeister, L., and Popendorf, W. J. (1995). Respiratory Dysfunction in Swine Production Facility Workers: Dose-response Relationships of Environmental Exposures and Pulmonary Function. Am. J. Ind. Med. Mar;27(3):405-418. Dubelaar, G. B.J., and Jonker, J. J. (2000). Flow Cytometry as A Tool for the Study of Phytoplankton. Sci. 64:135-156. Eduard, W., Lacey, J., Karlsson, K., Palmgren, U., Strom, G., and Blomquist, G. (1990). Evaluation of Methods for Enumerating Microorganisms in Filter Samples from Highly Contaminated Occupational Environments. Am. Ind. Hyg. Assoc. J., 51:427-436. Environment Canada. (2001). The State of Municipal Wastewater Effluents in Canada. Minister of Public Works and Government Services Canada. Garcia-Armisen, T. and Servais, P. (2004). Enumeration of Viable E. Coli in River and Wastewaters by Fluorescent in Situ Hybridization. J. Microbiol. Methods. 58:269-279. Gasol, J. M., Zweifel, U. L., Peters, F., Fuhrman, J. A., and Hagstrom, A. (1999). Significance of Size and Nucleic Acid Content Heterogenecity as Measured by Flow Cytometry in Natural Planktonic Bacteria. Appl. Environ. Microbiol. 65:4475-4483. George, I., Petit, M., and Servais, P. (2000). Use of Enzymatic Methods for Rapid Enumeration of Coliforms in Freshwaters. J. Appl. Microbiol. 88:404-413. Glazer, A. N., and Rye, H. S. (1992). Stable dye- DNA Intercalation Complexes as Reagents for High Sensitivity Fluorescent Detection. Nature 359:859-861. Glikson, M., Rutherford, S., Simpson, R. W., Mitchell, C. A., and Yago, A. (1995). Microscopic and Submicron Components of Atmospheric Particulate Matter during High Asthma Periods in Brisbane, Queensland, Australia. Atmos. Environ. 29: 549-562. Guy, R. A., Payment, P., Krull, U. J.,. and. Horgen, P. A. (2003). Real-Time PCR for Quantification of Giardia and Cryptosporidium in Environmental Water Samples and Sewage. Appl. Environ. Microbiol. 69:5178-5185. Haugland, R.P., Upson, R.H., Jones, J., and Haugland, R.P. (1996). Direct Fluorescence-based Measurement of Protease Activity Using a Highly Quenched Substrate. FASEB j 10 (6): 2340-2340 Heid, C. A., Stevens, J., Livak, K. J., Williams, P. M. (1996). Real-time Quantitative PCR. Genome Res. 6: 986-994 Henningson, E., Lundquist, M., Larsson, E., Sandström, G., and Forsman, M. (1997). A Comparative Study of Different Methods to Determine the Total Number and the Survival Ratio of Bacteria in Aerobiological Samples. J Aerosol Sci. 28: 459 Hernandez, M., Miller, S.L., Landfear, D.W., and Macher, J.M. (1999). A Combined Fluorochrome Method for Quantitation of Metabolically Active and Inactive Airborne Bacteria. Aerosol sci. tech 30 (2): 145-160 Hoerter, J. D., Arnold, A. A., Kuczynska, D.A., Shibuya, A., Ward, C. S., Sauer, M. G., Gizachew, A., Hotchkiss, T. M., Fleming, T. J., and Johnson, S. (2005). Effects of Sublethal UVA Irradiation on Activity Levels of Oxidative Defense Enzymes and Protein Oxidation in Escherichia coli. J Photochem Photobiol B. 81(3): 171-180. Jones, A. M., and Harrison, R. M. (2004). The Effects of Meteorological Factors on Atmospheric Bioaerosol Concentrations. Sci. Total Environ. 326:151-180. Juck, D., Ingram, J., Pre´vost, M., Coallier, J., and Greer, C. (1996). Nested PCR Protocol for the Rapid Detection of Escherichia coli in Potable Water. Can. J. Microbiol. 42:862-866. Kaneshiro, E. S., Wyder, M. A., Wu, Y. P., and Cusion, M. T. (1993). Reliability of Calcein Acetoxy Methyl Ester and Ethidium Homodimer or Propidium Iodide for Viability Assessment of Microbes. J. microbiol. methods 17:1-16. Keer, J. and Birch, L. (2003). Molecular Methods for the Assessment of Bacterial Viability. J. Microbiol. Methods. 53 (2), 175–183. Kenzaka, T., Yamaguchi, N., Tani, K., and Nasu, M. (1998). rRNA-targeted Fluorescent in Situ Hybridization Analysis of Bacterial Community Structure in River Water. Microbiology. 144:2085-2093. Kepner, R. L. and Pratt, J. R. (1994). Use of Fluorochromes for Direct Enumeration of Total Bacteria in Environmental Samples: Past and Present. Microbiol. Rev. 58(4):603-615. Lange, J. L., Thorne, P. S, Lynch, N. (1997). Applications of Flow Cytometry and Fluorescent in Situ Hybridization for Assessment of Exposure to Airborne Bacteria. Appl. Environ. Microbiol. 63:1557-1563. Lee, D. Y., Shannon, K., and Beaudette, L. A. (2006). Detection of Bcterial Pathogens in Municipal Wastewater Using an Oligonucleotide Microarray and Real-time Quantitative PCR. J. Microbio.l Methods. 65:453-467. Lemos, V., Graczyk, T. K., Alves, M., Lobo, M. L., Sousa, M. C., Antunes, F., and Matos, O. (2005). Identification and Determination of the Viability of Giardia lamblia cysts and Cryptosporidium parvum and Cryptosporidium hominis oocysts in Human Fecal and Water Supply Samples by Fluorescent in Situ Hybridization (FISH) and Monoclonal Antibodies. Parasitol Res. 98(1):48-53. Lepeuple, A.S., Delabre, K., Gilouppe, S., Intertaglia, L., and de Roubin, M.-R. (2003). Laser Scanning Detection of FISH-labelled Escherichia coli from Water Samples. Water Sci. Technol. 47:123-129. Li, C. S. and Chen J. L. (2006) Fluorochrome to Monitor Microorganisms in hot Spring Water. Submitted. Li, C. S., Chia W.C., and Chen P.S. (2006). Fluorochrome and Flow Cytometry to Monitor Microorganisms in Treated Hospital Wastewater. J. of Environ. Sci. Health Part A-Toxin/Hazardous Substances & Environ Eng. 42: 195-203. Li, C. S., Hao, M. L., Lin, W. H., Chang, C. W. Wang, C. S. (1999). Evaluation of Microbial Samplers for Bacterial Microorganisms. Aerosol Sci. Tech. 30: 100-108. Li, C. S., and Huang, T. Y. (2006). Fluorochrome in Monitoring Indoor bioaerosols. Aerosol Sci. Tech. 40: 237-241. Lin, W. H., and Li, C. S., (1996). Size Characteristics of Fungus Allergens in the Subtropical Climate. Aerosol Sci. Tech. 25: 93-100. Lin, W. H., and Li, C. S., (2000). Associations of Fungal Aerosols, Air Pollutants, and Meteorological Factors. Aerosol Sci. Tech. 32: 359-368. Lopez-Amoros, R., Comas, J., and Vives-Rego, J. (1995). Flow Cytometric Assessment of Escherichia coli and Salmonella typhimurium Starvation-survival in Seawater Using Rhodamine 123, Propium Iodide, and Oxonol. Appl. Environ. Microbiol. 61:2521-2526. Nebe-von-Caron, G., Stephens, P.J., Hewitt, C.J., Powell, J.R., AND Badley, R.A. (2000). Analysis of Bacterial Function by Multi-colour Fluorescence Flow Cytometry and Single Cell Sorting. J. Microbio.l Methods. 42(1):97-114. Neef, A., Schafer, R., Beimfohr, C., and Kampfer, P. (2003). Fluorescence Based rRNA Sensor Systems for Detection of Whole cells of Saccharomonospora spp. and Thermoactinomyces spp. Biosens Bioelectron. 18(5-6):565-569. Neua, T. R., Woelflb, S., and Lawrencec, J. R. (2004). Three-dimensional Differentiation of Photo-autotrophic Biofilm Constituents by Multi-channel Laser Scanning Microscopy (Single-photon and Two-photon Excitation). J. Microbiol. Methods. 56:161-172. Ohno, A., Kato, N., Yamada, K., and Yamaguchi, K. (2003). Factors Influencing Survival of Legionella pneumophila serotype 1 in Hot Spring Water and Tap Water. Appl. Environ. Microbiol. 69(5):2540-7. Okabe, S., Ito, T., and Satoh, H. (2003). Sulfate-reducing Bacterial Community Structure and Their Contribution to Carbon Mineralization in a Wastewater Biofilm Growing under Microaerophilic Conditions. Appl. Microbiol. Biotechnol. 63(3):322-334. Oliver, J. D. (2005). The Viable but Nonculturable State in Bacteria. J. Microbiol. 43:93-100 Padilla, E., Manterola, J.M., Rasmussen, O.F., Lonca, J., Dominguez, J., Matas, L., Hernandez, A., and Ausina, V. (2000). Evaluation of A Fluorescence Hybridisation Assay Using Peptide Nucleic Acid Probes for Identification and Differentiation of Tuberculous and Non-tuberculous Mycobacteria in Liquid Cultures. Eur. j. clin. microbiol. infect. Dis. 19(2): 140-145 Patel, B. K. R., Banjerjee, D. K., and P. D. Butcher. (1993). Determination of Mycobacterium leprae Viability by Polymerase Chain Reaction Amplification of 71-kDa Heat Shock Protein mRNA. J. Infect. Dis. 168:799–800. Predicala, B. Z., Maghirang, R. G., Jerez, S. B., Urban, J. E., and Goodband, R. D. (2001). Dust and Bioaerosol Concentrations in Two Swine–Finishing Buildings in Kansas. Am. Soc. Agric. Engin. 44(5): 1291–1298. Predicala, B. Z., Urban, J. E., Maghirang, R. G., Jerez, S. B., and Goodband, R. D. (2002). Assessment of Bioaerosols in Swine Barns by Filtration and Impaction. Curr. Microbiol. 44(2):136-140. Prigione, V., Lingua, G., and Marchisio, V. F. (2004). Development and Use of Flow Cytometry for Detection of Airborne Fungi. Bio-technology 70:1360-1365. Pyle, B.H., Broadaway, S.C., and McFeters, G.A. (1999). Sensitive Detection of Escherichia coli O157:H7 in Food and Water by Immunomagnetic Separation and Solid-phase Laser Cytometry. Appl. Environ. Microbiol. 65:1966-1972. Radon, K., Danuser, B., Iversen, M., Monso, E., Weber, C., Hartung, J., Donham, K., Palmgren, U., and Nowak, D. (2002). Air Contaminants in Different European Farming Environments. Ann. Agric. Environ. Med. 9(1):41-48. Regnault, B., Martin-Delautre, S., Lejay-Collin, M., Lefe`vre, M., and Grimont, P.A.D. (2000). Oligonucleotide Probe for the Visualization of Escherichia coli/Escherichia fergusonii cells by in Situ Hybridization: Specificity and Potential Application. Res. Microbiol. 151:521-533. Robinson, G.K., and Cleary, P.W. (1999). The Conditions for Sampling of Particulate Materials to be Unbiased - Investigation Using Granular Flow Modeling. Minerals Engineering. 12 (9): 1101-1118 Rompre´, A., Servais, P., Baudart, J., De Roubin, M.R., and Laurent, P. (2002). Methods of Detection and Enumeration of Coliforms in Drinking Water a Review. J. Microbiol. Methods. 49:31-54. Saby, S., Sibille, I., Mathieu, L., Paquin, J. L. and Block, J. C. (1997). Influence of Water Chlorination on the Counting of Bacteria with DAPI (4',6-diamidino-2-phenylindole). Appl. Environ. Microbiol. 63:1564-1569. Seedorf, J., Hartung, J., Schröder, M., Linkert, K. H., Pedersen, S., Takai, H., Johnsen, J. O., Metz, J. H. M., Groot Koerkamp, P. W. G., Uenk, G. H., Phillips, V. R., Holden, M. R., Sneath, R. W., Short, J. L., White, R. P., and Wathes, C. M. (1998). Concentrations and Emissions of Airborne Endotoxins and Microorganisms in Livestock Buildings in Northern Europe. J. Agric. Engng. Res. 70(1): 97-109. Sheridan, G. E. C., Masters, C. I., Shallcross, J. A., and Mackey, B. M. (1998). Detection of mRNA by Reverse Transcription-PCR as an Indicator of Viability in Escherichia coli Cells. Appl. Environ. Microbiol. 64:1313-1318. Straub, T. M. and Chandler, D. P. (2003). Towards a unified system for detecting waterborne pathogens. J. Microbiol. Methods. 53:185-19753. Thorne, P. S., Kiekhaefer, M. S., Whitten, P., and Donham, K. J. (1992). Comparison of Bioaerosol Sampling Methods in Barns Housing Swine. Appl. Environ. Microbiol. 58:2543-2551. Tong, Y., and Lighthart, B. (1999). Diurnal Distribution of Total and Culturable Atmospheric Bacteria at a Rural Site. Aerosol Sci. Tech. 30: 246-254. Tong, Y., and Lighthart, B. (1997). Solar Radiation Has a Lethal Effect on Natural Populations of Culturable Outdoor Atmospheric Bacteria. Atmos. Environ. 31: 897-900. Uechert, J. E., Breeuwer, P., Abee, T., Stephens, P., von-Caron, G. N. and ter Steeg, P. F. (1995). Flow Cytometry in Physiological Study and Detection of Foodborne Microorganisms. Int. J. Food Microbiol. 28:317-326. Van Poucke, S.O., and Nelis, H.J. (2000). A 210-min Solid Phase Cytometry Test for the Enumeration of Escherichia coli in Drinking Water. J. Appl. Microbiol. 89:390- 396. Vesey, G., Ashbolt, N., Fricker, E.J., Deere, D., Williams, K.L., Veal, D.A., and Dorsch, M. (1998). The Use of a Ribosomal RNA Targeted Oligonucleotide Probe for Fluorescent Labelling of Viable Cryptosporidium parvum oocysts. J Appl Microbiol. 85(3):429-440. Vesey, G., Deere, D., Gauci, M. R., Griffiths, K. R. Williams, K. L., and Veal, D. A. (1997). Evaluation of Fluorochromes and Excitation Sources for Immunofluorescence in Water Samples. Cytometry. 29:147-154 Vives-Rego, J., Lebaron, P., and Caron, G. N. (2000). Current and Future Applications of Flow Cytometry in Aquatic Microbiology. FEMS microbiol. Rev. 24:429-448. Wallner, G., Amann, R., and Beisker, W. (1993). Optimizing Fluorescent in Situ Hybridization with rRNA-targeted Oligonucleotide Probes for Flow Cytometric Identification of Microorganisms. Cytometry. 14(2):136-143. Wallner, G., Erhart, R., and Amann, R. (1995). Flow Cytometric Analysis of Activated Sludge with rRNA-targeted Probes. Appl. Environ. Microbiol. 61(5):1859-1866. Wong, H.C. and Wang, P. (2004). Induction of Viable But Nonculturable State in Vibrio Parahaemolyticus and Its Susceptibility to Environmental Stresses. J. Appl Microbiol. 96:359-366 Yang, Y. R., and Zeyer, J. (2003). Specific Detection of Dehalococcoides Species by Fluorescence in Situ Hybridization with 16S rRNA-targeted Oligonucleotide Probes. Appl. Microbiol. Biotechnol. 69 (5): 2879-2883. Zhao, W., Yao, S., and Hsing I. M. (2006) A Microsystem Compatible Strategy for Viable Escherichia coli Detection. Biosensors & Bioelectronics. 21:1163-1170 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29204 | - |
| dc.description.abstract | 生活中充滿的各種致病微生物。生物氣膠可能造成急性的疾病、感染及過敏反應;而水媒微生物則可能藉由飲用水系統影響大眾的健康,因此,對不同環境的微生物進行監測,成為近年來重要的議題。進行環境監測必須建立一套適當的採樣分析技術,目前常見的分析方法包括培養及非培養的方法。培養方法 (Culture-based Method)一直是主要的微生物分析方法,然而,此方法存在著許多限制如:部分菌種對培養條件相當挑剔、培養相當耗時以及某些菌本身具有活性但無法被培養,有鑑於此,對於微生物的分析有必要建立一個正確且快速的非培養方法 (Non-culture-based method),以提供更完整的資訊。非培養的方法之中,螢光顯微鏡(epifluorescence microscopy, EFM)、流氏細胞儀(flow cytometric, FCM)、聚合酶連鎖反應(Real-Time quantitative polymerase chain reaction, real-time qPCR)以及螢光原位雜交(Fluorescence In Situ Hybridization, FISH)等方法可以評估微生物的總濃度以及活性,因此最有潛力可發展為替代培養方法的技術。至目前為止,使用非培養方法監測環境微生物的研究仍然很有限,因此,本研究將利用螢光原位雜交(FISH)與即時定量聚合酶連鎖反應 (real-time qPCR),建立微生物分析之最佳化步驟,以應用於空氣及水體之微生物監測。
本研究首先建立螢光原位雜交(FISH)之最佳化條件,以大腸桿菌以及酵母菌為對象,配製不同死活的百分比,在實驗室評估FISH與傳統培養方法間的關係,結果顯示,各探針的雜交效率均高達90 %,且兩種方法所得之微生物活性均呈高度相關,因此本研究指出FISH能對微生物活性測量提供相當快速與正確的資訊。此外本研究也成功的將FISH運用在養豬場、養雞場及大氣的空氣樣本分析,並與螢光染色(fluorochrome) 及培養方法比較,結果顯示,養豬場、養雞場及大氣樣本中的生物氣膠總濃度大約分別為9 x 10^6、5 x 10^8、8 x 10^5 cells/m3,但培養法所得的的濃度卻只有1 x 10^5、5 x 10^6、1 x 10^3 cells/m^3,而各空氣樣本之活性也顯著地高於可培養性。由此可知,傳統培養方法嚴重低估生物氣膠的濃度與活性。此外,養雞場中有最高的生物氣膠總濃度,在活性方面,養豬場與養雞場有較低的活性,但較高的可培養性,主要因為較長的清理間隔,以致有較多不具活性的微生物累積,而較高的可培養性則由於牲畜場所中動物的排泄物、食物可供微生物的生長。然而,大氣環境中的生物氣膠卻有較高的活性及較低的可培養性,其主要原因為大氣低營養鹽的惡劣環境,導致微生物進入具活性但不能培養的狀態(viable but non-culturable, VBNC)。整體上,FISH被證明能夠成功的定量空氣中之細菌與真菌之總濃度與活性。 此外,水中微生物偵測方面,real-time qPCR與FISH針對大腸桿菌之分析方法也成功的被建立,結果顯示,這兩種方法與傳統培養方法相較後,呈高度相關。此兩種方法亦成功應用於廢水處理廠與淨水廠中大腸桿菌之定量,結果顯示,廢水處理廠中進流水與放流水大腸桿菌的總濃度大約分別為5x 10^7 cells/100ml 與 2 x 10^7 cells/100ml,淨水廠則大約為2x 10^4 cells/100ml 與 8 x 10^2 cells/100ml。使用非培養方法所測得的活性高於培養方法的結果。整體而言,本研究所建立之非培養方法,FISH與real-time qPCR均為生物氣膠與水中微生物的研究提供了相當有利的分析工具,未來也能針對各環境中之特定致病菌,進行更進一步的研究與探討。 | zh_TW |
| dc.description.abstract | In the past decade, traditional culture-based methods are the major method for detecting microorganisms; however, culture-based methods for microorganism quantification are slow, tedious, and rather imprecise. In order to get more rapid, sensitive, and specific results for field microorganisms, non-culture-based methods for microorganism quantification should be therefore considered as an alternative. From non-culture-based methods, epifluorescence microscopy with fluorochrome (EFM/FL), flow cytometric with fluorochrome (FCM/FL), fluorescent in situ hybridization (FISH) and real-time polymerase chain reaction (real-time qPCR) for microorganisms quantification are the most promising methods to evaluate the viability, an important indicator for assessing potential health effects. To date, only limited data is available on the total cell concentration and viability of microorganisms in different environments. In this study, the optimal analysis methods of FISH and real-time qPCR for microorganism evaluation were established. The optimal conditions of FISH, and real-time qPCR were used to monitor the total cell concentration and viability of microorganisms in air and water environments. The results were then compared to those obtained using a commonly used culture-based method.
For the FISH condition optimization, four different controlled-viability samples of E.coli and yeast were made to assess the relation between FISH and culture-based method. The result showed that hybridization efficiency of FISH with varies probes was higher than 90 %. In addition, FISH and culture-based method were highly associated for viability. In summary, FISH could provide rapid and accurate information about microorganism concentrations and viability. Moreover, the established optimal FISH with probes were validated for characterizing bioaerosol profiles from air samples in swine buildings, chicken houses, and ambient air. The results were then compared to those obtained using fluorochrome with dyes and a commonly used culture-based method. The total microbial cell concentrations measured by using non-culture-based methods averaged about 9 x 10^6 cells/m^3 for swine buildings, 5 x 10^8 cells/m^3 for chicken houses, and 8 x 10^5 cells/m^3 for ambient environment. The viabilities determined by using non-culture-based methods were much higher than the culturabilities. The total microbial cell concentration and viability in the atmosphere were highly underestimated by the culture-based method in the past. Moreover, the results revealed that there was lower viability, but higher culturability in the livestock environment. The lower viability might be associated with non-viable bioaerosols accumulated on the floor resulted from longer cleaning intervals. Furthermore, the higher culturability can be explained by the sufficient nutrients form animal dander, fecal matter, and feed materials for bioaerosol growth. However, the higher viability but lower culturability was observed in the atmosphere environment. The finding might be related to that bioaerosols entered a viable but non-culturable (VBNC) state because of insufficient nutrients in a harsh environment. In conclusion, the FISH successfully assessed the total concentration and vibility for bacterial and fungal microorganisms in environmental field samples. Regarding the microorganisms in water environments, FISH and real-time qPCR were successfully established and applied to E. coli quantification in drinking water and wastewater. Results of FISH, real-time qPCR and culture-based method indicated that viability was highly associated for culturability. By the non-culture-based methods, real-time qPCR with DNA gene probe, the total E. coli concentrations in raw sewage and final effluent averaged 5 x 10^7 cells/100 ml and 2 x 10^7 cells/100 ml, respectively. The viability determined by using non-culture-based methods was higher than those using culture-based method. In conclusion, FISH and real-time qPCR should be powerful tools to provide more insight in the area of bioaerosol and environmental microbiology. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T01:02:46Z (GMT). No. of bitstreams: 1 ntu-96-F91844006-1.pdf: 931355 bytes, checksum: 5bcf1341d4e1c477d0d7ea814d4d73a1 (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | 摘要 I
ABSTRACT III CHAPTER I INTRODUCTION 1 CHAPTER II LITERATURE REVIEW 4 2.1 Bioaerosols quantification 5 2.1.1 Cultured-based methods 5 2.1.2 Noncultured-based methods 5 2.2 Environmental sampling 11 2.2.1 Air environments 11 2.2.2 Water environments 14 CHAPTER III OBJECTIVES OF THE STUDY 16 3.1 Evaluating the concentration of microorganisms in air environment by FISH 17 3.2 Evaluating the concentration of E.coli in water environment by FISH and real-time qPCR 17 CHAPTER IV EVALUATING THE CONCENTRATION OF MICROORGANISMS IN AIR ENVIRONMENT BY FISH 19 4.1 Developing FISH detection methods for microorganism analysis 20 4.2 Applying the optimal conditions of FISH to monitor microorganisms in air environment 25 4.2.1 Swine farm 25 4.2.2 Chicken farm 38 4.2.3 Ambient environment 51 4.2.4 Comparisons of the Bioaerosol Characteristics in Different Environments 61 4.3 Conclusions 63 CHAPTER V EVALUATING THE CONCENTRATION OF E. COLI IN WATER ENVIRONMENT BY FISH AND REAL-TIME QPCR 65 5.1 Developing real-time qPCR and FISH detection methods for E. coli analysis 66 5.1.1 Real-time qPCR 66 5.1.2 FISH 75 5.2 Applying the optimal conditions of real-time qPCR and FISH to monitor E. coli in water environment 78 5.3 Comparison of the Microorganisms Characteristics in Different Environments by Using Culture-based and Non-culture-based Methods. 86 5.4 Conclusion 86 CHAPTER VI CONCLUSIONS AND SUGGESTIONS 87 6.1 Conclusions 88 6.2 Suggestions 89 REFERENCE 90 APPENDIX I 98 APPENDIX II 99 | |
| dc.language.iso | en | |
| dc.subject | 分子生物技術 | zh_TW |
| dc.subject | 生物氣膠 | zh_TW |
| dc.subject | 螢光原位雜交 | zh_TW |
| dc.subject | 連鎖反應 | zh_TW |
| dc.subject | 即時定量聚合酶 | zh_TW |
| dc.subject | 螢光染色 | zh_TW |
| dc.subject | molecular biology technique | en |
| dc.subject | real-time quantitative polymerase chain reaction | en |
| dc.subject | fluorescent in situ hybridization | en |
| dc.subject | bioaerosol | en |
| dc.subject | fluorochrome | en |
| dc.title | 應用分子生物技術偵測環境微生物 | zh_TW |
| dc.title | Applications of Molecular Biology Techniques in Monitoring Environmental Microorganisms | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 蘇慧貞教授,林財富教授,張靜文副教授,趙馨助理教授 | |
| dc.subject.keyword | 分子生物技術,螢光染色,即時定量聚合酶,連鎖反應,螢光原位雜交,生物氣膠, | zh_TW |
| dc.subject.keyword | molecular biology technique,fluorochrome,real-time quantitative polymerase chain reaction,fluorescent in situ hybridization,bioaerosol, | en |
| dc.relation.page | 103 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-07-25 | |
| dc.contributor.author-college | 公共衛生學院 | zh_TW |
| dc.contributor.author-dept | 環境衛生研究所 | zh_TW |
| 顯示於系所單位: | 環境衛生研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 909.53 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
