請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29064完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳益群(Yi-Chun Wu) | |
| dc.contributor.author | I-Ju Lee | en |
| dc.contributor.author | 李以如 | zh_TW |
| dc.date.accessioned | 2021-06-13T00:37:51Z | - |
| dc.date.available | 2008-07-26 | |
| dc.date.copyright | 2007-07-26 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-07-24 | |
| dc.identifier.citation | 1. Kops G.J., Weaver B.A., and Cleveland D.W. On the road to cancer: aneuploidy and the mitotic checkpoint. Nature Review Cancer. 5, 773-785 (2005).
2. Roe J.L., Rivin C.J., Sessions R.A., Feldmann K.A., and Zambryski P.C. The Tousled gene in A. thaliana encodes a protein kinase homolog that is required for leaf and flower development. Cell 75, 939-950 (1993). 3. Sillje H.H., Takahashi K., Tanaka K., Van Houwe G., and Nigg E.A. Mammalian homologues of the plant Tousled gene code for cell-cycle-regulated kinases with maximal activities linked to ongoing DNA replication. EMBO J. 18, 5691–5702 (1999). 4. Li Y., DeFatta R., Anthony C., Sunavala G., and De Benedetti A. A translationally regulated Tousled kinase phosphorylates histone H3 and confers radioresistance when overexpressed, Oncogene 20, 726–738 (2001). 5. Carrera P., Moshkin Y.M., Gronke S., Sillje H.H., Nigg E.A., Jackle H., Karch F., Tousled-like kinase functions with the chromatin assembly pathway regulating nuclear divisions. Genes & Dev. 17(20), 2578-2590 (2003). 6. Sillje H.H., Nigg E.A., Identification of human Asf1 chromatin assembly factors as substrates of Tousled-like kinases. Curr Biol. 11(13), 1068-1073 (2001). 7. Krause D.R., Jonnalagadda J.C., Gatei M.H., Sillje H.H., Zhou B.B., Nigg E.A.and Khanna K., Suppression of Tousled-like kinase activity after DNA damage or replication block requires ATM, NBS1 and Chk1, Oncogene 22, 5927–5937 (2003). 8. Groth A., Lukas J., Nigg E.A., Sillje H.H., Wernstedt C., Bartek J.and Hansen K., Human Tousled like kinases are targeted by an ATM- and Chk1-dependent DNA damage checkpoint, EMBO J. 22, 1676–1687(2003). 9. Han Z., Saam J.R., Adams H.P., Mango S.E., and Schumacher J.M. The C. elegans Tousled-like kinase (TLK-1) has an essential role in transcription. Curr Biol. 22, 1921-1929 (2003) 10. Han Z., Riefler G.M., Saam J.R., Mango S.E., and Schumacher J.M. The C. elegans Tousled-like Kinase contributes to chromosome segregation as a substrate and regulator of the Aurora B Kinase. Current Biology 15, 894-904 (2005). 11. Hsu J.Y., Sun Z.W., Li X., Reuben M., Tatchell K., Bishop D.K., Grushcow J.M., Brame C.J., Caldwell J.A.and Hunt D.F. et al., Mitotic phosphorylation of histone H3 is governed by Ipl1/aurora kinase and Glc7/PP1 phosphatase in budding yeast and nematodes, Cell 102, 279–291(2000). 12. Vallee R.B., Williams J.C., Varma D., Barnhart L.E., Dynein: An ancient motor protein involved in multiple modes of transport. J Neurobiol. 58(2), 189-200 (2004). Review. 13. Jaffrey S.R., Snyder S.H., PIN: An Associated Protein Inhibitor of Neuronal Nitric Oxide Synthase Science 274, 774 – 777 (1996). 14. Navarro-Lérida I, Martínez Moreno M, Roncal F, Gavilanes F, Albar JP, Rodríguez-Crespo I. Navarro-Lerida, I. et al. Proteomic identification of brain proteins that interact with dynein light chain LC8. Proteomics 4, 339–346 (2004). 15. Stelter P., Kunze R., Flemming D., Hopfner D., Diepholz M., Philippsen P., Bottcher B., Hurt E., Molecular basis for the functional interaction of dynein light chain with the nuclear-pore complex. Nat Cell Biol. [Epub ahead of print] (2007) 16. Song Y., Benison G., Nyarko A., Hays T.S., Barbar E., Potential role for phosphorylation in differential regulation of the assembly of Dynein light chains. J Biol Chem. 282(23), 17272-17279 (2007). 17. Gonczy P., Echeverri C., Oegema K., Coulson A., Jones S.J., Copley R.R., Duperon J., Oegema J., Brehm M., Cassin E., Hannak E., Kirkham M., Pichler S., Flohrs K., Goessen A., Leidel S., Alleaume A.M., Martin C., Ozlu N., Bork P., and Hyman A.A. Functional genomic analysis of cell division in C. elegans using RNAi of genes on chromosome III. Nature 408, 331-336 (2000). 18. Kamath R.S., Fraser A.G., Dong Y., Poulin G., Durbin R., Gotta M., Kanapin A., Le Bot N., Moreno S., Sohrmann M., Welchman D.P., Zipperlen P., and Ahringer J.. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi Nature 421, 231-237 (2003). 19. Zhong W., Sternberg P.W. Genome-wide prediction of C. elegans genetic interactions. Science 311, 1481-1484 (2006). 20. Cheeseman I.M., Niessen S., Anderson S., Hyndman F., Yates J.R., Oegema K., Desai A., A conserved protein network controls assembly of the outer kinetochore and its ability to sustain tension. Genes & Dev. 18(18), 2255-2268 (2004). 21. Glotzer M., Murray A.W., Kirschner M.W., Cyclin is degraded by the ubiquitin pathway. Nature. 349(6305), 132-138 (1991). 22. Wäsch R. and Engelbert D. Anaphase-promoting complex-dependent proteolysis of cell cycle regulators and genomic instability of cancer cells Oncogene 24, 1–10 (2005). 23. Nakayama K.I., Nakayama K. Ubiquitin ligases: cell-cycle control and cancer. Nat Rev Cancer. 6(5), 369-381 (2006). 24. Yeong F.M. Anaphase-promoting complex in Caenorhabditis elegans. Mol Cell Biol. 24(6), 2215-25 (2004). 25. Vodermaier H.C. Cell cycle: Waiters serving the Destruction machinery. Curr Biol. 11(20), 834-837 (2001). 26 Losada A, Hirano T. Dynamic molecular linkers of the genome: the first decade of SMC proteins. Genes Dev. 19(11):1269-1287 (2005). Review. 27 Fire A., Xu S., Montgomery M.K., Kostas S.A., Driver S.E., Mello C.C.. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 391(6669), 806-811 (1998). 28 Mello C.C., Conte D. Jr. Revealing the world of RNA interference. Nature. 431(7006), 338-342 (2004). Review. 29 Gardner M.K.and Odde D.J. Modeling of chromosome motility during mitosis. Curr Opin Cell Biol. 18, 639-647 (2006). 30 Vale R.D. The molecular motor toolbox for intracellular transport. Cell 112, 467-480 (2003). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29064 | - |
| dc.description.abstract | In Eukaryotes, the cell cycle is under delicate control. Different phosphorylation state of a protein often leads to different activity, thus a number of protein kinases play important roles in mitosis. The C. elegans tousled-like kinase TLK-1 is a serine/threonine kinase that is important for DNA condensation and segregation. The tlk-1(RNAi) embryos arrested at approximately 55 cells stage and showed aneuploidy. To study the expression pattern of TLK-1, we generated TLK-1 antibodies. We show that TLK-1 is localized in the interphase nucleus but diffuses to the cytosol after nuclear envelope breakdown during mitosis. We found that TLK-1 is likely to act in chromosome segregation through DLC-1. DLC-1, a subunit of cytoplasmic dynein complex, interacts with TLK-1 in a yeast 2-hybrid system. By using time-course microscopic analysis we show that the depletion of dlc-1 causes defects in spindle assembly and chromosome segregation. Using immuno-staining we found that DLC-1 is enriched in mitotic centrosomes and spindle in wild-type but not tlk-1(RNAi) embryos. We conclude TLK-1 may mediate chromosome segregation by controlling the localization of DLC-1 to the mitotic centrosomes and spindles. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T00:37:51Z (GMT). No. of bitstreams: 1 ntu-96-R94b43007-1.pdf: 3471946 bytes, checksum: d7ea24c3e3c8ff090009bb957c9aa257 (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | Abstract...1
摘要...2 Introduction...3 Materials and Methods...8 Results...15 tlk-1(RNAi) embryos exhibit defects in DNA condensation and segregation...15 The depletion of tlk-1 affects kinetochore alignment...16 TLK-1 diffuses to cytosol when a cell processes from prophase to metaphase...17 The localization of TLK-1 is not regulated through APC-targeted ubiquitination...18 dlc-1(RNAi) causes embryonic lethality...19 dlc-1(RNAi) does not affect the localization of TLK-1...20 dlc-1(RNAi) embryos exhibit defects in mitotic spindle assembly and chromosome segregation...20 DLC-1 gathers around centrosomes during mitosis...22 The localization of DLC-1 is impaired in tlk-1(RNAi)...22 Discussion...24 The condensation defect in tlk-1(RNAi...24 TLK-1 and the holocentric proteins...25 The segregation defect in tlk-1(RNAi)...25 The regulation of TLK-1 during cell cycle...26 The embryonic lethality of dlc-1(RNAi) mutants in different strains...27 The interaction between TLK-1 and DLC-1...27 The functions of DLC-1 and dynein complex in mitosis...29 Future perspectives...31 Figures and Tables...32 Reference...50 Appendix...54 | |
| dc.language.iso | en | |
| dc.subject | 細胞分裂 | zh_TW |
| dc.subject | 線蟲 | zh_TW |
| dc.subject | 有絲分裂 | zh_TW |
| dc.subject | C. elegans | en |
| dc.subject | mitosis | en |
| dc.title | 分析蛋白質TLK-1和DLC-1在線蟲有絲分裂中的特性 | zh_TW |
| dc.title | Characterization of TLK-1 and DLC-1 in C. elegans mitosis | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 廖國楨(Gwo-Jen Liaw),黃偉邦(Wei-Pang Huang) | |
| dc.subject.keyword | 線蟲,有絲分裂,細胞分裂, | zh_TW |
| dc.subject.keyword | C. elegans,mitosis, | en |
| dc.relation.page | 53 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-07-25 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 分子與細胞生物學研究所 | zh_TW |
| 顯示於系所單位: | 分子與細胞生物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 3.39 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
