Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29161
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃升龍(Sheng-Lung Huang)
dc.contributor.authorYi-Da Huangen
dc.contributor.author黃奕達zh_TW
dc.date.accessioned2021-06-13T00:43:49Z-
dc.date.available2007-07-27
dc.date.copyright2007-07-27
dc.date.issued2007
dc.date.submitted2007-07-25
dc.identifier.citation[1] E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059 (1987).
[2] S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486 (1987).
[3] J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547 (1996).
[4] P. St. J. Russell, “Photonic crystal fiber,” Science 299, 358 (2003).
[5] J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and P. D. de Sandro, “Large mode area photonic crystal fiber,” Electron. Lett. 16 , 1347 (1998).
[6] T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961 (1997).
[7] Jonathan C. Knight, “Photonic crystal fibres,” Nature 424, 847 (2003).
[8] A. Bjarklev, A. S. Bjarklev, and J. Broeng, “Photonic crystal fibres,” Kluwer Academic Publishers (2003). ISBN: 1-4020-7610-3.
[9] T. A. Birks, J. C. Knight, B. J. Mangan, and P. St. J. Russell, “Photonic crystal fibers: An endless variety,” IEICE Trans. Electron. E84-C, 585 (2001).
[10] F. Gérôme, J. -L. Auguste, and J. -M. Blondy, “Design of dispersion-compensating fibers based on a dual-concentric-core photonic crystal fiber, ” Opt. Lett. 29, 2725 (2004).
[11] A. Ferrando, E. Silvestre, P. Andres, J. Miret, and M. Andres, “Designing the properties of dispersion-flattened photonic crystal fibers,” Opt. Express 9, 687 (2001).
[12] K. Saitoh, M. Koshiba, T. Hasegawa, and E. Sasaoka, “Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion,” Opt. Express 11, 843 (2003).
[13] A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. St. J. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett. 25, 1325 (2000).
[14] F. Benabid, J. C. Knight, G. Antonopoulos, P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399 (2002).
[15] R. Holzwarth, M. Zimmermann, T. Udem, T. W. Hänsch, P. Russbüldt, K. Gäbel, R. Poprawe, J. C. Knight, W. J. Wadsworth, and P. S. Russell, “White-light frequency comb generation with a diode-pumped Cr:LiSAF laser,” Opt. Lett. 26, 1376 (2001).
[16] I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, and J. G. Fujimoto, “Ultrahigh-resolution optical coher-ence tomography using continuum generation in a air-silica microstructure optical fiber,” Opt. Lett. 26, 608 (2001).
[17] http://www.crystal-fibre.com/
[18] T. Erdogan, “Fiber grating spectral,” J. Lightwave Technol. 15, 1277 (1997)
[19] B. J. Eggleton, P. S. Westbrook, R. S. Windeler, S. Spälter, and T. A. Strasser, “Grating resonances in air–silica microstructured optical fibers,” Opt. Lett. 24, 1460 (1999).
[20] N. Groothoff, J. Canning, E. Buckley, K. Lyttikainen, and J. Zagari, “Bragg gratings in air silica structured fibers,” Opt. Lett. 28, 233 (2003).
[21] P. S. Westbrook, B. J. Eggleton, R. S. Windeler, A. Hale, T. A. Strasser, and G. L. Burdge, “Cladding-mode resonances in hybrid polymer–silica microstructured optical fiber gratings,” IEEE Photonics Technol. Lett. 12, 495 (2000).
[22] M.D. Feit and J.A. Fleck, “Light propagation in graded-index optical fibers,” Appl. Opt. 17, 3990 (1978).
[23] BeamPROP version 8.0 User Guide
[24] D. Yevick and B. Hermansson, “Efficient beam propagation techniques,” IEEE J. Quantum Electron. 26, 109 (1990).
[25] G. R. Hadley, “Transparent boundary condition for the beam propagation method,” Opt. Lett. 16, 624, (1991).
[26] 欒丕剛,陳啟昌, “光子晶體: 從蝴蝶翅膀到奈米光子學,” 五南圖書(2005). ISBN: 957-11-4027-9.
[27] M. D. Feit and J. A. Fleck, “Computation of mode properties in optical fiber waveguides by a propagating beam method,” Appl. Opt. 19, 1154 (1980).
[28] S. Jungling and J. C. Chen, “A Study and optimization of eigenmode calculations using the imaginary-distance beam propagation method,” IEEE J. Quantum Electron. 30, 2098 (1994).
[29] J. C. Chen and S. Jungling, “Computation of higher-order waveguide modes by the imaginary-distance beam propagation method,” Opt. Quantum Electron. 26, S199 (1994).
[30] S. O. Kasap, “Optoelectronics and photonics: principles and practices,” Prentice-Hall (2001). ISBN: 0-201-61087-6.
[31] A. Yariv and P. Yeh, “Photonics: optical electronics in modern communication,” Oxford University Press (2006). ISBN: 0195179463.
[32] G. A. Magel, M. M. Fejer, and R. L. Byer, “Quasi-phase-matched second harmonic generation of blue light in periodically LiNbO3,” Appl. Phys. Lett., 56, 108 (1990).
[33] D. B. Gasson and B. Cockayne, “Oxide crystal growth using gas lasers,” Materials Science, 5, 100 (1970).
[34] C. Goutaoudier, F. S. Ermeneux, M. T. Cohen-Adad, R. Moncorge, M. Bettinelli, and E. Cavalli, “LHPG and flux growth of various Nd:YVO4 single crystals: A comparative characterization,” Materials Research Bulletin, 33, 1457 (1998).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29161-
dc.description.abstract過去十年來,光子晶體光纖一直是被廣泛研究的課題。這種光纖在纖衣中引入週期性的孔洞排列,造成許多獨特的性質,例如大模態面積,無截止單模等等。近來,開始有人嘗試在傳播方向上做週期性的調變,使得原先二維的週期性成為三維。在文獻中,三維週期性的光子晶體光纖一般被認為有類似光纖光柵的效果,而由於光子晶體光纖的組成材料相對折射率大,效果應較一般光纖光柵更大。
在本論文中,我們使用二氧化碳雷射束對光子晶體光纖在傳播方向上的外徑尺寸作週期性的調變。使用我們的雷射加熱基座生長系統所製作的光子晶體光纖光柵具有以下之優點:首先,和傳統製作方式比較,大多數紫外光製作的光柵會隨時間而退化,且纖心摻雜鍺元素會破壞原本的物性。相較之下,以雷射束製作的成品即使在高溫下也非常穩定,因為其微擾是純結構性的。其次,和其他的雷射加熱系統比較,一般單側或雙側的雷射加熱法容易造成較大的雙折射效應,雷射加熱基座生長系統中的環形加熱方式較任何一種文獻上已提及的雷射加熱法擁有更高的對稱性,應能夠減少局部孔洞的嚴重塌陷,保持其傳輸特徵。
我們利用Rsoft公司的商用模擬軟體下基於波束傳播法(beam propagation method)的相關法(correlation method)求解模態,並配合耦合模理論對三維結構光子晶體光纖光柵之穿透頻譜作一預測。我們嘗試了雷射加熱基座生長系統中的兩種製作模式: 週期性開關光閘及變速度控制步進平台,其中利用週期性開關光閘的方式,我們成功製作出一帶斥濾波器,且其衰減峰值在波長1557.5 nm時可達-16 dB,與模擬結果有良好的吻合。
zh_TW
dc.description.abstractIn the past ten years, photonic crystal fibers (PCFs) have been widely researched. This special type of fibers, with two-dimensional periodic cladding, provides many impressive properties, such as large mode area, endlessly single mode, etc. Recently, PCFs with periodic modulation in the transmission direction are also developed, increasing the periodicity from 2D to 3D. In literature, 3D structure PCFs have been used as fiber gratings and are more efficient than common fibers because of their larger index difference in constitute material.
In this thesis, CO2 laser was employed to periodically modulate the diameter of PCF. There are some advantages to fabricate 3D structure PCF by laser heated pedestal growth (LHPG) system: First, many UV-induced gratings will degrade by time, and the Ge doping in core destroys the original physical properties of the fiber. In contrast, the grating fabricated by CO2 laser is stable even in high temperature. Second, the common laser-heated system always heats the fiber in one or two directions, which may induce larger birefringence effect. The ring heating design of our LHPG system has higher symmetry than any other laser-heated system in literature, which may reduce local collapse of the hole structures in PCF and maintain the transmission characteristics.
Two methods, periodical control of shutter or motor stages, were used to fabricate 3D structure PCF with about 224.25 micron pitch. The fabricated structure served as a notch filter and the peak attenuation of 16 dB at 1557.5 nm was achieved.
Numerical simulations based on a commercially available beam propagation method (BPM) software and coupled-mode theory were used to model the 3D structure PCF. The simulated result agrees well with our fabricated 3D structure PCF.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T00:43:49Z (GMT). No. of bitstreams: 1
ntu-96-R94941090-1.pdf: 18180897 bytes, checksum: f83c3d101d96e7c89680b745a0af4c5c (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents口試委員審定書 i
致謝 ii
中文摘要 iv
Abstract v
目錄 vii
圖目錄 ix
表目錄 xii
第一章 緒論 1
1.1 簡介 1
1.2 研究動機 1
1.3 論文架構 2
第二章 原理及應用 3
2.1 光子晶體光纖之原理與應用 3
2.1.1 光子晶體光纖的傳導機制 3
2.1.2 光子晶體光纖的分類 7
2.1.3 光子晶體光纖的特殊性質 9
2.1.4 光子晶體光纖的製作 13
2.2 光纖光柵之概念 14
2.2.2 布拉格光纖光柵 15
2.2.3 長週期光纖光柵 16
2.2.4 光子晶體光纖光柵 17
2.3 波束傳播法原理 18
第三章 光子晶體光纖特性模擬 22
3.1 光子晶體的模擬簡介 22
3.2 二維結構光子晶體光纖特性模擬 23
3.2.1 虛數傳播距離的波束傳播法簡介 23
3.2.2 相對孔洞大小對光子晶體光纖色散特性之影響 25
3.2.3 週期大小對光子晶體光纖色散特性之影響 29
3.3 三維結構光子晶體光纖頻譜預測 31
3.3.1 以相關法求解模態 31
3.3.2 商用光子晶體光纖基模及纖衣模計算 32
3.3.3 使用耦合模理論作頻譜之預測 39
第四章 實驗架構與結果討論 43
4.1 雷射加熱法系統簡介 43
4.2 系統控制 46
4.2.1 雷射功率回授 46
4.2.2 步進平移台控制 48
4.3 三維結構光子晶體光纖之製作 50
4.3.1 利用光閘的開關製作週期性結構 51
4.3.2 利用平移台的變速度運動製作週期性結構 55
4.4 實驗量測 57
4.4.1 實驗步驟 57
4.4.2 實驗結果 60
第五章 結論與未來工作 62
參考文獻 63
附錄A 以影像分析輔助晶體光纖之開發 67
A.1 摻鉻光纖放大器之簡介 67
A.2 影像處理基礎 69
A.2.1 邊界偵測 71
A.3 實例:晶體光纖開發 72
dc.language.isozh-TW
dc.subject雷射加熱法zh_TW
dc.subject光纖光柵zh_TW
dc.subject光子晶體光纖zh_TW
dc.subjectlaser-heated methoden
dc.subjectfiber gratingen
dc.subjectphotonic crystal fiberen
dc.title三維結構光子晶體光纖之研製zh_TW
dc.titleStudy and Fabrication of 3D Structure Photonic Crystal Fiberen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee賴?杰(Yin-Chieh Lai),林恭如(Gong-Ru Lin),邱奕鵬(Yih-Peng Chiou)
dc.subject.keyword光子晶體光纖,光纖光柵,雷射加熱法,zh_TW
dc.subject.keywordphotonic crystal fiber,fiber grating,laser-heated method,en
dc.relation.page77
dc.rights.note有償授權
dc.date.accepted2007-07-25
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
17.75 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved