Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29173
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor簡淑華(Shu-Hua Chien)
dc.contributor.authorChih-Kuei Keen
dc.contributor.author葛智逵zh_TW
dc.date.accessioned2021-06-13T00:44:34Z-
dc.date.available2013-08-05
dc.date.copyright2011-08-05
dc.date.issued2011
dc.date.submitted2011-08-04
dc.identifier.citation參考文獻
1. M. Grätzel, “Photoelectrochemical cells”, Nature 414 (2001) 338-344.
2. 黃建昇, 結晶矽太陽電池發展近況, 工業材料雜誌 2003, 203期, 150.
3. http://cdnet.stpi.org.tw/techroom/market/energy/energy022.htm, 國家實驗研究院科技政策研究與資訊中心(Science & Technology Policy Research and Information Center,STPI).
4. M. Grätzel, “Photovoltaic and photoelectrochemical conversion of solar energy”, Phil. Trans. R. Soc. A 365 (2007) 993-1005.
5. B. O’Regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films”, Nature 353 (1991) 737-740.
6. X. Chen and S. S. Mao, “Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications”, Chem. Rev. 107 (2007) 2891-2959.
7. M. Grätzel, “Dye-sensitized solar cells”, J. Photochem. Photobiol. C 4 (2003) 145-153.
8. H. Tsubomura, M. Matsumura, Y. Nomura and T. Amamiya, “Dye sensitised zinc oxide: aqueous electrolyte: platinum photocell”, Nature 261 (1976) 402-403.
9. C. Y. Chen, M. K. Wang, J. Y. Li, N. Pootrakulchote, L. Alibabaei, C.H. Ngoc-le, J. D. Decoppet, J. H. Tsai, C. Grätzel, C. G. Wu, S. M. Zakeeruddin and M. Grätzel “A New Highly Efficient Light-Harvesting Ruthenium Sensitizer for Thin-Film Dye-Sensitized Solar Cells” ACS Nano. (2009), 3, 3103-3109..
10. M. Grätzel, “Solar energy conversion by dye-sensitized photovoltaic cells”,
Inorg. Chem. 44 (2005) 6841-6851.
11. M. Grätzel, “Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells”, J. Photochem. Photobio. A 164 (2004) 3-14.
12. A. Hagfeldt and M. Grätzel, “Light-induced redox reactions in nanocrystalline systems”, Chem. Rev. 95 (1995) 49-68.
13. Md. K. Nazeeruddin, R. Humphry-Baker, P. Liska and M. Grätzel﹐“Investigation of sensitizer adsorption and the influence of protons on current and voltagen of a dye-sensitized nanocrystalline TiO2 solar cell”, J. Phys. Chem. B 107 (2003) 8981-8987.
14. Md. K. Nazeeruddin, P. Péchy, T. Renouard, S. M. Zakeeruddin, R. Humphry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi and M. Grätzel, “Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells”, J. Am. Chem. Soc. 123 (2001) 1613-1624.
15. N. G. Park, J. van de Lagemaat and A. J. Frank, “Comparison of dye-sensitized rutile- and anatase-based TiO2 solar cells”, J. Phys. Chem. B 104 (2000) 8989-8994.
16. S. Uchida, R. Chiba, M. Tomiha, N. Masaki and M. Shirai, “Application of titania nanotubes to a dye-sensitized solar cell”, Electrochem. 70 (2002) 418-420.
17. M. Adachi, Y. Murata, J. Takao, J. Jiu, M. Sakamoto and F. Wang, “Highly efficient dye-sensitized solar cells with a titania thin-film electrode composed of a network structure of single-crystal-like TiO2 nanowires made by the oriented attachment mechanism”, J. Am. Chem. Soc. 126 (2004) 14943-14949.
18. M. Y. Song, D. K. Kim, K. J. Ihn, S. M. Jo and D. Y. Kim, “Electrospun TiO2 electrodes for dye-sensitized solar cells”, Nanotechnology 15 (2004) 1861-1865.
19. Y. Ohsaki, N. Masaki, T. Kitamura, Y. Wada, T. Okamoto, T. Sekino, K. Niihara and S. Yanagida, “Dye-sensitized TiO2 nanotube solar cells: fabrication and electronic characterization”, Phys. Chem. Chem. Phys. 7 (2005) 4157-4163.
20. M. Wei, Y. Konishi, H. Zhou, H.Sugihara and H. Arakawa, “Utilization of titanate nanotubes as an electrode material in dye-sensitized solar cells”, J. Electrochem. Soc. 153 (2006) A1232-A1236.
21. G. S. Kim, H. K. Seo, V.P. Godble, Y. S. Kim, O. B. Yang and H. S. Shin, “Electrophoretic deposition of titania nanotubes from commercial titania nanoparticles:Application to dye-sensitized solar cells”, Electrochem. Commun. 8 (2006) 961-966.
22. J. Jiu, S. Isoda, F. Wang and M. Adachi, “Dye-sensitized solar cells based on a single-crystalline TiO2 nanorod film”, J. Phys. Chem. B 110 (2006) 2087-2092.
23. C. J. Lin, W. Y. Yu and S. H. Chien, “Transparent electrodes of ordered opened-end TiO2-nanotube arrays for highly efficient dye-sensitized solar cells”, J. Mater. Chem. 20 (2010) 1073–1077.
24. D. H Chen, F. Z. Huang, Y. B Cheng and R. A. Caruso, “Mesoporous Anatase TiO2 Beads with High Surface Areas and Controllable Pore Sizes: A Superior Candidate for High-Performance Dye-Sensitized Solar Cells”, Adv. Mater. 21 (2009) 2206–2210.
25. Y. J. Kim, M. H. Lee, H. J. Kim, G. Lim, Y. S. Choi, N. G. Park, K. K. Kim and W. I. Lee, “Formation of Highly Efficient Dye-Sensitized Solar Cells by Hierarchical Pore Generation with Nanoporous TiO2 Spheres”, Adv. Mater. 21 (2009) 3668–3673.
26. W. G. Yang, F. R. Wan, Q. W. Chen, J. J. Li and D. S. Xu, “Controlling synthesis of well-crystallized mesoporous TiO2 microspheres with ultrahigh surface area for high-performance dye-sensitized solar cells”, J. Mater. Chem. 20 (2010) 2870–2876.
27. Y. Suzuki, S. Ngamsinlapasathian, R. Yoshida and S. Yoshikawa, “Partially nanowire-structured TiO2 electrode for dye-sensitized solar cells”, Cent. Eur. J. Chem. 4 (2006) 476-488.
28. N. M. Lawandy, R. M. Balachandran, A.S.L. Gomes and E. Sauvain, “Laser action in strongly scattering media”, Nature 368 (1994) 436-438.
29. C. J. Barbé, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover and M. Grätzel, “Nanocrystalline titanium oxide electrodes for photovoltaic applications”, J. Am. Ceram. Soc. 80 (1997) 3157-3171.
30. S. Ngamsinlapasathian, S. Sakulkhaemaruethai, S. Pavasupree, A. Kitiyanan, T. Sreethawong, Y. Suzuki and S. Yoshikawa, “Highly efficient dye-sensitized solar cell using nanocrystalline titania containing nanotube structure”, J. Photochem. Photobiol. A 164 (2004) 145-151.
31. J. H. Yoon, S. R. Jang, R. Vittal, J. Lee and K. J. Kim, “TiO2 nanorods as additive to TiO2 film for improvement in the performance of dye-sensitized solar cells”, J. Photochem. Photobiol. A. 180 (2006) 184-188.
32. B. Tan and Y. Y. Wu, “Dye-sensitized solar cells based on anatase TiO2 nanoparticle/nanowire composites”, J. Phys. Chem. B 110 (2006) 15932-15938.
33. C. J. Lin, W. Y. Yu and S. H. Chien, “Effect of anodic TiO2 powder as additive on electron transport properties in nanocrystalline TiO2 dye-sensitized solar cells”, Appl. Phys. Lett. 91 (2007) 233120.
34. Z. S. Wang, H. Kawauchi, T. Kashima and H. Arakawa, “Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell”, Coord. Chem. Rev. 248 (2004) 1381-1389.
35. H. J. Koo, Y. J. Kim, Y. H. Lee, W. I. Lee, K. K. Kim and N. G. Park, “Nano-embossed Hollow Spherical TiO2 as Bifunctional Material for High-Efficiency Dye-Sensitized Solar Cells”, Adv. Mater. 20 2008 195–199.
36. F. Z. Huang, D. H. Chen, X. L. Zhang, R. A. Caruso and Y. B. Cheng, “Dual-Function Scattering Layer of Submicrometer-Sized Mesoporous TiO2 Beads for High-Efficiency Dye-Sensitized Solar Cells”, Adv. Funct. Mater. 20 (2010) 1301–1305.
37. N. G. Park, G. Schlichthorl, J. van de Lagemaat, H. M. Cheong, A. Mascarenhas and A. J. Frank, “Dye-sensitized TiO2 solar cells: structural and photoelectrochemical characterization of nanocrystalline electrodes formed from the hydrolysis of TiCl4”, J. Phys. Chem. B 103 (1999) 3308-3314.
38. Y. Lin, Y. T. Ma, L. Yang, X. R. Xiao, X. W. Zhou and X. P. Li, “Computer simulations of light scattering and mass transport of dye-sensitized nanocrystalline solar cells”, J. Electroanal. Chem. 588 (2006) 51-58.
39. Y. Zhao, S. Miyajima, Y. IDE, A. Yamada and M. Konagai, “Microcrystalline silicon films and solar cells prepared by photochemical vapor deposition on textured SnO2 with high haze factors”, Jpn. J. Appl. Phys. 41 (2002) 6417-6420.
40. J. Krč , M. Zeman, F. Smole and M. Topič, “Optical modeling of a-Si:H solar cells deposited on textured glass/SnO2 substrates”, J. Appl. Phys. 92 (2002) 749-755
41. J. Krč , M. Zeman, F. Smole and M. Topič, “Optical modelling of thin-film silicon solar cells deposited on textured substrates”, Thin Solid Films 451-452 (2004) 298-302.
42. J. Krč , F. Smole and M. Topič, “Study of enhanced light scattering in microcrystalline silicon solar cells”, J. Non-Cryst. Solids 338-340 (2004) 673-676.
43. Y. Nasuno, N. Kohama, K. Nishimura, T. Hayakawa, H. Taniguchi and M. Shimizu, “Effect of perforated transparent electrodes on light transmittance and light scattering in substrates used for microcrystalline silicon thin-film solar cells”, Appl. Phys. Lett. 88 (2006) 071909.
44. Y. Chiba, A. Islam, R. Komiya, N. Koide and L. Y. Han, “Conversion efficiency of 10.8% by a dye-sensitized solar cell using a TiO2 electrode with high haze”, Appl. Phys. Lett. 88 (2006) 223505.
45. 莊浩宇,陳東煌, 「取之不盡的太陽能光電化學反應」, 科學發展2009 年5 月, 437 期。
46. A. Fujishima and K. Honda, “Electrochemical photolysis at a semiconductor electrode”, Nature 37 (1972) 238.
47. J. Nowotny, T. Bak, M.K. Nowotny and L.R. Sheppard, “Titanium dioxide for solar-hydrogen I. Functional properties”, Int. J. Hydrogen Energy 32 (2007) 2609-2629.
48. http://upload.wikimedia.org/wikipedia/commons/4/4c/Solar_Spectrum.png
49. Y. L. Lee, C. F. Chi and S. Y. Liau, “CdS/CdSe Co-Sensitized TiO2 Photoelectrode for Efficient Hydrogen Generation in a Photoelectrochemical Cell”, Chem. Mater. 22 (2010) 922–927.
50. M. Paulose, G. K. Mor and C. A. Grimes, “Visible light photoelectrochemical and water-photoelectrolysis properties of titania nanotube arrays”, J. Photochem. Photobio. A: Chemistry 178 (2006) 8-15.
51. J. Zhang, L. Sun, C. Liao and C. Yan, “Size control and photoluminescence enhancement of CdS nanoparticles prepared via reverse micelle method”, Solid State Communications 124 (2002) 45.
52. I. Robel, V. Subramanian, M. Kuno and P. V. Kamat, “Quantum Dot Solar Cells. Harvesting Light Energy with CdSe Nanocrystals Molecularly Linked to Mesoscopic TiO2 Films”, J. Am. Chem. Soc. 128 (2006) 2385
53. R. D. Schaller and V. I. Klimov, “High Efficiency Carrier Multiplication in PbSe Nanocrystals: Implications for Solar Energy Conversion”, Phys. Rev. Lett . 92 (2004) 186601.
54. Memming, R., Semiconductor Electrochemistry, 1st ed., Wiley-Veh, New 64 York, (2001) 264-274.
55. W. W. Yu and X. Peng, “Formation of High-Quality CdS and Other II –VI Semiconductor Nanocrystals in Noncoordinating Solvents:T unable Reactivity of Monomers”, Angew. Chem. Int. Ed. 41 (2002) 2368.
56. W. W. Yu, L. Q. W. Guo and X. Peng, “Experimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals”, Chem. Mater. 15 (2003) 2854.
57. R. He, X. Qian, J. Yin, H. Xi, L. Bian and Z. Zhu, “Formation of monodispersed PVP-capped ZnS and CdS nanocrystals under microwave irradiation”, Colloids and Surfaces A: Physicochem. Eng. Aspects 220 (2003) 151
58. Y. Wang and N. Herron, “Nanometer-Sized Semiconductor Clusters: Materials Synthesis, Quantum Size Effects, and Photophysical Properties”, J. Phys. Chem. 95 (1991) 525.
59. X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir and S. Weiss, “Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics”, Science 307 (2005) 538
60. A. J. Nozik, “Exciton Multiplication and Relaxation Dynamics in Quantum Dots: Applications to Ultrahigh-Efficiency Solar Photon Conversion”, Inorganic Chemistry 44 (2005) 6893
61. A. J. Nozik, “Quantum dot solar cells”, Physica E 14 (2002) 115.
62. H. M. Pathan and C. D. Lokhande, “Deposition of metal chalcogenide thin films by successive ionic layer adsorption and reaction (SILAR) method”, Bull. Mater. Sci. 27 (2004) 85–111.
63. X. W. Lou, L. A. Archer, and Z. C. Yang, “Hollow Micro-/Nanostructures: Synthesis and Applications”, Adv. Mater. 20 (2008) 3987–4019.
64. F. Caruso, R. A. Caruso and H. Mohwald, “Nanoengineering of Inorganic and Hybrid Hollow Spheres by Colloidal Templating”, Science 282 (1998) 1111.
65. F. Caruso, X. Y. Shi, R. A. Caruso and A. Susha, “Hollow Titania Spheres from Layered Precursor Deposition on Sacrificial Colloidal Core Particles”, Adv. Mater. 13 (2001) 740-744.
66. Z. Zhong, Y. D. Yin, B. Gates and Y. N. Xia, “Preparation of Mesoscale Hollow Spheres of TiO2 and SnO2 by Templating Against Crystalline Arrays of Polystyrene Beads”, Adv. Mater. 12 (2000) 206-209.
67. Y. Xia and R. Mokaya, “Hollow spheres of crystalline porous metal oxides: A generalized synthesis route via nanocasting with mesoporous carbon hollow shells”, J. Mater. Chem. 15 (2005) 3126–3131.
68. J. G. Yu, W. Liu, and H. G. Yu, “A One-Pot Approach to Hierarchically Nanoporous Titania Hollow Microspheres with High Photocatalytic Activity”, Crystal Growth & Design 8 (2008) 930-934.
69. T. Nakashima and N. Kimizuka, “Interfacial Synthesis of Hollow TiO2 Microspheres in Ionic Liquids”, J. Am. Chem. Soc. 125 (2003) 6386-6387.
70. W. H. Suh, A. R. Jang, Y. H. Suh and K. S. Suslick, “Porous, Hollow, and Ball-in-Ball Metal Oxide Microspheres: Preparation, Endocytosis, and Cytotoxicity”, Adv. Mater. 18 (2006) 1832–1837.
71. T. Chen, P. J. Colver and S. A. F. Bon, “Organic–Inorganic Hybrid Hollow Spheres Prepared from TiO2-Stabilized Pickering Emulsion Polymerization”, Adv. Mater. 19 (2007) 2286–2289.
72. Y. J. Kim, S. Y. Chai and W. I. Lee, “Control of TiO2 Structures from Robust Hollow Microspheres to Highly Dispersible Nanoparticles in a Tetrabutylammonium Hydroxide Solution”, Langmuir 23 (2007) 9567-9571.
73. L. Liu , Y. M. Cui , B. Li , X. F. Zhou and W. P. Ding , “Study on the surface erosion route to the fabrication of TiO2 hollow spheres”, Applied Surface Science 256 (2010) 2596–2601.
74. Y. T. Li, C. H. Song, Y. Z. Hu, Y. J. Wei and Y. Wei, “Facile Template-free Alcohothermal Route to Synthesize Hollow TiO2 Microspheres with Nanocrystal Grain Structure”, Chemistry Letters 35 (2006) 1344-1345.
75. J. G. Yu, H. T. Guo, S. A. Davis and S. Mann, “Fabrication of Hollow Inorganic Microspheres by Chemically Induced Self-Transformation”, Adv. Funct. Mater. 16 (2006) 2035–2041.
76. Z. F. Bian, J. Zhu, F. L. Cao, Y. F. Lu and H. X. Li, “In situ encapsulation of Au nanoparticles in mesoporous core–shell TiO2 microspheres with enhanced activity and durability”, Chem. Commun. (2009) 3789–3791.
77. K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol and T. Siemieniewska, “Reporting physisorption data for gas/solid systems with specific reference to the determination of surface area and porosity”, Pure & Appl. Chem. 57 (1985) 603-619.
78. P. M. S. Monk. 『Fundamentals of Electroanalytical Chemistry』 8.2 『Electroanalytical Measurements Involving Impedance』 John Wiley & Sons Ltd. (2001)
79. 吳浩青,李永舫。『電化學動力學』第七章『電極交流阻抗』。科技圖書公司(2001年)。
80. M. Adachi, M. Sakamoto, J. Jiu, Y. Ogata and S. Isoda, “Determination of parameters of electron transport in dye-sensitized solar cells using electrochemical impedance spectroscopy”, J. Phys. Chem. B 110 (2006) 13872-13880.
81. J. J. Wu, G. R. Chen, H. H. Yang, C. H. Ku and J. Y. Lai, “Effects of dye adsorption on the electron transport properties in ZnO-nanowire dye-sensitized solar cells”, Appl. Phys. Lett. 90 (2007) 213109.
82. L. Y. Han, N. Koide, Y. Chiba and T. Mitate, “Modeling of an equivalent circuit for dye-sensitized solar cells”, Appl. Phys. Lett. 84 (2004) 2433-2435.
83. L. Y. Han, N. Koide, Y. Chiba, A. Islam, R. Komiya, N. Fuke, A. Fukui and R. Yamanaka, “Improvement of efficiency of dye-sensitized solar cells by reduction of internal resistance”, Appl. Phys. Lett. 86 (2005) 213501.
84. M. Grätzel, “Mesoscopic solar cells for electricity and hydrogen production from sunlight”, Chem. Lett. 34 (2005) 8-13.
85. N. Vlachopoulos, P. Liska, J. Augustynski and M. Grätzel, “Very efficient visible light energy harvesting and conversion by spectral sensitization of high surface area polycrystalline titanium dioxide films”, J. Am. Chem. Soc. 110 (1988) 1216-1220.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29173-
dc.description.abstract在本研究中我們利用兩步溶劑熱的方式合成具有空心結構的二氧化鈦微米球。在第一步的溶劑熱反應,我們加入硫酸氧鈦、乙醇、甘油及乙醚在110oC下反應四小時,此時會生成實心結構的有機鈦體前驅物。在第二步的溶劑熱反應中,我們調整酒精濃度及反應時間,最後可以得到具有完整結構的空心二氧化鈦球體。藉由X光粉末繞射儀、氮氣等溫吸脫附、場發射掃描式電子顯微鏡及高解析度穿透式電子顯微鏡等鑑定方法,我們可以知道此兩步溶劑熱的方式合成之二氧化鈦球體具有銳鈦礦的晶相、310 m2/g的表面積、1-2微米的直徑及空心的內部結構。我們將製備好的二氧化鈦空心微米球應用於染料敏化太陽能電池及光電催化水分解。
我們先以二氧化鈦空心微米球應用於染料敏化太陽能電池光陽極,分別塗佈6微米及10微米兩種厚度進行測試,在使用N719染料作為敏化劑及AM 1.5模擬太陽光照射下(100 mW/cm2),其光電轉換效率分別為4.37%及5.61%。
在染料敏化太陽能電池系統中,二氧化鈦奈米顆粒扮演著吸附染料及傳遞電子的角色。近年來研究學者指出適當地摻入次微米二氧化鈦粒子可增加入射光的散射,進而提升光利用率。近期的研究更顯示添加具高表面積之二氧化鈦大尺寸粒子除了可增加入射光散射及光利用率外,亦可提高染料的吸附量,以更進一步提升染料敏化太陽能電池的光電轉換效率。因此我們將溶膠凝膠法所製備的二氧化鈦奈米顆粒(SG)應用於染料敏化太陽能電池光陽極,在使用N719染料作為敏化劑及AM 1.5模擬太陽光照射下(100 mW/cm2),得到光電轉換效率為7.14%;並於SG層上方塗佈上一層約250nm大小之次微米二氧化鈦粒子Merck Anatase (MA)或二氧化鈦空心微米球兩種具較大尺寸的二氧化鈦作為散射層,以組合成具雙層結構的染料敏化太陽能電池光陽極,可得到光電轉換效率分別為7.71%及8.20%。二氧化鈦空心微米球相較於次微米二氧化鈦粒子MA作為散射層可得到較高的光電轉換效率,高表面積的特性使其能吸附更多染料是主要的原因。
我們將二氧化鈦空心微米球應用於光電催化水分解之工作電極,並利用連續離子層吸附反應法(SILAR)將硫化鎘及硫化硒組裝至二氧化鈦上,以作為吸收可見光之光敏化劑。在硫化鎘的系統中,分別塗佈6微米及10微米兩種厚度二氧化鈦空心微米球層進行測試,我們發現塗佈6微米厚度的整體效率較高,並以進行五次SILAR過程之工作電極可得到最高之光電催化水分解效率3.86%;在硫化硒的系統中,則直接以塗佈6微米厚度二氧化鈦空心微米球層進行測試,以進行三次SILAR過程之工作電極可得到光電催化水分解效率4.55%。此外,我們於6微米厚度二氧化鈦空心微米球層上先進行五次SILAR過程鍍上硫化鎘,再進行一次SILAR過程鍍上硫化硒,可得到最高光電催化水分解效率5.13%。
zh_TW
dc.description.abstractTitania hollow microspheres (THMS) were prepared by a two-step solvothermal process. The solid titania precursor was formed in a solution containing TiOSO4, ethanol, glycerol and ethyl ether at 110oC for 4 h in the first step. In the second solvothermal step, it was found that the morphological integrity of the hollow microspheres could be controlled by varying the concentration of ethanol. We obtained uniform THMS in pure anatase phase, with 1∼2 μm diameter and 310 m2/g of surface area. All the samples were characterized by XRD, UV-Vis, N2 sorption isotherms, FESEM and HRTEM.
In the present study, we have applied the prepared THMS to use in dye sensitized solar cells(DSSCs) and solar water splitting. In DSSCs, the THMS was used as a scattering layer atop the conventional TiO2 nanoparticle film. The solar energy conversion efficiency was significantly enhanced by nearly 15% as compared to that without THMS layer sensitized with N719 dye under AM 1.5 solar irradiation (100 mW/cm2). The improved light harvesting characteristics were due to dye adsorption capacity of the THMS and its high diffusion reflectance property which attest to the superior light scattering property. In the solar photoelectrocatalytic water splitting, considerably high photoconversion efficiencies of 3.86% was attained by the CdS quantum dots sensitized THMS and of 4.55% was reached by the CdSe quantum dots sensitized THMS that were prepared by SILAR process. By CdS and CdSe cosensitization of THMS, the highest efficiency of 5.13% was achieved. Accordingly, the titania hollow microspheres can be beneficial for application in solar energy conversion.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T00:44:34Z (GMT). No. of bitstreams: 1
ntu-100-R98223166-1.pdf: 7862612 bytes, checksum: 9ded8a67746002e999522d95fc4f255b (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents目錄
摘要 Ⅰ
Abstract Ⅲ
謝誌.................................................................................................................................Ⅳ
目錄 Ⅴ
圖目錄 Ⅶ
表目錄.............................................................................................................................XI
第一章 緒論 1
1.1 前言 1
1.2 太陽能電池簡介 2
1.3 染料敏化太陽能電池 (dye-sensitized solar cell, DSSC) 5
1.3.1 染料敏化太陽能電池工作原理 6
1.3.2 影響染料敏化太陽能電池光電轉換效率之因素 8
1.4 光電催化水分解 25
1.5 量子點.................................................................................................................29
1.5.1 量子點的特性.............................................................................................29
1.5.2 量子點合成及組裝技術.............................................................................33
1.6 二氧化鈦空心微米球的文獻回顧及合成方法................................................34
1.6.1 硬性模板法.................................................................................................34
1.6.2 軟性模板法.................................................................................................37
1.6.3 無模板法.....................................................................................................41
1.7 研究動機............................................................................................................43
第二章 實驗方法 44
2.1 藥品及儀器 44
2.2 二氧化鈦空心微米球THMS之製備 46
2.3 二氧化鈦奈米粒子醬料之製備...……………………………………………………….47
2.4 染料敏化太陽能電池光陽極之製備 47
2.5 光電催化水分解工作電極之製備 54
2.6 材料特性分析.....................................................................................................54
2.6.1 場發射掃描式電子顯微鏡 (Field Emission Scanning Electron Microscopy) 54
2.6.2 高解析穿透式電子顯微鏡 (High Resolution Transmission Electron Microscopy) 54
2.6.3 能量分散式X光光譜儀 (Energy Dispersive X-ray Spectrometers)...............54
2.6.4 X-射線繞射光譜 (X-ray Diffraction Spectroscopy) 55
2.6.5 紫外光-可見光吸收光譜儀(UV-Visible Spectrophotometer) 56
2.6.6 氮氣等溫吸附與脫附 (N2 Sorption) 57
2.7 染料敏化太陽能電池組裝及測試 .......................59
2.8 染料吸附量測試.................................................................................................69
2.9 光電催化水分解反應.........................................................................................71
第三章 結果與討論 73
3.1 二氧化鈦空心微米球THMS 74
3.1.1 第二步溶劑熱法中酒精濃度對形成二氧化鈦空心微米球的影響.........74
3.1.2 第二步溶劑熱法中反應時間對二氧化鈦微米球內部結構的影響.........79
3.2 染料敏化太陽能電池 86
3.2.1 不同厚度二氧化鈦空心微米球單層結構染料化太陽能電池測試…….86
3.2.2 不同厚度SG + 10THMS雙層結構染料敏化太陽能電池測試 90
3.2.3 不同厚度SG + 6THMS雙層結構染料敏化太陽能電池測試.................94
3.2.4 8SG +10THMS與12SG +6THMS於染料敏化太陽能電池測試結果比較.................................................................................................................98
3.2.5 Sol-gel TiO2、MA及THMS二氧化鈦的比較.......................................101
3.2.6 SG + THMS及SG + MA雙層結構染料敏化太陽能電池測試比較......104
3.3 光電催化水分解反應 101
3.3.1 CdS/THMS於光電催化水分解反應測試................................................111
3.3.2 CdSe/THMS於光電催化水分解反應測試.......................................................122
3.3.3 CdSe/CdS/THMS於光電催化水分解反應測試..............................................127
第四章 結論 132
參考文獻 134
附錄A 量子點敏化太陽能電池(quantum dot sensitized solar cells,QDSSCs)........144






圖目錄
圖1-1 各類型太陽能電池效率的發展情形 4
圖1-2 染料敏化太陽能電池的基本結構 6
圖1-3 不同半導體的能隙能階圖 8
圖1-4 染料敏化太陽能電池的能階示意圖 9
圖1-5 N3系列的染料及其所對應在不同波長下的吸收光譜 10
圖1-6 N3及Black dye 染料的IPCE(incident photo to current conversion
efficiency)應答曲線及其化學結構 11
圖1-7 一維奈米結構半導體幫助光電子傳遞的示意圖 14
圖1-8 次微米實心球體結構示意圖.........................................................................14
圖1-9 N719染料紫外可見光吸收光譜 15
圖1-10 添加不同比例的奈米棒得到的光散射強度圖譜,依序為(0%、5%、10%、15%的奈米棒) 17
圖1-11 六種不同奈米複合結構光陽極示意圖 19
圖1-12 六種不同奈米複合結構光陽極IPCE比較圖 20
圖1-13 不同霧度值對量子效率的影響 22
圖1-14 不同玻璃基板隨著波長改變的霧度變化以及其量子效率的差異 23
圖1-15 霧度對於IPCE值及光電流的變化 24
圖1-16 水分解製氫的實驗裝置圖.............................................................................26
圖1-17 光化學電池的能階示意圖.............................................................................27
圖1-18 太陽光光譜分佈圖.........................................................................................27
圖1-19 TiO2/CdS/CdSe階梯能階示意圖...................................................................28
圖1-20 電子能階隨粒子尺寸的變化狀況.................................................................29
圖1-21 CdS的吸、放光光譜與粒徑大小的關係,圓圈處表示激子吸收峰.........30
圖1-22 CdSe和CdS的粒徑與激子吸收峰位置之關係曲線...................................30
圖1-23 各種量子點放光波長與量子點尺寸的關係圖.............................................31
圖1-24 (a)衝擊離子化效應示意圖 (b)歐傑再結合效應示意圖..............................32
圖1-25 連續離子層吸附反應法.................................................................................33
圖1-26 硬性模板法製備空心球的製備過程.............................................................35
圖1-27 以LbL方法製備二氧化鈦空心球.................................................................35
圖1-28 利用polystyrene陣列製備二氧化鈦空心球.................................................36
圖1-29 利用TiF4一鍋合成二氧化鈦空心球............................................................37
圖1-30 利用離子液體合成二氧化鈦空心球.............................................................38
圖1-31 利用超音波噴灑熱解法製備二氧化鈦空心球.............................................38
圖1-32 利用皮克林乳膠法製備二氧化鈦空心球.....................................................39
圖1-33 利用TBAH產生氣泡製備二氧化鈦空心球.................................................39
圖1-34 利用NH4F及H2O2製備二氧化鈦空心球....................................................40
圖1-35 利用auto-orientation assembly方式製備二氧化鈦空心球...........................41
圖1-36 利用dissolution-redeposition方式製備二氧化鈦空心球.............................42
圖2-1 二氧化鈦空心微米球THMS製備流程圖 46
圖2-2 二氧化鈦奈米粒子(sol-gel TiO2)醬料製備流程圖。 47
圖2-3 雙層結構染料敏化太陽能電池之工作電極製備流程圖.............................50
圖2-4 SILAR法組裝CdS流程圖............................................................................52
圖2-5 SILAR法組裝CdSe流程圖...........................................................................53
圖2-6 Hitachi-U3410 擴散反射式紫外線-可見光光譜儀。 57
圖2-7 IUPAC制定之物理等溫吸附-脫附分類圖。 58
圖2-8 IUPAC制定之遲滯迴圈型態示意圖。 58
圖2-9 光電轉換效率測試組裝及裝置圖.................................................................59
圖2-10 光電轉換效率裝置光路徑圖.........................................................................60
圖2-11 染料敏化太陽能電池光電轉換效率測試電壓電流圖.................................60
圖2-12 Z 、 Z’、 Z”、 Ө之間的關係圖.........................................................62
圖2-13 染料敏化太陽能電池電化學阻抗圖譜.........................................................63
圖2-14 染料敏化太陽能電池等效電路圖.................................................................64
圖2-15 染料敏化太陽能電池電化學阻抗原始數據分析.........................................65
圖2-16 特定波光束輸出系統設備圖(Oriel Instruments)...........................................68
圖2-17 特定波光束輸出系統光路徑圖.....................................................................68
圖2-18 N719染料之紫外-可見光光譜.....................................................................69
圖2-19 N719染料吸收度對濃度檢量線...................................................................70
圖2-20 水分解反應之光源系統.................................................................................71
圖2-21 水分解反應槽示意圖.....................................................................................72
圖2-22 水分解反應測試電壓電流圖.........................................................................73
圖2-23 施加不同電壓下水分解反應之光電轉換效率.............................................73
圖3-1 第一步溶劑熱法所得實心有機鈦球:(a) FESEM及(b) HRTEM影像......74
圖3-2 以不同酒精濃度進行第二步溶劑熱法的in-situ XRD圖像:(a)70%酒精(b)80%酒精(c)85%酒精.................................................................................75
圖3-3 以水作為第二部水熱溶劑反應6小時後的FESEM影像..........................76
圖3-4 以不同酒精濃度進行第二步溶劑熱法反應6小時後的FESEM影像。
(a-1,a-2) THMS-30-6 (b-1,b-2) THMS-50-6 (c-1,c-2) THMS-80-6
(d-1,d-2) THMS-85-6 (e-1,e-2) THMS-90-6 (f-1,f-2) THMS-95-6................77圖3-5 改變反應時間以90%酒精進行第二步溶劑熱法的FESEM影像。
(a) THMS-90-3 (b) THMS-90-6 (c) THMS-90-12 (d) THMS-90-24。..........79圖3-6 改變反應時間以90%酒精進行第二步溶劑熱法的HRTEM影像。
(a-1,a-2) THMS-90-3 (b-1,b-2) THMS-90-6 (c-1,c-2) THMS-90-12
(d-1,d-2) THMS-90-24....................................................................................80
圖3-7 改變反應時間以90%酒精進行第二步溶劑熱法的XRD圖譜...................82
圖3-8 改變反應時間以90%酒精進行第二步溶劑熱法的氮氣等溫吸附與脫附
曲線圖以及BJH脫附孔徑分佈圖。(a) THMS-90-6 (b) THMS-90-12
(c) THMS-90-24..............................................................................................83
圖3-9 在90%酒精的條件下經歷第二步溶劑熱法不同時間後狀態示意圖.........85
圖3-10 二氧化鈦空心微米球塗佈於FTO上經450oC鍛燒及TiCl4後處理後之FESEM影像 (a)截面圖 (b)截面放大圖.......................................................86
圖3-11 不同厚度二氧化鈦空心微米球單層結構作為染料化太陽能電池光陽極
之電流電壓圖.................................................................................................87
圖3-12 不同厚度二氧化鈦空心微米球單層結構Haze factor圖譜.........................88
圖3-13 不同厚度二氧化鈦空心微米球單層結構電極之入射單色光子-電子轉
化效率圖譜.....................................................................................................89
圖3-14 SG/THMS之FESEM影像............................................................................90
圖3-15 不同厚度SG + 10THMS雙層結構作為染料敏化太陽能電池光陽極之
電流電壓圖.....................................................................................................91
圖3-16 不同厚度SG + 10THMS雙層結構Haze factor圖譜..................................92
圖3-17 不同厚度SG + 10THMS雙層結構電極之入射單色光子-電子轉化效
率圖譜.............................................................................................................93
圖3-18 不同厚度SG + 6THMS雙層結構作為染料敏化太陽能電池光陽極之
電流電壓圖.....................................................................................................94
圖3-19 不同厚度SG + 6THMS雙層結構Haze factor圖譜.....................................96
圖3-20 不同厚度SG + 6THMS雙層結構電極之入射單色光子-電子轉化效率
圖譜.................................................................................................................97
圖3-21 8SG +10THMS與12SG +6THMS作為染料敏化太陽能電池光陽極之
電流電壓圖.....................................................................................................99
圖3-22 8SG +10THMS與12SG +6THMS暗電流測試圖......................................100
圖3-23 8SG +10THMS與12SG +6THMS電極之入射單色光子-電子轉化效
率圖譜...........................................................................................................100
圖3-24 XRD圖譜:(a) SG (b) MA (c) THMS.........................................................101
圖3-25 HRTEM影像:(a) SG (b) MA (c) THMS....................................................102
圖3-26 FESEM影像:(a) SG (b) MA (c) THMS.....................................................102
圖3-27 氮氣等溫吸附與脫附曲線圖:(a) SG (b) MA (c) THMS...........................103
圖3-28 12SG、12SG+6MA及12SG+6THMS作為染料敏化太陽能電池光陽
極之電流電壓圖...........................................................................................104
圖3-29 12SG、12SG+6MA及12SG+6THMS之Haze factor圖譜.......................105
圖3-30 12SG、12SG+6MA及12SG+6THMS電極之入射單色光子-電子轉化
效率圖譜.......................................................................................................107
圖3-31 12SG、12SG+6MA及12SG+6THMS電極吸附染料後的現象(Top View)107
圖3-32 12SG、12SG+6MA及12SG+6THMS電極吸附染料後的現象(Bottom View).............................................................................................................108
圖3-33 12SG、12SG+6MA及12SG+6THMS電極結構示意圖............................108
圖3-34 12SG、12SG+6MA及12SG+6THMS電極之電化學阻抗圖譜................109
圖3-35 1CdS/THMS/FTO之(a) FESEM影像側面圖 (b) FESEM影像俯視圖
(c) EDX圖像結果.........................................................................................112
圖3-36 3CdS/THMS/FTO之(a) FESEM影像側面圖 (b) FESEM影像俯視圖
(c) EDX圖像結果.........................................................................................113
圖3-37 5CdS/THMS/FTO之(a) FESEM影像側面圖 (b) FESEM影像俯視圖
(c) EDX圖像結果.........................................................................................114
圖3-38 7CdS/THMS/FTO之(a) FESEM影像側面圖 (b) FESEM影像俯視圖
(c) EDX圖像結果.........................................................................................115
圖3-39 CdS標準繞射峰圖譜....................................................................................116
圖3-40 mCdS/6THMS/FTO之XRD圖譜................................................................116
圖3-41 mCdS/6THMS/FTO之紫外-可見光光譜.....................................................117
圖3-42 mCdS/10THMS/FTO之電流電壓圖............................................................118
圖3-43 mCdS/10THMS/FTO之效率電壓圖............................................................118
圖3-44 mCdS/6THMS/FTO之電流電壓圖..............................................................120
圖3-45 mCdS/6THMS/FTO之效率電壓圖..............................................................120
圖3-46 3CdSe/6THMS/FTO之(a) FESEM影像側面圖 (b) FESEM影像俯視圖
(c) EDX圖像結果.........................................................................................122
圖3-47 CdSe標準繞射峰圖譜.................................................................................123
圖3-48 3CdSe/6THMS/FTO的XRD圖譜..............................................................123
圖3-49 nCdSe/6THMS/FTO之紫外-可見光光譜...................................................124
圖3-50 nCdSe/6THMS/FTO之電流電壓圖.............................................................125
圖3-51 nCdSe/6THMS/FTO之效率電壓圖.............................................................125
圖3-52 1CdSe/5CdS/6THMS/FTO之(a) FESEM影像側面圖 (b) FESEM影像
俯視圖(c) EDX圖像結果.............................................................................127
圖3-53 1CdSe/5CdS/6THMS/FTO之XRD圖譜.....................................................128
圖3-54 nCdSe/5CdS/6THMS/FTO之紫外-可見光光譜..........................................128
圖3-55 nCdSe/5CdS/6THMS/FTO之電流電壓圖...................................................129
圖3-56 nCdSe/5CdS/6THMS/FTO之效率電壓圖...................................................129



表目錄
表1-1 各類型太陽能電池的比較.................. ...3
表1-2 利用各種奈米結構二氧化鈦製備染料敏化太陽能電池光陽極的研究
團隊及其測試出的最高光電轉換效率 13
表1-3 不同顆粒大小的二氧化鈦依不同比例配製成的塗料。 18
表1-4 六種不同奈米複合結構光陽極光伏特表現。 19
表2-1 本研究中所使用的儀器及其型號。 45
表3-1 在90%酒精的條件下經歷第二步溶劑熱法不同時間後之狀態整理..........85
表3-2 不同厚度二氧化鈦空心微米球單層結構作為染料化太陽能電池光陽極
光伏特表現.....................................................................................................89
表3-3 不同厚度SG + 10THMS雙層結構作為染料化太陽能電池光陽極光伏
特表現.............................................................................................................93
表3-4 不同厚度SG + 6THMS雙層結構作為染料化太陽能電池光陽極光伏
特表現.............................................................................................................96
表3-5 8SG +10THMS與12SG +6THMS作為染料化太陽能電池光陽極光伏
特表現.............................................................................................................99
表3-6 SG、MA及THMS各種特性比較..............................................................103
表3-7 12SG、12SG+6MA、12SG+6THMS及18SG作為染料化太陽能電池光陽極光伏特表現..............................................................................................106
表3-8 12SG、12SG+6MA及12SG+6THMS電極之電化學阻抗參數分析.......109
表3-9 1CdS/THMS/FTO之EDX數據結果............................................................112
表3-10 3CdS/THMS/FTO之EDX數據結果............................................................113
表3-11 5CdS/THMS/FTO之EDX數據結果............................................................114
表3-12 7CdS/THMS/FTO之EDX數據結果............................................................115
表3-13 mCdS/10THMS/FTO的J-0.4V、Voc、η數據整理.......................................119
表3-14 mCdS/6THMS/FTO的J-0.4V、Voc、η數據整理.........................................121
表3-15 3CdSe/6THMS/FTO之EDX數據結果........................................................122
表3-16 nCdSe/6THMS/FTO的J-0.4V、Voc、η數據整理........................................126
表3-17 1CdSe/5CdS/6THMS/FTO之EDX數據結果..............................................127
表3-18 nCdSe/5CdS/6THMS/FTO的J-0.4V、Voc、η數據整理..............................130
dc.language.isozh-TW
dc.title二氧化鈦空心微米球的製備及其應用zh_TW
dc.titleFabrication of TiO2 hollow microspheres and their applicationsen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee劉如熹(Ru-Shi Liu),蘇昭瑾(Chao-Chin Su)
dc.subject.keyword二氧化鈦空心微米球,染料敏化太陽能電池,光電催化水分解,散射,染料吸附,連續離子層吸附反應法。,zh_TW
dc.subject.keywordTitania hollow microspheres,Dye sensitized solar cells,Solar water splitting,Light-scattering,Dye adsorption,SILAR.,en
dc.relation.page148
dc.rights.note有償授權
dc.date.accepted2011-08-04
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept化學研究所zh_TW
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  目前未授權公開取用
7.68 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved