請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29086完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 郭鐘金教授(Chung-Chin Kuo) | |
| dc.contributor.author | Huai-Ren Chang | en |
| dc.contributor.author | 張懷仁 | zh_TW |
| dc.date.accessioned | 2021-06-13T00:39:10Z | - |
| dc.date.available | 2012-08-08 | |
| dc.date.copyright | 2007-08-08 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-07-25 | |
| dc.identifier.citation | Adusumalli VE, Wichmann JK, Kucharczyk N, Kamin M, Sofia RD, French J, Sperling M, Bourgeois B, Devinsky O, Dreifuss FE (1994) Drug concentrations in human brain tissue samples from epileptic patients treated with felbamate. Drug Metab Dispos 22:168-170.
Anson LC, Chen PE, Wyllie DJ, Colquhoun D, Schoepfer R (1998) Identification of amino acid residues of the NR2A subunit that control glutamate potency in recombinant NR1/NR2A NMDA receptors. J Neurosci 18:581-589. Antonov SM, Gmiro VE, Johnson JW (1998) Binding sites for permeant ions in the channel of NMDA receptors and their effects on channel block. Nat Neurosci 1:451-461. Armstrong CM (1966) Time course of TEA+-induced anomalous rectification in squid giant axons. J Gen Physiol 50:491-503. Armstrong CM (1971) Interaction of tetraethylammonium ion derivatives with the potassium channels of giant axons. J Gen Physiol 58:413-437. Armstrong CM (1974) Ionic pores, gates, and gating currents. Q Rev Biophys 7:179-210. Banke TG, Dravid SM, Traynelis SF (2005) Protons trap NR1/NR2B NMDA receptors in a nonconducting state. J Neurosci 25:42-51. Beck C, Wollmuth LP, Seeburg PH, Sakmann B, Kuner T (1999) NMDAR channel segments forming the extracellular vestibule inferred from the accessibility of substituted cysteines. Neuron 22:559-570. Benveniste M, Clements J, Vyklicky L, Jr., Mayer ML (1990) A kinetic analysis of the modulation of N-methyl-D-aspartic acid receptors by glycine in mouse cultured hippocampal neurones. J Physiol 428:333-357. Benveniste M, Mayer ML (1993) Multiple effects of spermine on N-methyl-Daspartic acid receptor responses of rat cultured hippocampal neurones. J Physiol 464:131–163. Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31-39. Borowicz KK, Piskorska B, Kimber-Trojnar Z, Malek R, Sobieszek G, Czuczwar SJ (2004) Is there any future for felbamate treatment? Pol J Pharmacol 56:289-294. Carter PJ, Winter G, Wilkinson AJ, Fersht AR (1984) The use of double mutants to detect structural changes in the active site of the tyrosyl-tRNA synthetase (Bacillus stearothermophilus). Cell 38:835-840. Chen GQ, Cui C, Mayer ML, Gouaux E (1999) Functional characterization of a potassium-selective prokaryotic glutamate receptor. Nature 402:817-821. Chen N, Li B, Murphy TH, Raymond LA (2004) Site within N-methyl-D-aspartate receptor pore modulates channel gating. Mol Pharmacol 65:157-164. Chen PE, Geballe MT, Stansfeld PJ, Johnston AR, Yuan H, Jacob AL, Snyder JP, Traynelis SF, Wyllie DJ (2005) Structural features of the glutamate binding site in recombinant NR1/NR2A N-methyl-D-aspartate receptors determined by site-directed mutagenesis and molecular modeling. Mol Pharmacol 67:1470-1484. Choi DW, Koh JY (1998) Zinc and brain injury. Annu Rev Neurosci 21:347–375. Choi KL, Mossman C, Aube J, Yellen G (1993) The internal quaternary ammonium receptor site of Shaker potassium channels. Neuron 10:533–541. Coffin V, Cohen-Williams M, Barnett A (1994) Selective antagonism of the anticonvulsant effects of felbamate by glycine. Eur J Pharmacol 256:R9-10. Cull-Candy S, Brickley S, Farrant M (2001) NMDA receptor subunits: diversity, development and disease. Curr Opin Neurobiol 11:327-335. Das S, Sasaki YF, Rothe T, Premkumar LS, Takasu M, Crandall JE, Dikkes P, Conner DA, Rayudu PV, Cheung W, Chen HS, Lipton SA, Nakanishi N (1998) Increased NMDA current and spine density in mice lacking the NMDA receptor subunit NR3A. Nature 393:377-381. del Camino D, Yellen G (2001) Tight steric closure at the intracellular activation gate of a voltage-gated K+ channel. Neuron 32:649-656. Dingledine R, Borges K, Bowie D, Traynelis SF (1999) The glutamate receptor ion channels. Pharmacol Rev 51:7-61. Doyle DA, Morais Cabral J, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280:69-77. Durand GM, Bennett MVL, Zukin RS (1993) Splice variants of the N-methyl-D-aspartate receptor NR1 identify domains involved in regulation by polyamines and protein kinase C. Proc Natl Acad Sci USA 90:6731–6735. Erreger K, Traynelis SF (2005) Allosteric interaction between zinc and glutamate binding domains on NR2A causes desensitization of NMDA receptors. J Physiol 569:381-393. The Felbamate Study Group in Lennox-Gastaut Syndrome (1993) Efficacy of felbamate in childhood epileptic encephalopathy (Lennox-Gastaut syndrome). N Engl J Med 328:29-33. Furukawa H, Gouaux E (2003) Mechanisms of activation, inhibition and specificity: crystal structures of the NMDA receptor NR1 ligand-binding core. EMBO J 22:2873-2885. Furukawa H, Singh SK, Mancusso R, Gouaux E (2005) Subunit arrangement and function in NMDA receptors. Nature 438:185-192. Gallagher MJ, Huang H, Pritchett DB, Lynch DR (1996) Interactions between ifenprodil and the NR2B subunit of the N-methyl-D-aspartate receptor. J Biol Chem 271:9603-9611. Hackos DH, Chang TH, Swartz KJ (2002) Scanning the intracellular S6 activation gate in the shaker K+ channel. J Gen Physiol 119:521-532. Harty TP, Rogawski MA (2000) Felbamate block of recombinant N-methyl-D-aspartate receptors: selectivity for the NR2B subunit. Epilepsy Res 39:47-55. Hess, G.P. 2005. Photochemical release of neurotransmitters - Transient kinetic investigations of membrane-bound receptors on the surface of cells in the microsecond-to-millisecond time region. In Dynamic Studies in Biology. M. Goeldner, and R. Givens, editors. Wiley-VCH, Weinheim. 205-231. Hidalgo P, MacKinnon R (1995) Revealing the architecture of a K+ channel pore through mutant cycles with a peptide inhibitor. Science 268:307-310. Holmgren M, Smith PL, Yellen G (1997) Trapping of organic blockers by closing of voltage-dependent K+ channels: evidence for a trap door mechanism of activation gating. J Gen Physiol 109:527-535. Huettner JE, Bean BP (1988) Block of N-methyl-D-aspartate-activated current by the anticonvulsant MK-801: selective binding to open channels. Proc Natl Acad Sci USA 85:1307-1311. Ishii T, Moriyoshi K, Sugihara H, Sakurada K, Kadotani H, Yokoi M, Akazawa C, Shigemoto R, Mizuno N, Masu M, Nakanishi S (1993) Molecular characterization of the family of the N-methyl-D-aspartate receptor subunits. J Biol Chem 268:2836-2843. Jiang Y, Lee A, Chen J, Cadene M, Chait BT, MacKinnon R (2002a) Crystal structure and mechanism of a calcium-gated potassium channel. Nature 417:515-522. Jiang Y, Lee A, Chen J, Cadene M, Chait BT, MacKinnon R (2002b) The open pore conformation of potassium channels. Nature 417:523-526. Johnson JW, Ascher P (1987) Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature 325:529-531. Jones KS, VanDongen HM, VanDongen AM (2002) The NMDA receptor M3 segment is a conserved transduction element coupling ligand binding to channel opening. J Neurosci 22:2044-2053. Kanthasamy AG, Matsumoto RR, Gunasekar PG, Trunong DD (1995) Excitoprotective effect of felbamate in cultured cortical neurons. Brain Res 705:97-104. Kashiwagi K, Masuko T, Nguyen CD, Kuno T, Tanaka I, Igarashi K, Williams K (2002) Channel blockers acting at N-methyl-D-aspartate receptors: differential effects of mutations in the vestibule and ion channel pore. Mol Pharmacol 61:533-545. Kew JN, Trube G, Kemp JA (1996) A novel mechanism of activity-dependent NMDA receptor antagonism describes the effect of ifenprodil in rat cultured cortical neurones. J Physiol 497 (Pt 3):761-772. Kitaguchi T, Sukhareva M, Swartz KJ (2004) Stabilizing the closed S6 gate in the Shaker Kv channel through modification of a hydrophobic seal. J Gen Physiol 124:319-332. Kleckner NW, Dingledine RD (1988) Requirement for glycine in activation of NMDA receptors expressed in Xenopus oocytes. Science 241:835-837. Kleckner NW, Glazewski JC, Chen CC, Moscrip TD (1999) Subtype-selective antagonism of N-methyl-D-aspartate receptors by felbamate: insights into the mechanism of action. J Pharmacol Exp Ther 289:886-894. Kohda K, Wang Y, Yuzaki M (2000) Mutation of a glutamate receptor motif reveals its role in gating and delta2 receptor channel properties. Nat Neurosci 3:315-322. Komuro H, Rakic P (1993) Modulation of neuronal migration by NMDA receptors. Science 260:95-97. Krupp JJ, Vissel B, Heinemann SF, Westbrook GL (1998) N-terminal domains in the NR2 subunit control desensitization of NMDA receptors. Neuron 20:317-327. Kuner T, Seeburg PH, Guy HR (2003) A common architecture for K+ channels and ionotropic glutamate receptors? Trends Neurosci 26:27-32. Kuner T, Wollmuth LP, Karlin A, Seeburg PH, Sakmann B (1996) Structure of the NMDA receptor channel M2 segment inferred from the accessibility of substituted cysteines. Neuron 17:343-352. Kuo C-C, Liao S-Y (2000) Facilitation of recovery from inactivation by external Na+ and location of the activation gate in neuronal Na+ channels. J Neurosci 20:5639-5646. Kuo C-C, Lin B-J, Chang H-R, Hsieh C-P (2004) Use-dependent inhibition of the N-methyl-D-aspartate currents by felbamate: a gating modifier with selective binding to the desensitized channels. Mol Pharmacol 65:370-380. Kurata HT, Marton LJ, Nichols CG (2006) The polyamine binding site in inward rectifier K+ channels. J Gen Physiol 127:467-480. Kuryatov A, Laube B, Betz H, Kuhse J (1994) Mutational analysis of the glycine-binding site of the NMDA receptor: structural similarity with bacterial amino acid-binding proteins. Neuron 12:1291-1300. Laube B, Kuhse J, Betz H (1998) Evidence for a tetrameric structure of recombinant NMDA receptors. J Neurosci 18:2954-2961. Laube B, Hirai H, Sturgess M, Betz H, Kuhse J (1997) Molecular determinants of agonist discrimination by NMDA receptor subunits: analysis of the glutamate binding site on the NR2B subunit. Neuron 18:493-503. Legendre P, Westbrook GL (1990) The inhibition of single N-methyl- D-aspartateactivated channels by zinc ions on cultured rat neurones. J Physiol (Lond) 429:429-449. Lerma J, Zukin RS, Bennett MV (1990) Glycine decreases desensitization of N-methyl-D-aspartate (NMDA) receptors expressed in Xenopus oocytes and is required for NMDA responses. Proc Natl Acad Sci USA 87:2354-2358. Lester RA, Tong G, Jahr CE (1993) Interactions between the glycine and glutamate binding sites of the NMDA receptor. J Neurosci 13:1088-1096. Liu Y, Holmgren M, Jurman ME, Yellen G (1997) Gated access to the pore of a voltage-dependent K+ channel. Neuron 19:175-184. Long SB, Campbell EB, Mackinnon R (2005a) Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science 309:897-903. Long SB, Campbell EB, Mackinnon R (2005b) Voltage sensor of Kv1.2: structural basis of electromechanical coupling. Science 309:903-908. Loussouarn G, Marton LJ, Nichols CG (2005) Molecular basis of inward rectification: structural features of the blocker defined by extended polyamine analogs. Mol Pharmacol 68:298-304. Low CM, Lyuboslavsky P, French A, Le P, Wyatte K, Thiel WH, Marchan EM, Igarashi K, Kashiwagi K, Gernert K, Williams K, Traynelis SF, Zheng F (2003) Molecular determinants of proton-sensitive N-methyl-D-aspartate receptor gating. Mol Pharmacol 63:1212-1222. Mayer ML, Armstrong N (2004) Structure and function of glutamate receptor ion channels. Annu Rev Physiol 66:161-181. Mayer ML, Vyklicky L, Jr., Clements J (1989) Regulation of NMDA receptor desensitization in mouse hippocampal neurons by glycine. Nature 338:425-427. McCabe RT, Wasterlain CG, Kucharczyk N, Sofia RD, Vogel JR (1993) Evidence for anticonvulsant and neuroprotectant action of felbamate mediated by strychnine-insensitive glycine receptors. J Pharmacol Exp Ther 264:1248-1252. McCabe RT, Sofia RD, Layer RT, Leiner KA, Faull RL, Narang N, Wamsley JK (1998) Felbamate increases [3H]glycine binding in rat brain and sections of human postmortem brain. J Pharmacol Exp Ther 286:991-999. Monyer H, Burnashev N, Laurie DJ, Sakmann B, Seeburg PH (1994) Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron 12:529-540. Monyer H, Sprengel R, Schoepfer R, Herb A, Higuchi M, Lomeli H, Burnashev N, Sakmann B, Seeburg PH (1992) Heteromeric NMDA receptors: molecular and functional distinction of subtypes. Science 256:1217-1221. Moriyoshi K, Masu M, Ishii T, Shigemoto R, Mizuno N, Nakanishi S (1991) Molecular cloning and characterization of the rat NMDA receptor. Nature 354:31-37. Mott DD, Doherty JJ, Zhang S, Washburn MS, Fendley MJ, Lyuboslavsky P, Traynelis SF, Dingledine R (1998) Phenylethanolamines inhibit NMDA receptors by enhancing proton inhibition. Nat Neurosci 1:659-667. Nakanishi S (1992) Molecular diversity of glutamate receptors and implications for brain function. Science 258:597-603. Pahk AJ, Williams K (1997) Influence of extracellular pH on inhibition by ifenprodil at N-methyl-D-aspartate receptors in Xenopus oocytes. Neurosci Lett 225:29-32. Panchenko VA, Glasser CR, Mayer ML (2001) Structural similarities between glutamate receptor channels and K+ channels examined by scanning mutagenesis. J Gen Physiol 117:345-360. Pellock JM, Faught E, Leppik IE, Shinnar S, Zupanc ML (2006) Felbamate: Consensus of current clinical experience. Epilepsy Res 71:89-101. Perin-Dureau F, Rachline J, Neyton J, Paoletti P (2002) Mapping the binding site of the neuroprotectant ifenprodil on NMDA receptors. J Neurosci 22:5955-5965. Premkumar LS, Auerbach A (1997) Stoichiometry of recombinant N-methyl-D-aspartate receptor channels inferred from single-channel current patterns. J Gen Physiol 110:485-502. Qian A, Johnson JW (2002) Channel gating of NMDA receptors. Physiol Behav 77:577-582. Rho JM, Donevan SD, Rogawski MA (1994) Mechanism of action of the anticonvulsant felbamate: opposing effects on N-methyl-D-aspartate and gamma-aminobutyric acidA receptors. Ann Neurol 35:229-234. Rogawski MA (1992) The NMDA receptor, NMDA antagonists and epilepsy therapy. A status report. Drugs 44:279-292. Rogawski MA (1998) Mechanism-specific pathways for new antiepileptic drug discovery. Adv Neurol 76:11-27. Rogawski MA, Loscher W (2004) The neurobiology of antiepileptic drugs. Nat Rev Neurosci 5:553-564. Schneggenburger R, Ascher P (1997) Coupling of permeation and gating in an NMDA-channel pore mutant. Neuron 18:167-177. Schorge S, Colquhoun D (2003) Studies of NMDA receptor function and stoichiometry with truncated and tandem subunits. J Neurosci 23:1151-1158. Sobolevsky AI, Koshelev SG, Khodorov BI (1999) Probing of NMDA channels with fast blockers. J Neurosci 19:10611-10626. Sobolevsky AI, Beck C, Wollmuth LP (2002a) Molecular rearrangements of the extracellular vestibule in NMDAR channels during gating. Neuron 33:75-85. Sobolevsky AI, Rooney L, Wollmuth LP (2002b) Staggering of subunits in NMDAR channels. Biophys J 83:3304-3314. Subramaniam S, Rho JM, Penix L, Donevan SD, Fielding RP, Rogawski MA (1995) Felbamate block of the N-methyl-D-aspartate receptor. J Pharmacol Exp Ther 273:878-886. Sunami A, Tracey A, Glaaser IW, Lipkind GM, Hanck DA, Fozzard HA (2004) Accessibility of mid-segment domain IV S6 residues of the voltage-gated Na+ channel to methanethiosulfonate reagents. J Physiol 561:403-413. Tang CM, Dichter M, Morad M (1990) Modulation of the N-methyl-D-aspartate channel by extracellular H+. Proc Natl Acad Sci USA 87:6445-6449. Thomas CG, Krupp JJ, Bagley EE, Bauzon R, Heinemann SF, Vissel B, Westbrook GL (2006) Probing N-methyl-D-aspartate receptor desensitization with the substituted-cysteine accessibility method. Mol Pharmacol 69:1296-1303. Traven HG, Brodin L, Lansner A, Ekeberg O, Wallen P, Grillner S (1993) Computer simulations of NMDA and non-NMDA receptor-mediated synaptic drive: sensory and supraspinal modulation of neurons and small networks. J Neurophysiol 70:695-709. Traynelis SF, Cull-Candy SG (1990) Proton inhibition of N-methyl-D-aspartate receptors in cerebellar neurons. Nature 345:347-350. Traynelis SF, Cull-Candy SG (1991) Pharmacological properties and H+ sensitivity of excitatory amino acid receptor channels in rat cerebellar granule neurones. J Physiol 433:727-763. Traynelis SF, Hartley M, Heinemann SF (1995) Control of proton sensitivity of the NMDA receptor by RNA splicing and polyamines. Science 268:873-876. Villarroel A, Regalado MP, Lerma J (1998) Glycine-independent NMDA receptor desensitization: localization of structural determinants. Neuron 20:329-339. Wamsley JK, Sofia RD, Faull RL, Narang N, Ary T, McCabe RT (1994) Interaction of felbamate with [3H]DCKA-labeled strychnine-insensitive glycine receptors in human postmortem brain. Exp Neurol 129:244-250. Watkins JC (1962) The Synthesis Of Some Acidic Amino Acids Possessing Neuropharmacological Activity. J Med Pharm Chem 91:1187-1199. Watkins JC, Evans RH (1981) Excitatory amino acid transmitters. Annu Rev Pharmacol Toxicol 21:165-204. White HS, Harmsworth WL, Sofia RD, Wolf HH (1995) Felbamate modulates the strychnine-insensitive glycine receptor. Epilepsy Res 20:41-48. Williams K (1994) Subunit-specific potentiation of recombinant N-methyl-D-aspartate receptors by histamine. Mol Pharmacol 46:531–541. Williams K (1997a) Interactions of polyamines with ion channels. Biochem J 325:289-297. Williams K (1997b) Modulation and block of ion channels: A new biology of polyamines. Cell Signal 9:1-13. Williams K, Dattilo M, Sabado TN, Kashiwagi K, Igarashi K (2003) Pharmacology of delta2 glutamate receptors: effects of pentamidine and protons. J Pharmacol Exp Ther 305:740-748. Wollmuth LP, Sobolevsky AI (2004) Structure and gating of the glutamate receptor ion channel. Trends Neurosci 27:321-328. Xie C, Zhen XG, Yang J (2005) Localization of the activation gate of a voltage-gated Ca2+ channel. J Gen Physiol 126:205-212. Yang Y-C, Kuo C-C (2005) An inactivation stabilizer of the Na+ channel acts as an opportunistic pore blocker modulated by external Na+. J Gen Physiol 125:465-481. Yellen G (2002) The voltage-gated potassium channels and their relatives. Nature 419:35-42. Yuan H, Erreger K, Dravid SM, Traynelis SF (2005) Conserved structural and functional control of N-methyl-D-aspartate receptor gating by transmembrane domain M3. J Biol Chem 280:29708-29716. Zuo J, De Jager PL, Takahashi KA, Jiang W, Linden DJ, Heintz N (1997) Neurodegeneration in Lurcher mice caused by mutation in delta2 glutamate receptor gene. Nature 388:769-773. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29086 | - |
| dc.description.abstract | 離子通道是造成興奮性細胞電生理活動的主要基石,而瞭解藥物對於離子通道作用之分子機轉,不僅可以幫助我們更有效的利用這些藥物來改正病態電生理活動,也往往能提供有關離子通道分子生理學方面的重要訊息。在細胞病態電生理活動所導致的疾病症狀中,由腦部神經元之突發、過度且同步化的不正常放電所引發的癲癇發作是一個常見的例子。目前臨床上已有數種藥物,可以用來改正這一類神經細胞的病態電生理活動,以治療癲癇病人。在這些抗癲癇藥物中,felbamate是被認為主要作用在NMDA受體通道上,但是其詳細的分子作用機轉仍未完全明瞭。在本論文中,我們試圖瞭解felbamate如何結合到NMDA通道及與通道本身的開關機制兩者之間的交互作用。我們詳細研究了felbamate結合到NMDA通道上的動力學,分別設計多種不同實驗來測量felbamate對於休息態以及活化態通道的結合速率常數與脫離速率常數。求得felbamate對於休息態與活化態通道的結合速率常數分別為187.5 和 4.6 × 104 M-1s-1;另一方面,對於休息態與活化態通道的脫離速率常數則分別為5.4-6.2 × 10-2 和 3.1-3.5 s-1。據此可以計算出felbamate對於休息態與活化態通道的解離常數(其倒數可以代表felbamate對於NMDA通道的親和力)分別為~300和~70 | zh_TW |
| dc.description.abstract | Felbamate (FBM) is a potent nonsedative anticonvulsant whose clinical effect is chiefly ascribable to gating modification (and thus use-dependent inhibition) rather than pore block of N-methyl-D-aspartate (NMDA) channels at pH 7.4. Using whole-cell recording in rat hippocampal neurons, we examine the kinetics of FBM binding to and unbinding from the NMDA channel, as well as the effect of FBM on NMDA and glycine affinity to the channel. We show that FBM modifies NMDA channel gating via a one-to-one binding stoichiometry (one FBM per channel) and has quantitatively the same enhancement effect on NMDA and glycine binding to the NMDA channel. Moreover, the binding rates of FBM to the closed and the open/desensitized NMDA channels are 187.5 and 4.6 × 104 M-1s-1, respectively. The unbinding rates of FBM from the closed and the open/desensitized NMDA channels are 5.4-6.2 × 10-2 and 3.1-3.5 s-1, respectively. From the binding and unbinding rate constants, apparent dissociation constants of ~300 and ~70 | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T00:39:10Z (GMT). No. of bitstreams: 1 ntu-96-F90441003-1.pdf: 2305185 bytes, checksum: 4988d2d9bab340d7429dc4f16082be4d (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | Table of Contents
Abstract ………………………………………i Abstract in Chinese (中文摘要) ………iv Table of Contents ……………………… vii Chapter 1 Introduction ……………… 1 1.1 The N-methyl-D-aspartate channel……………… 1 1.2 Molecular structure of the NMDA channel ……2 1.2.1 The NMDA channel subunits ……………………2 1.2.2 Topology and structure of the NMDA channel ……2 1.3 Endogenous allosteric modulators of the NMDA channel 4 1.3.1 Extracellular proton …………………………4 1.3.2 Extracellular zinc ……………………………5 1.3.3 Extracellular polyamines …………………5 1.4 Pharmacological modulation of the NMDA channel ……6 1.4.1 The anticonvulsant felbamate ………………………6 1.4.2 The interaction between felbamate and glycine …7 1.4.3 The nonsedative anticonvulsant effect of felbamate...8 1.4.4 The interaction between felbamate and proton ………9 1.4.5 Molecular determinants of the felbamate binding site in the NMDA channel …………………………………9 1.5 The activation gate and gating mechanism of the NMDA channel …10 1.5.1 Location of the activation gate …………………10 1.5.2 Gating mechanism of the NMDA channel……………13 1.6 The scope of this study ………………………………14 Chapter 2 Materials and Methods ..………………………16 2.1 Native NMDA channels …………………………………16 2.1.1 Dissociated neuron preparation ………………16 2.1.2 Whole-cell recordings …………………………16 2.1.3 Data analysis ……………………………………18 2.2 Recombinant NMDA channels ……………………18 2.2.1 Molecular biology and expression of NMDA channels..18 2.2.2 Intracellular recordings ……………………19 2.2.3 Constitutive open index ……………………21 2.2.4 MTS modification ……………………………21 2.2.5 Data analysis and homology modeling for the pore of NMDA channels ……………………………………………22 Chapter 3 Characterization of the Gating Conformational Changes in the Felbamate Binding Site in NMDA Channels ………24 3.1 Results …………………………………………………24 3.2 Discussion ……………………………………………33 3.3 Figures ………………………………………………37 Chapter 4 Extracellular Proton-Modulated Pore-Blocking Effect of the Anticonvulsant Felbamate on NMDA Channels ………… 45 4.1 Results ………………………………………………45 4.2 Discussion ………………………………………53 4.3 Figures ………………………………………………58 Chapter 5 Molecular Determinants of the Anticonvulsant Felbamate Binding Site in the NMDA Channel …………67 5.1 Results ………………………………………………67 5.2 Discussion …………………………………………76 5.3 Figures ………………………………………………81 5.4 Tables …………………………………………………92 Chapter 6 The Activation Gate and Gating Mechanism of the NMDA Channel ….…………..………………..…………94 6.1 Results ……………………………………………94 6.2 Discussion …………………………………………102 6.3 Figures ……………………………………………107 6.4 Tables ……………………………………………116 Chapter 7 Conclusions ……………………………117 Bibliography …………………………………………120 | |
| dc.language.iso | en | |
| dc.subject | felbamate | zh_TW |
| dc.subject | NMDA通道 | zh_TW |
| dc.subject | 門閥 | zh_TW |
| dc.subject | 活化開關 | zh_TW |
| dc.subject | 抗癲癇藥物 | zh_TW |
| dc.subject | 癲癇 | zh_TW |
| dc.subject | NMDA channel | en |
| dc.subject | activation gate | en |
| dc.subject | gating | en |
| dc.subject | felbamate | en |
| dc.subject | epilepsy | en |
| dc.subject | anticonvulsant | en |
| dc.title | NMDA受體通道的門閥開關與藥理調控之分子機制 | zh_TW |
| dc.title | Molecular Basis underlying Gating Mechanism and Pharmacological Modulation of the N-Methyl-D-Aspartate Receptor Channel | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 蔡明正教授,謝如姬副研究員,黃榮棋副教授,劉天申副教授,湯志永副教授 | |
| dc.subject.keyword | NMDA通道,felbamate,門閥,活化開關,抗癲癇藥物,癲癇, | zh_TW |
| dc.subject.keyword | NMDA channel,felbamate,gating,activation gate,anticonvulsant,epilepsy, | en |
| dc.relation.page | 128 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-07-25 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 生理學研究所 | zh_TW |
| 顯示於系所單位: | 生理學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 2.25 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
