請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29088完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊台鴻(Tai-Horng Young) | |
| dc.contributor.author | Min-Chao Jhuang | en |
| dc.contributor.author | 莊閔超 | zh_TW |
| dc.date.accessioned | 2021-06-13T00:39:17Z | - |
| dc.date.available | 2007-08-02 | |
| dc.date.copyright | 2007-08-02 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-07-25 | |
| dc.identifier.citation | 1. Mulligan, R.C. The basic science of gene therapy. Science 260, 926-932 (1993).
2. Verma, I.M. & Somia, N. Gene therapy -- promises, problems and prospects. Nature 389, 239-242 (1997). 3. Mohan, R.R., Sharma, A., Netto, M.V., Sinha, S. & Wilson, S.E. Gene therapy in the cornea. Prog. Retin. Eye Res. 24, 537-559 (2005). 4. Alonso, M.J. & Sanchez, A. The potential of chitosan in ocular drug delivery. J. Pharm. Pharmacol. 55, 1451-1463 (2003). 5. Janes, K.A., Calvo, P. & Alonso, M.J. Polysaccharide colloidal particles as delivery systems for macromolecules. Adv Drug Deliv Rev 47, 83-97 (2001). 6. Bozkir, A. & Saka, O.M. Chitosan nanoparticles for plasmid DNA delivery: effect of chitosan molecular structure on formulation and release characteristics. Drug Deliv 11, 107-112 (2004). 7. Bozkir, A. & Saka, O.M. Chitosan-DNA nanoparticles: effect on DNA integrity, bacterial transformation and transfection efficiency. J. Drug Target. 12, 281-288 (2004). 8. Jiang, X. et al. Chitosan-g-PEG/DNA complexes deliver gene to the rat liver via intrabiliary and intraportal infusions. J. Gene Med. 8, 477-487 (2006). 9. Kiang, T., Wen, J., Lim, H.W. & Leong, K.W. The effect of the degree of chitosan deacetylation on the efficiency of gene transfection. Biomaterials 25, 5293-5301 (2004). 10. Strand, S.P., Danielsen, S., Christensen, B.E. & Varum, K.M. Influence of chitosan structure on the formation and stability of DNA-chitosan polyelectrolyte complexes. Biomacromolecules 6, 3357-3366 (2005). 11. Liu, W. et al. An investigation on the physicochemical properties of chitosan/DNA polyelectrolyte complexes. Biomaterials 26, 2705-2711 (2005). 12. Corsi, K., Chellat, F., Yahia, L. & Fernandes, J.C. Mesenchymal stem cells, MG63 and HEK293 transfection using chitosan-DNA nanoparticles. Biomaterials 24, 1255-1264 (2003). 13. Gan, Q., Wang, T., Cochrane, C. & McCarron, P. Modulation of surface charge, particle size and morphological properties of chitosan-TPP nanoparticles intended for gene delivery. Colloids Surf B Biointerfaces 44, 65-73 (2005). 14. Zhang, H., Oh, M., Allen, C. & Kumacheva, E. Monodisperse chitosan nanoparticles for mucosal drug delivery. Biomacromolecules 5, 2461-2468 (2004). 15. Lin, Y.H. et al. Preparation of nanoparticles composed of chitosan/poly-gamma-glutamic acid and evaluation of their permeability through Caco-2 cells. Biomacromolecules 6, 1104-1112 (2005). 16. Huang, M., Fong, C.W., Khor, E. & Lim, L.Y. Transfection efficiency of chitosan vectors: effect of polymer molecular weight and degree of deacetylation. J. Control Release 106, 391-406 (2005). 17. RemunanLopez, C. & Bodmeier, R. Mechanical and water vapor transmission properties of polysaccharide films. Drug Dev. Ind. Pharm. 22, 1201-1209 (1996). 18. Enriquez de Salamanca, A. et al. Chitosan nanoparticles as a potential drug delivery system for the ocular surface: toxicity, uptake mechanism and in vivo tolerance. Invest. Ophthalmol. Vis. Sci. 47, 1416-1425 (2006). 19. Diebold, Y. et al. Ocular drug delivery by liposome-chitosan nanoparticle complexes (LCS-NP). Biomaterials 28, 1553-1564 (2007). 20. De Campos, A.M., Diebold, Y., Carvalho, E.L., Sanchez, A. & Alonso, M.J. Chitosan nanoparticles as new ocular drug delivery systems: in vitro stability, in vivo fate, and cellular toxicity. Pharm. Res. 21, 803-810 (2004). 21. Calvo, P., VilaJato, J.L. & Alonso, M.J. Evaluation of cationic polymer-coated nanocapsules as ocular drug carriers. Int. J. Pharm. 153, 41-50 (1997). 22. Felt, O., Carrel, A., Baehni, P., Buri, P. & Gurny, R. Chitosan as tear substitute: A wetting agent endowed with antimicrobial efficacy. J. Ocul. Pharmacol. Ther. 16, 261-270 (2000). 23. De Campos, A.M., Sanchez, A., Gref, R., Calvo, P. & Alonso, M.J. The effect of a PEG versus a chitosan coating on the interaction of drug colloidal carriers with the ocular mucosa. Eur. J. Pharm. Sci. 20, 73-81 (2003). 24. Di Colo, G., Zambito, Y., Burgalassi, S., Serafini, A. & Saettone, M.F. Effect of chitosan on in vitro release and ocular delivery of ofloxacin from erodible inserts based on poly(ethylene oxide). Int. J. Pharm. 248, 115-122 (2002). 25. De Campos, A.M., Sanchez, A. & Alonso, M.J. Chitosan nanoparticles: a new vehicle for the improvement of the delivery of drugs to the ocular surface. Application to cyclosporin A. Int. J. Pharm. 224, 159-168 (2001). 26. Sall, K.N., Kreter, J.K. & Keates, R.H. The Effect of Chitosan on Corneal Wound-Healing. Ann. Ophthalmol. 19, 31-33 (1987). 27. Henriksen, I., Green, K.L., Smart, J.D., Smistad, G. & Karlsen, J. Bioadhesion of hydrated chitosans: An in vitro and in vivo study. Int. J. Pharm. 145, 231-240 (1996). 28. Genta, I. et al. Bioadhesive microspheres for ophthalmic administration of acyclovir. J. Pharm. Pharmacol. 49, 737-742 (1997). 29. Felt, O. et al. Topical use of chitosan in ophthalmology: tolerance assessment and evaluation of precorneal retention. Int. J. Pharm. 180, 185-193 (1999). 30. Harding, S.E. Mucoadhesive interactions. Biochem. Soc. Trans. 31, 1036-1041 (2003). 31. Borchard, G. et al. The potential of mucoadhesive polymers in enhancing intestinal peptide drug absorption .3. Effects of chitosan-glutamate and carbomer on epithelial tight junctions in vitro. J. Control Release 39, 131-138 (1996). 32. Artursson, P., Lindmark, T., Davis, S.S. & Illum, L. Effect of Chitosan on the Permeability of Monolayers of Intestinal Epithelial-Cells (Caco-2). Pharm. Res. 11, 1358-1361 (1994). 33. Kaur, I.P. & Smitha, R. Penetration enhancers and ocular bioadhesives: two new avenues for ophthalmic drug delivery. Drug Dev. Ind. Pharm. 28, 353-369 (2002). 34. Reinstein, D.Z., Silverman, R.H., Rondeau, M.J. & Coleman, D.J. Epithelial and Corneal Thickness Measurements by High-Frequency Ultrasound Digital Signal-Processing. Ophthalmology 101, 140-146 (1994). 35. Petrie, N.C., Yao, F. & Eriksson, E. Gene therapy in wound healing. Surg. Clin. North Am. 83, 597-+ (2003). 36. Zhang, W.W. Development and application of adenoviral vectors for gene therapy of cancer. Cancer Gene Ther. 6, 113-138 (1999). 37. Bergelson, J.M. et al. Isolation of a common receptor for coxsackie B viruses and adenoviruses 2 and 5. Science 275, 1320-1323 (1997). 38. Tomko, R.P., Xu, R.L. & Philipson, L. HCAR and MCAR: The human and mouse cellular receptors for subgroup C adenoviruses and group B coxsackieviruses. Proc. Natl. Acad. Sci. U. S. A. 94, 3352-3356 (1997). 39. Wickham, T.J., Mathias, P., Cheresh, D.A. & Nemerow, G.R. Integrin-Alpha-V-Beta-3 and Integrin-Alpha-V-Beta-5 Promote Adenovirus Internalization but Not Virus Attachment. Cell 73, 309-319 (1993). 40. Arakisasaki, K. et al. An Sv40-Immortalized Human Corneal Epithelial-Cell Line and Its Characterization. Invest. Ophthalmol. Vis. Sci. 36, 614-621 (1995). 41. Borras, T., Gabelt, B.T., Klintworth, G.K., Peterson, J.C. & Kaufman, P.L. Non-invasive observation of repeated adenoviral GFP gene delivery to the anterior segment of the monkey eye in vivo. Journal of Gene Medicine 3, 437-449 (2001). 42. Borras, T., Tamm, E.R. & Zigler, J.S. Ocular adenovirus gene transfer varies in efficiency and inflammatory response. Invest. Ophthalmol. Vis. Sci. 37, 1282-1293 (1996). 43. Budenz, D.L., Bennett, J., Alonso, L. & Maguire, A. In-Vivo Gene-Transfer into Murine Corneal Endothelial and Trabecular Meshwork Cells. Invest. Ophthalmol. Vis. Sci. 36, 2211-2215 (1995). 44. Carlson, E.C. et al. In vivo gene delivery and visualization of corneal stromal cells using an adenoviral vector and keratocyte-specific promoter. Invest. Ophthalmol. Vis. Sci. 45, 2194-2200 (2004). 45. Mashhour, B., Couton, D., Perricaudet, M. & Briand, P. In-Vivo Adenovirus-Mediated Gene-Transfer into Ocular-Tissues. Gene Ther. 1, 122-126 (1994). 46. Tsubota, K. et al. Adenovirus-mediated gene transfer to the ocular surface epithelium. Exp. Eye Res. 67, 531-538 (1998). 47. Mizuguchi, H. & Hayakawa, T. Targeted adenovirus vectors. Hum. Gene Ther. 15, 1034-1044 (2004). 48. Harris, J.M. & Chess, R.B. Effect of pegylation on pharmaceuticals. Nature Reviews Drug Discovery 2, 214-221 (2003). 49. Alemany, R., Suzuki, K. & Curiel, D.T. Blood clearance rates of adenovirus type 5 in mice. J. Gen. Virol. 81, 2605-2609 (2000). 50. Croyle, M.A., Chirmule, N., Zhang, Y. & Wilson, J.M. 'Stealth' adenoviruses blunt cell-mediated and humoral immune responses against the virus and allow for significant gene expression upon readministration in the lung. J. Virol. 75, 4792-4801 (2001). 51. Croyle, M.A., Chirmule, N., Zhang, Y. & Wilson, J.M. PEGylation of E1-deleted adenovirus vectors allows significant gene expression on readministration to liver. Hum. Gene Ther. 13, 1887-1900 (2002). 52. Croyle, M.A., Yu, Q.C. & Wilson, J.M. Development of a rapid method for the PEGylation of adenoviruses with enhanced transduction and improved stability under harsh storage conditions. Hum. Gene Ther. 11, 1713-1722 (2000). 53. Lanciotti, J. et al. Targeting adenoviral vectors using heterofunctional polyethylene glycol FGF2 conjugates. Mol. Ther. 8, 99-107 (2003). 54. Ogawara, K.I. et al. A novel strategy to modify adenovirus tropism and enhance transgene delivery to activated vascular endothelial cells in vitro and in vivo. Hum. Gene Ther. 15, 433-443 (2004). 55. O'Riordan, C.R. et al. PEGylation of adenovirus with retention of infectivity and protection from neutralizing antibody in vitro and in vivo. Hum. Gene Ther. 10, 1349-1358 (1999). 56. Romanczuk, H. et al. Modification of an adenoviral vector with biologically selected peptides: A novel strategy for gene delivery to cells of choice. Hum. Gene Ther. 10, 2615-2626 (1999). 57. Mok, H., Palmer, D.J., Ng, P. & Barry, M.A. Evaluation of polyethylene glycol modification of first-generation and helper-dependent adenoviral vectors to reduce innate immune responses. Mol. Ther. 11, 66-79 (2005). 58. Chillon, M., Lee, J.H., Fasbender, A. & Welsh, M.J. Adenovirus complexed with polyethylene glycol and cationic lipid is shielded from neutralizing antibodies in vitro. Gene Ther. 5, 995-1002 (1998). 59. Eto, Y. et al. PEGylated adenovirus vectors containing RGD peptides on the tip of PEG show high transduction efficiency and antibody evasion ability. J. Gene Med. 7, 604-612 (2005). 60. Croyle, M.A. et al. PEGylated helper-dependent adenoviral vectors: highly efficient vectors with an enhanced safety profile. Gene Ther. 12, 579-587 (2005). 61. Kreppel, F., Gackowski, J., Schmidt, E. & Kochanek, S. Combined genetic and chemical capsid modifications enable flexible and efficient de- and retargeting of adenovirus vectors. Mol. Ther. 12, 107-117 (2005). 62. Bonsted, A. et al. Photochemically enhanced transduction of polymer-complexed adenovirus targeted to the epidermal growth factor receptor. J. Gene Med. 8, 286-297 (2006). 63. Stevenson, M. et al. Chick embryo lethal orphan virus can be polymer-coated and retargeted to infect mammalian cells. Gene Ther. 13, 356-368 (2006). 64. Green, N.K. et al. Extended plasma circulation time and decreased toxicity of polymer-coated adenovirus. Gene Ther. 11, 1256-1263 (2004). 65. Fisher, K.D. et al. Polymer-coated adenovirus permits efficient retargeting and evades neutralising antibodies. Gene Ther. 8, 341-348 (2001). 66. Stevenson, M. et al. Incorporation of a laminin-derived peptide (SIKVAV) on polymer-modified adenovirus permits tumor-specific targeting via alpha6-integrins. Cancer Gene Ther. 14, 335-345 (2007). 67. Croyle, M.A., Cheng, X., Sandhu, A. & Wilson, J.M. Development of novel formulations that enhance adenoviral-mediated gene expression in the lung in vitro and in vivo. Mol. Ther. 4, 22-28 (2001). 68. Kawamata, Y. et al. Receptor-independent augmentation of adenovirus-mediated gene transfer with chitosan in vitro. Biomaterials 23, 4573-4579 (2002). 69. Tao, W., Liou, G.I., Wu, X., Abney, T.O. & Reinach, P.S. ETB and epidermal growth factor receptor stimulation of wound closure in bovine corneal epithelial cells. Invest. Ophthalmol. Vis. Sci. 36, 2614-2622 (1995). 70. Wilcox, G.E. Preparation of primary bovine corneal epithelial cell cultures for use in virological investigations. Appl. Microbiol. 18, 268-269 (1969). 71. Bernkop-Schnurch, A., Hornof, M. & Zoidl, T. Thiolated polymers--thiomers: synthesis and in vitro evaluation of chitosan-2-iminothiolane conjugates. Int. J. Pharm. 260, 229-237 (2003). 72. Masuko, T. et al. Thiolation of chitosan. Attachment of proteins via thioether formation. Biomacromolecules 6, 880-884 (2005). 73. O'Neal, D., Harrip, P., Dragicevic, G., Rae, D. & Best, J.D. A comparison of LDL size determination using gradient gel electrophoresis and light-scattering methods. J. Lipid Res. 39, 2086-2090 (1998). 74. von Homeyer, A., Krentz, D.O., Kulicke, W.M. & Lerche, D. Optimization of the polyelectrolyte dosage for dewatering sewage sludge suspensions by means of a new centrifugation analyser with an optoelectronic sensor. Colloid Polym. Sci. 277, 637-645 (1999). 75. Chen, Z., Mok, H., Pflugfelder, S.C., Li, D.Q. & Barry, M.A. Improved transduction of human corneal epithelial progenitor cells with cell-targeting adenoviral vectors. Exp. Eye Res. 83, 798-806 (2006). 76. Pereboeva, L., Komarova, S., Roth, J., Ponnazhagan, S. & Curiel, D.T. Targeting EGFR with metabolically biotinylated fiber-mosaic adenovirus. Gene Ther. 14, 627-637 (2007). 77. Arcasoy, S.M., Latoche, J.D., Gondor, M., Pitt, B.R. & Pilewski, J.M. Polycations increase the efficiency of adenovirus-mediated gene transfer to epithelial and endothelial cells in vitro. Gene Ther. 4, 32-38 (1997). 78. Fasbender, A. et al. Complexes of adenovirus with polycationic polymers and cationic lipids increase the efficiency of gene transfer in vitro and in vivo. J. Biol. Chem. 272, 6479-6489 (1997). 79. Arcasoy, S.M. et al. MUC1 and other sialoglycoconjugates inhibit adenovirus-mediated gene transfer to epithelial cells. Am. J. Respir. Cell Mol. Biol. 17, 422-435 (1997). 80. Meier, O. & Greber, U.F. Adenovirus endocytosis. J. Gene Med. 6 Suppl 1, S152-163 (2004). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29088 | - |
| dc.description.abstract | 本篇研究,我們利用一個正電性的天然高分子幾丁聚醣來對腺病毒外殼進行共價性的修飾。首先利用2-iminothiolane與幾丁聚醣反應,使幾丁聚醣硫醇化,此反應率達到46.9%。再利用N-[γ-maleimidobutyryloxy]succinimide ester (GMBS)與腺病毒反應,以作為與幾丁聚醣之間的架橋。將兩者混合以生成幾丁聚醣修飾的腺病毒。修飾前與修飾後的腺病毒進行粒徑與表面電位分析,病毒外觀形態改變則是利用穿透式電子顯微鏡(TEM)來觀察。本篇研究利用牛的角膜上皮細胞作為腺病毒感染力之測試,在有或無腺病毒抗體的培養基中評估修飾幾丁聚醣對腺病毒的影響。另外,我們也在幾丁聚醣上連接一些專一性的ligand,例如表皮生長因子(EGF)以及RGD等,再進而修飾腺病毒,嘗試改變腺病毒的細胞感染專一性。
由粒徑分析的結果可知幾丁聚醣的修飾對腺病毒的大小並無太大的變化,但卻明顯改變病毒表面電位,由原本的-24.3 mV轉變成幾乎不帶電。TEM的結果也指出幾丁聚醣修飾後的病毒外觀看來較為粗糙且不規則。另外我們發現腺病毒的感染能力隨著反應的GMBS的量增加而降低,而幾丁聚醣卻能使腺病毒恢復部分的感染能力。在低濃度抗體的環境下,幾丁聚醣修飾的腺病毒能有抵抗抗體中和的能力,但高濃度抗體的時候卻無此效果。此外,我們發現連接上ligand的腺病毒可能利用不同的路徑來感染細胞。 總結而言,幾丁聚醣此高分子提供了一個良好的平台讓我們加以利用。除了連接不同的專一性ligand以外,也可遮蔽抗體的辨認。未來將可利用此幾丁聚醣修飾的腺病毒來進行日後的in vivo研究。 | zh_TW |
| dc.description.abstract | The purpose of this study is to covalently modify adenoviral capsid with chitosan, a cationic and natural polymer. To further expand applicability of chitosan, we have modified the amine group of chitosan with 2-iminothiolane to introduce thiol groups and obtained a 46.9% yield. Adenoviruses (Ads) were reacted with N-[γ-maleimidobutyryloxy]succinimide ester (GMBS), a heterobifuctional crosslinker, and maleimide-modified Ads (MalN-Ads) were obtained. Then, the chitosan-SH was reacted with MalN-Ads via thioether at different ratios of Ads to GMBS to chitosan-SH. The sizes and the zeta potentials of unmodified Ads and chitosan-modified Ads were measured, and morphology of the virus was observed under transmission electron microscope (TEM). Primary culture of bovine corneal epithelial cells was transduced with either adenoviruses or chitosan-modified Ads in the absence or presence of anti-adenovirus antibodies. Furthermore, we incorporated targeting ligands, such as epidermal growth factor (EGF) and RGD, on chitosan to further modify adenovirus.
Analysis of particle sizes showed modification with chitosan did not obviously affect the size of Ads, but zeta potential analysis revealed that the surface charge of Ads significantly changed form -24.3 mV to nearly neutral charge. The results of TEM also showed chitosan-modified Ads had a rough and irregular appearance. Depending on the increasing amounts of GMBS, the transduction efficiency was attenuated gradually. However, incorporation of chitosan could restore a part of transduction activity. Chitosan-modified Ads were resistant to antibody neutralization at a low antibody concentration, but could not work at a high concentration. We also speculate that ligand-linked chitosan-modified Ads could transducer cells via alternative pathway. In conclusion, chitosan can provide a great platform of chemical modification on adenoviruses. It permits incorporation of a range of targeting molecules, but also of other biological effectors. Hence, chitosan-modified Ads are potential for further in vivo studies. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T00:39:17Z (GMT). No. of bitstreams: 1 ntu-96-R94549009-1.pdf: 1713189 bytes, checksum: 299d50ccb2266da1e3a46e5d805370a1 (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | 中文摘要 I
Abstract II Contents IV List of Figures VI List of Tables X Chapter 1. Introduction 1 Chapter 2. Literature Review 3 2-1. Introduction to Chitosan4 3 2-2. The Application of Chitosan in Ophthalmology4 3 2-3. Routes for the Ocular Delivery33 4 2-4. Introduction to Adenoviruses3 5 2-5. The Application of Adenoviruses in Cornea3 6 2-6. Chemical Modification of Adenoviruses with Polymers47 6 Chapter 3. Materials and Methods 9 3-1. Experimental Skeleton 9 3-2. Materials 9 3-3. Primary Culture of Bovine Corneal Epithelial Cells 12 3-4. Amplification and Purification of Adenoviruses 13 3-5. Modification of Adenoviruses with Chitosan 14 3-6. Characterization of Chitosan-Modified Ads 15 3-7. In Vitro Transduction 17 3-8. Retargeting of Ligand-Linked Chitosan-Modified Adenoviruses 18 Chapter 4. Results 20 4-1. Modification of Chitosan 20 4-2. Characterization of Chitosan-Modified Ads 20 4-3. Reaction of Adenoviruses with GMBS Substantially Attenuates Transduction Efficiency 21 4-4. Incorporation of Chitosan Restores Part of Transduction Activity 22 4-5. Transduction in the Presence of Neutralizing Antibody 23 4-6. Retargeting of Ligand-Linked Chitosan-Modified Adenoviruses to Alternative Receptors 24 Chapter 5. Discussion 25 Chapter 6. Conclusion 28 References 29 Figures 38 Tables 56 | |
| dc.language.iso | en | |
| dc.subject | 角膜上皮細胞 | zh_TW |
| dc.subject | 腺病毒 | zh_TW |
| dc.subject | 基因傳送 | zh_TW |
| dc.subject | 幾丁聚醣 | zh_TW |
| dc.subject | 共價修飾 | zh_TW |
| dc.subject | adenovirus | en |
| dc.subject | corneal epithelial cells | en |
| dc.subject | chemical modification | en |
| dc.subject | gene delivery | en |
| dc.subject | chitosan | en |
| dc.title | 利用幾丁聚醣共價修飾腺病毒外殼 | zh_TW |
| dc.title | Chemical Modification of Adenoviral Capsid with Chitosan | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 王一中(I-Jong Wang) | |
| dc.contributor.oralexamcommittee | 曹友平,孫一明 | |
| dc.subject.keyword | 腺病毒,基因傳送,幾丁聚醣,共價修飾,角膜上皮細胞, | zh_TW |
| dc.subject.keyword | adenovirus,gene delivery,chitosan,chemical modification,corneal epithelial cells, | en |
| dc.relation.page | 58 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-07-25 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 高分子科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 高分子科學與工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 1.67 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
