請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29132完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳宏宇 | |
| dc.contributor.author | Ming-Hsiang Lu | en |
| dc.contributor.author | 呂名翔 | zh_TW |
| dc.date.accessioned | 2021-06-13T00:42:00Z | - |
| dc.date.available | 2007-07-31 | |
| dc.date.copyright | 2007-07-31 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-07-25 | |
| dc.identifier.citation | 中文部分
水利署水利規劃試驗所 (2003) 大甲溪流域聯合整體治理規劃(上冊),第一版,經濟部水利署水利規劃試驗所,共503頁。 打荻珠男 (1971) ひと雨による山腹崩壊について,砂防学会誌,vol.23, No.4。 台灣省水利局 (1982) 水文觀測實務講義,台灣省水利局。 何春蓀 (1986) 台灣地質概論:五十萬分之一台灣地質圖說明書,經濟部中央地質調查所。 吳曉明 (1996) 台灣南部橫貫公路啞口至初來地區之岩石組織度及地質構造之研究,國立臺灣大學地質科學研究所碩士論文。 林孟龍、林俊全 (2003) 颱風對於蘭陽溪上游集水區懸移質生產特性的影響,地理學報,第33期,第39-53頁。 林昭遠與張力仁 (2000) 地文因子對土石流發生影響之研究─以陳有蘭溪為例,中華水土保持學會,第31(3) 期,第227–237頁。 林冠瑋 (2005) 陳有蘭溪流域的山崩作用在颱風及地震事件中與河流輸砂量之相對應關係,台灣大學地質科學系研究所碩士論文,共130頁。 林冠瑋、陳宏宇、洪銘堅(2006)土石災害與地質環境的關係,地工技術,第110期,第5-14頁。 吳建民 (1978) 台灣地區河川輸砂量之推估公式,集水區及河川之經營研究研討會論文集,第184-198頁。 袁承偉 (2007) 大漢溪流域的山崩與輸砂量以及植生狀態在颱風事件中之相對應關係,台灣大學地質科學系研究所碩士論文,共121頁。 莊善傑 (2005) 大甲溪流域的山崩在颱風與地震事件中與地質環境之對應關係,台灣大學地質科學系研究所碩士論文,共124頁。 陳文福、鄭新興 (1997) 遙測與GIS應用於集水區大型坡地開發之變遷分析,水土保持學報,29(1),第41–59頁。 陳本康 (2004) 石門水庫集水區崩塌特性及潛勢評估研究,國立中興大學水土保持學系研究所碩士論文,共230頁。 陳宜徽 (2005) 陳有蘭溪流域山崩與植生狀態在颱風與地震事件之相對應關係,台灣大學地質科學系研究所碩士論文,共149頁。 陳琨銘、陳宏宇 (1995) 地質材料之不連續面特性對於土石流災害之影響,第六屆大地工程學術研討會論文集,第825–832頁。 陳肇夏 (1990) 南部中央山脈的第三紀地層(節要),經濟部中央地質調查所特刊,第四號,第370頁。 國家災害防救科技中心 (2005) 石門水庫土砂災害問題分析,共45頁。 廖軒吾 (2000) 集集地震誘發之山崩,國立中央大學地球物理研究所碩士論文,共90頁。 鄭元振 (1992) 地理資訊系統在區域邊坡穩定分析之應用─中橫公路天祥至太魯閣段,國立成功大學資源工程研究所碩士論文。 謝玉興 (2004) 南橫公路邊坡崩壞與降雨關係研究,臺灣公路工程,第三十卷第十一期,第26–45頁。 謝漢欽 (1996) 應用SPOT衛星影像與地理資訊於林地土地利用型綠度分析,台灣林業科學,11(1),第77–86頁。 鍾玉龍、陳朝圳、張葉娟 (1997) 地理資訊系統與遙測資訊運用於地形因子對植生覆蓋影響之研究─以大武山自然保留區為例,第十六屆測量學術及應用研討會,第607–616頁。 顏滄波、盛健君、耿文溥、楊應塘 (1956) 台灣之中生帶地層問題,台灣省地質調查所彙刊,第八號,第1–6頁。 顏滄波、吳景祥、莊德永 (1984) 台灣南部橫貫公路之沿線地質,經濟部中央地質調查所特刊,第三號,第11–23頁。 英文部分 Aleotti, P. (2004) A warming system for rainfall-induced shallow failures, Engineering Geology, vol. 73, pp. 247–265 Bieniawski, Z. T. and Van Heerden, W. L. (1975) The significance of in-situ tests on large rock specimens, Int. J. Rock Mech. Min. Sci. vol. 12, pp. 101–113. Blatt, H. and Tracy R. (1995) Petrology-Igneous, Sedimentary, and Metamorphic 2nd edition. W. H. Freeman and Company. Chen, Z. M., Babiker, I. S., Chen, Z. X., Komaki, K., Mohamed, M. A. A. and Kato, K. (2004) Estimation of interannual variation in productivity of global vegetation using NDVI data, International Journal of Remote Sensing, vol. 25, no. 16, pp. 3139–3159. Cohn, T. A. (1995) Recent advances in statistical methods for the estimation of sediment and nutrient transport in rivers. Reviews of Geophysics, vol. 33, pp. 1117-1130. Dadson, S. J., Hovius, N., Chen, H., Dade, W. B., Hsieh, M. L., Willett, S. D., Hu, J. C., Horng, M. J., Chen, M. C., Stark, C. P., Lague, D., and Lin, J. C. (2003) Links between erosion,runoff variability and seismicity in the Taiwan orogen. Nature, vol. 426, pp. 648–651. Dadson, S. J. (2004) Erosion of an Active Mountain Belt. Ph. D. Thesis, Department of Earth Sciences, University of Cambridge. Dadson, S. J., Hovius, N., Chen, H., Dade, B., Lin, J. C., Hsu, M. L., Lin, C. W., Horng, M. J., Chen, T. C., Milliman, J., and Stark, C. P. (2004) Earthquake-driven increase in sediment delivery from an active mountain belt. Geology, vol. 32(8), pp. 733–736. Deering, D. W. (1978) Rangeland reflectance characteristics measured by aircraft and spacecraft sensors, ph.D. Dissertation, Texas A & M University, College Station, TX, 338p. Defries, R. S. and Townshend, J. R. G. (1994) NDVI-derived land cover classification at a global scale, International Journal of Remote Sensing, vol. 15, no. 17, pp. 3567–3586. Duan, N. (1983) Smearing estimate: A non-parametric retransformation method. Journal of the American Statistical Association, vol. 78(383), pp. 605–610. Ferguson, R. I. (1986) River loads underestimated by rating curves. Water Resources Research, vol. 22(1), pp. 74–76. Fuller, C. W., Willett, S. D., Hovius, N., and Slingerland, R. (2003) Erosion rates for Taiwan mountain basins: New determinations from suspended sediment records and a stochastic model of their temporal variation. Journal of Geology, vol. 111, pp. 71–87. Geli, L., Bard, P.Y., and Jullien, B. (1988) The effect of topography on earthquake ground motion: A review and new results: Bulletin of the Seismological Socirty of America, vol. 78, pp. 42–63. Gutman, G. G.(1991)Vegetation indices from AVHRR:an update and feature prosperts, Remote Sensing Environ, vol. 35, pp. 121-136. Fausto, G., Cardinali, M., Reichenbach, P., Cipolla, F., Sebastiani, C., Galli, M., and Salvati. P. (2004) Landslides triggered by the 23 November 2000 rainfall event in the Imperia Province, Western Liguria, Italy. Engineering Geology, vol. 73, pp. 229–245. Hoek, E. and Bary, J. (1981) Rock slope engineering, Institution of Mining and Metallurgy, London, 3rd ed, 358p. Hovius, N., Stark, C. P., and Allen, P. A. (1997) Sediment flux from an active mountain belt derived by landslide mapping. Geology, vol. 25, pp. 231–234. Hovius, N., Stark, C. P., Chu, H., and Lin, J. (2000) Supply and removal of sediment in a landslide-dominated mountain belt: Central Range, Taiwan. Journal of Geology, vol.108, pp. 73–89. International Society of Rock Mechanics (1981) Rock characterization testing & monitoring: ISRM suggested methods, edited by Brown, E. T., Pergamon Press, Oxford, England. International Society of Rock Mechanics (1981) Suggested methods for the quantitative description of discontinuities in rock masses, Libson. International Society of Rock Mechanics (1985) Suggested method for determining point-load strength, Int. J. Rock. Mech. Sci. & Geomech. Abstr., vol. 22, No. 2, pp. 53-60. Jenson, R. A. and Wichern, D. W. (1982) Applied Multivariate Statistical Analysis, Prentice-Hall, Inc.. Kao, S. J. and Liu, K. K. (2001) Estimating of suspended load by using the historical hydrometric record from the Lanyang-His watershed, TAO, vol. 12, no.2, pp. 401–414. Kao, S. J. and Liu, K. K. (2002) The exacerbation of erosion induced by human perturbation in a typical Oceania watershed: insight from 45 years of hydrological records from the Lanyang-Hsi River, northeastern Taiwan. Glob. Biogeochem. Cycles, vol. 16 (1), pp. 1-7. Kao, S. J., Chan, S. C., Kuo C. H., and Liu, K. K. (2005) Transport-dominated sediment loading in Taiwanese rivers: a case study from the Ma-an Stream. Journal of Geology, vol. 113, pp. 217–225. Keefer, D. K. (1984) Landslides caused by earthquakes. Geol. Soc. Am. Bull. vol. 95, pp. 406–421. Keefer, D. K., Wilson, R. C., Mark, R. K., Brabb, E. E., Brown, W. M., Ellen, S. D., Harp, E. L., Wieczorek, G. F., Alger, C. S., and Zatkin, R. S. (1987) Real-Time Landslide Warning During Heavy Rainfall. Science, vol. 13, pp. 921–925. Keefer, D. K., (1994) The importance of earthquake-induced landslides to long-term slope erosion and slope-failure hazards in seismically active region. Geomorphplogy, vol. 10, pp. 265–284 Keefer, D. K. (2000) Statistical analysis of an earthquake-induced landslide distribution the 1989 Loma Prieta, California event, Engineering Geology, vol. 58, pp. 231–249. Khazai, B., and Sitar, N. (2000) Assessment of Seismic Slope Stability Using GIS Modeling, Geographic Information Sciences, vol. 6, no. 2, pp. 121–128. Khazai, B., and Sitar, N. (2003) Evaluation of factors controlling earthquake-induced landslides caused by Chi-Chi earthquake and comparison with the Northridge and Loma Prieta events, Engineering Geology, vol. 71, pp. 79–95. Leewen, V. W. J. D., Laing, T. W. and Huete, A. R. (1997) Quality assurance of global vegetation index compositing algorithms using AVHRR Data, IEEE-IGARSS’97, Singapore, pp. 341–343. Li, Y. H. (1976) Denudation of Taiwan Island since the Pleistocene epoch. Geology, vol. 4, pp. 105–107. Lin C. W., Shieh C. L., Yuan B. D., Shieh Y. C., Liu S. H., and Lee S. Y. (2003) Impact of Chi-Chi earthquake on the occurrence of landslides and debris flows: example from the Chenyulan River watershed, Nantou, Taiwan. Engineering Geology, vol. 71, pp. 49–61 Ng, K. Y. (2006) Landslide locations and drainage network development : A case study of Hong Kong, Geomorphology, vol. 76, pp. 229–239. Rahardjo, H., Li, X. W., Toll, D. G., and Leong, E. C. (2001) The effect of antecedent rainfall on slope stability, Geotechnical and Geological Engineering, vol. 19, pp. 371–399. Skinner, B. J., Porter, S.C., and Park, J. (2004) Dynamic Earth-An Introduction to Physical Geology 5th edition, John Wiley & Sons, Inc. Stanley, R. S., Hill, L. B., Chang, H. C., and Hu, H. N. (1981) A transect through the metamorphic core of the Central Mountains, Southern Taiwan. Mem. Geol. Soc. China, vol. 4, pp. 443–473. Stark, C. P. and Hovius, N. (2001) The characterization of landslide size distributions. Geophysical Research Letters, vol. 28, pp. 1091–1094. Strahler, Alan H. and Strahler, Arthur (1998) Introducing physical geography, 2nd edition, Wiley, New York. Teillet, P. M. and Staenz, K. (1992) Atmospheric effects due to topography on MODIS vegetation index data simulation from AVIRIS imagery over mountainous terrain, Can. Remote Sens., vol. 18(4), pp. 283–291. Toy, T. J., Foster, G. R. and Renard, K. G. (2002) Soil Erosion: Processes, Prediction, Measurement, and Control, New York: John Wiley & Sons. Tucker, C. J. and Sellers, P. J. (1986) Satellite remote sensing of primary productivity, Int. J. Remote Sensing, vol. 7, pp. 1395–1416. Walling, D. E. (1977) Assessing the accuracy of suspended sediment rating curves for a small basin. Water Resources Research, vol. 13, pp. 531–538. Wieczorek, G.F., Morgan, B.A., Campbell, R.H. (2000) Debris-Flow hazards in the Blue Ridge of Central Virginia, Environmental & Engineering Geoscience, vol. 6, no.1, pp. 3–23. Willett, S. D., Fisher, D., Fuller, C., Yeh, E. C. and Lu, C. Y. (2003) Erosion rates and orogenic wedge kinematics in Taiwan inferred from apatite fission track thermochronometry. Geology vol. 31, pp. 945–948. Wischmeier, W. H. and Smith, D. D. (1978) Predicting rainfall erosion losses. Agricultural Handbook 537, Agricultural Research Service, United States Department of Agriculture. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29132 | - |
| dc.description.abstract | 本研究利用SPOT衛星影像,判釋新武呂溪流域於6個颱風時期及2次地震事件後的崩塌地分布狀況,並以溪流內之實測流量、雨量、輸砂量,以及DTM的地形分析,岩石的強度、不連續面分布等資料,來探討流域內的山崩和輸砂量在颱風與地震事件中的相對應關係。
研究結果顯示,六個颱風時期的山崩崩塌率介於0.84%到1.94%之間,崩塌率、新生率及重現率,都是以成功地震後之敏督利颱風為最高、分別為1.94%、72.3%、66.5%。區域內山崩最高點的高程,大多分布於1500至2500公尺之間,在成功地震後有繼續往山頂發展的趨勢;山崩的坡度分布變化並不顯著,大多分布於30°至50°之間,但是在坡度陡峭的邊坡,其崩塌率出現明顯的上昇。在本區域的四個地層單位中,由於畢祿山層具有最低的岩石強度,平均34MPa,因此其崩塌率最高,介於1.74%至2.56%之間;相對的,在大南澳片岩大理岩段具有最高的岩石強度,平均102MPa,所以其崩塌率較低,為0.56%至1.34%之間;大南澳片岩混合片岩段的單位體積節理數最多,平均為 47.3N/m3,山崩的重現率也最大,介於57.3%至72..5%之間,兩者間具有一定程度的相關性。 本區域之常態化差異植生指標(NDVI),分布於0.44至0.53之間,區域內各事件的崩塌率與植生指標之間的對應關係並不明顯。在輸砂量的統計方面,利用新武呂溪流域1979至2005年的實測值,以平均法和率定曲線法估算,可以得知平均年輸砂量約在7.8至15.2百萬噸之間。輸砂量主要是由颱風暴雨事件所供應,單一事件的輸砂量約佔全年輸砂量的6.6%至25.3%。在單位流量輸砂濃度的變化方面,集集地震後之量測值比地震前增加了2.58倍,在成功地震後又再增加了1.18倍,此結果顯示持續的地震事件,使得集水區內之地質材料變得更加鬆散,不僅崩塌率上升,進而提高了逕流的沖刷能力,並帶走更多的沉積物。 | zh_TW |
| dc.description.abstract | The hydraulic measurement, geomorphologic changes and geomaterial characteristics are utilized to analysis their relationships in their study. The various images of SPOT satellite were selected to count the landslide ratio in six typhoons and two earthquakes events along the catchment of the Sinwulyu River form 1996 to 2006.
The investigated results show that the landslide ratio ranges from 0.84% to 1.94% during the different disaster event. After the Chen-Gong earthquake (ML=6.6), the following Typhoon Mindulle resulted in heavy landsliding, including 1.94% of landslide ratio, 72.3% of new generative ratio and 66.5% of reactive ratio in the catchment. The elevation of most landslides ranges from 1500 to 2500 meters and keep rising after Chen-Gong earthquake. Besides, the landslides converge in the steep slopes ranging from 30° to 50°. The uniaxial compressive strength (UCS) of the Bilushan Formation is the lowest around 34MPa in all rock units, and the landslide ratio in the Bilushan Formation, ranging from 1.74% to 2.56%, is the highest. Comparatively, 102MPa of UCS in the Dananao formation is the highest and the landslide ratio in the Dananao formation, ranging from 0.56% to 1.34%, is the lowest. The Dananao formation has 47.3N/m3 of the joint number that causes the highest reactive ratio, ranging from 57.3% to 72.5%. There is a positive linear relationship and the statistically significance between the reactive landslide ratio and the joint numbers. The Normalized Difference Vegetation Index (NDVI) in this region ranges from 0.44 to 0.53. There is week significance between landslide ratio and NDVI. The annual sediment discharge ranges from 7.8 Mt/y to 15.2 Mt/y by using the calculation of average method and rating curve method from 1979 to 2005. The sediment discharge in the period of rainstorm events occupied 6.6% to 25.3% of annual sediment discharge. The concentration of discharge increased 2.58 times in post Chi-Chi earthquake, and further increased 1.18 times after Chen-Gong earthquake. This result demonstrates that the colluvial sediments of hillslope resulted from the successive earthquakes not only caused the increasing of landslide ratio, but the rising of sediment discharge increased. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T00:42:00Z (GMT). No. of bitstreams: 1 ntu-96-R94224209-1.pdf: 2697198 bytes, checksum: 6c4dd2861ee68fcee8b0c1e6cf9f65d2 (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | 中文摘要…………………………………………………………………………… I
英文摘要…………………………………………………………………………… II 目錄………………………………………………………………………………… IV 圖目錄……………………………………………………………………………… VII 表目錄……………………………………………………………………………… X 第一章 緒論……………………………………………………………….. 1 1.1 研究動機與目的………………………………………………. 1 1.2 地理位置與交通狀況…………………………………………. 1 第二章 前人研究………………………………………………………….. 4 2.1 山崩特性………………………………………………………. 4 2.2 輸砂量與侵蝕率………………………………………………. 7 2.3 常態化差異植生指標…………………………………………. 10 第三章 區域概況………………………………………………………….. 13 3.1 地形概況………………………………………………………. 13 3.2 地質概況………………………………………………………. 15 3.3 水文及氣候概況………………………………………………. 19 3.4 地震與颱風事件………………………………………………. 21 第四章 研究方法………………………………………………………….. 25 4.1 野外調查………………………………………………………. 25 4.1.1 露頭量測與記錄………………………………………………. 25 4.1.2 現地施密特錘試驗..................................................................... 27 4.1.3 樣品採集………………………………………………………. 27 4.2 室內試驗………………………………………………………. 28 4.2.1 自然物理性質試驗……………………………………………. 28 4.2.2 岩石力學性質試驗……………………………………………. 28 4.2.2.1 超音波試驗……………………………………………………. 28 4.2.2.2 單軸抗壓試驗…………………………………………………. 28 4.2.2.3 抗張強度試驗…………………………………………………. 28 4.2.2.4 點荷重試驗……………………………………………………. 29 4.3 崩塌地判釋……………………………………………………. 29 4.4 輸砂量估算……………………………………………………. 30 4.4.1 年輸砂量估算…………………………………………………. 30 4.4.2 暴雨事件輸砂量估算…………………………………………. 31 4.5 常態化差異植生指標分析……………………………………. 33 第五章 試驗結果………………………………………………………….. 35 5.1 單位體積節理數統計…………………………………………. 35 5.2 自然物理性質…………………………………………………. 36 5.3 岩石傳波速度…………………………………………………. 39 5.4 岩石抗壓強度…………………………………………………. 40 5.4.1 單軸抗壓強度…………………………………………………. 40 5.4.2 施密特錘強度…………………………………………………. 42 5.4.3 點荷重強度……………………………………………………. 43 5.4.4 平均抗壓強度…………………………………………………. 45 5.5 岩石抗張強度…………………………………………………. 46 第六章 山崩特性與影響因素…………………………………………….. 48 6.1 崩塌地統計……………………………………………………. 48 6.2 山崩特性分析…………………………………………………. 50 6.3 山崩與地形的關係……………………………………………. 53 6.3.1 山崩的高程分佈………………………………………………. 53 6.3.2 山崩的坡度分佈………………………………………………. 55 6.3.3 山崩的坡向分佈………………………………………………. 56 6.4 山崩與水文狀況的關係………………………………………. 58 6.4.1 河川密度對崩塌率的影響……………………………………. 58 6.4.2 河流侵蝕與崩塌率的關係……………………………………. 60 6.5 山崩與岩層的關係……………………………………………. 62 6.5.1 岩石強度對山崩的影響………………………………………. 62 6.5.2 單位體積節理數對山崩的影響………………………………. 63 6.6 颱風降雨對山崩的影響………………………………………. 65 6.7 山崩與植生指標的對應關係…………………………………. 70 第七章 輸砂量估算及討論……………………………………………….. 73 7.1 年度輸砂量估算………………………………………………. 73 7.2 暴雨事件輸砂量………………………………………………. 79 7.3 地震前後輸砂量變化…………………………………………. 81 7.4 雨量對輸砂量的影響…………………………………………. 82 7.5 輸砂量與崩塌率的關係………………………………………. 84 第八章 結論……………………………………………………………….. 86 參考文獻 …………………………………………………………………….. 88 附錄一 施密特錘強度換算表…………………………………………….. 95 附錄二 自然物理性質試驗方法………………………………………….. 96 附錄三 岩石風化程度分級表…………………………………………….. 98 附錄四 岩石試驗規範…………………………………………………….. 99 附錄五 SPOT衛星影像資料……………………………………………… 101 附錄六 泰利颱風後之SPOT衛星影像 102 附錄七 崩塌地數化成果………………………………………………….. 103 附錄八 打荻公式之K與r的對應關係………………………………….. 105 附錄九 各年度率定曲線關係式………………………………………….. 106 附錄十 各颱風事件的水文資料………………………………………….. 107 附錄十一 自然物理性質試驗數據………………………………………….. 108 附錄十二 單壓強度試驗數據……………………………………………….. 110 附錄十三 施密特錘試驗數據……………………………………………….. 111 附錄十四 點荷重試驗數據………………………………………………….. 112 附錄十五 抗張試驗數據…………………………………………………….. 113 | |
| dc.language.iso | zh-TW | |
| dc.subject | 輸砂量 | zh_TW |
| dc.subject | 山崩 | zh_TW |
| dc.subject | 颱風 | zh_TW |
| dc.subject | 地震 | zh_TW |
| dc.subject | 岩石強度 | zh_TW |
| dc.subject | 常態化差異植生指標 | zh_TW |
| dc.subject | earthquake | en |
| dc.subject | landslide | en |
| dc.subject | typhoon | en |
| dc.subject | NDVI | en |
| dc.subject | sediment discharge | en |
| dc.subject | rock strength | en |
| dc.title | 新武呂溪流域的山崩與輸砂量在地震與颱風事件中的相對應關係 | zh_TW |
| dc.title | The relationships between landslide and sediment discharge in the periods of earthquake and typhoon events along the catchment of the Sinwulyu River | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林曉武,洪銘堅,侯秉承 | |
| dc.subject.keyword | 山崩,颱風,地震,岩石強度,常態化差異植生指標,輸砂量, | zh_TW |
| dc.subject.keyword | landslide,typhoon,earthquake,rock strength,NDVI,sediment discharge, | en |
| dc.relation.page | 113 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-07-25 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 地質科學研究所 | zh_TW |
| 顯示於系所單位: | 地質科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 2.63 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
