Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29061
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor方俊民(Jim-Min Fang)
dc.contributor.authorChia-I Linen
dc.contributor.author林佳誼zh_TW
dc.date.accessioned2021-06-13T00:37:41Z-
dc.date.available2012-07-26
dc.date.copyright2007-07-26
dc.date.issued2007
dc.date.submitted2007-07-24
dc.identifier.citation1. (a) Comprehensive Supramolecular Chemistry, Atwood, J. L., Davies, J. E., MacNicol, D. D., Vögtle, F., Reinhoudt, D. N., Lehn, J.-M., Eds.; Pergamon-Elsevier Science, Oxford, 1996. (b) Supramolecular Chemistry of Anions (Bianchi, A., Bowman-James, K., GarcKa-EspaLa, E.), Eds.; Wiley-VCH: New York, 1997.
2. (a) Lavigne, J. J.; Anslyn, E. V. Angew. Chem., Int. Ed. 2001, 40, 3118–3130. “Sensing a paradigm shift in the field of molecular recognition: from selective to differential receptors” (b) Wright, A. T.; Anslyn, E. V. Chem. Soc. Rev. 2006, 35, 14–28. “Differential receptor arrays and assays for solution-based molecular recognition”
3. (a) Suksai, C.; Tuntulani, T. Top. Curr. Chem. 2005, 255, 163–198. “Chromogenic anion sensors” (b) Martínez-Máñez1, R.; Sancenón, F. J. Fluoresc. 2005, 15, 267–285. “New advances in fluorogenic anion chemosensors”
4. (a) Schmidtchen, F. P.; Berger, M. Chem. Rev. 1997, 97, 1609–1646. “Artificial organic host molecules for anions“ (b) Beer, P. D.; Gale, P. A. Angew. Chem. Int. Ed. 2001, 40, 486–516. “Anion recognition and sensing: the state of the art and future perspectives” (c) Suksai, C.; Tuntulani, T. Chem. Soc. Rev. 2003, 32, 192–202. “Chromogenic anion sensors” (d) Martínez-Máñez, R.; Sancenón, F. Chem. Rev. 2003, 103, 4419–4476. “Fluorogenic and chromogenic chemosensors and reagents for anions”
5. Yamamura, S. S.; Wade, M. A.; Sikes, J. H. Anal. Chem. 1962, 34, 1308–1312. “Direct spectrophotometric fluoride determination”
6. Kata, R.; Nishizawa, S.; Hayashita, T.; Teramae, N. Tetrahedron Lett. 2001, 42, 5053–5056. “A thiourea-based chromoionophore for selective binding and sensing of acetate”
7. Lavigne, J. J.; Anslyn, E. V. Angew. Chem. Int. Ed. 1999, 38, 3666–3669. “Teaching old indicators new tricks: a colorimetric chemosensing ensemble for tartrate/malate in beverages”
8. (a) Gunnlaugsson, T.; Davis, A. P.; O’Brien, J. E.; Glynn, M. Org. Lett. 2002, 4, 2449–2452. “Fluorescent sensing of pyrophosphate and bis-carboxylates with charge neutral PET chemosensors” (b) Beer, P. D. Acc. Chem. Res. 1998, 31, 71–80. “Transition-metal receptor systems for the selective recognition and sensing of anionic guest species” (c) Liao, J. H.; Chen, C. T.; Fang, J. M. Org. Lett. 2002, 4, 561–564. “A novel phosphate chemosensor utilizing anion-induced fluorescence change” (d) Tong, H.; Zhou, G.; Wang, L.; Jing, X.; Wang, F.; Zhang, J. Tetrahedron Lett. 2003, 44, 131–134. “Novel highly selective anion chemosensors based on 2,5-bis(2-hydroxyphenyl)-1,3,4-oxadiazole”
9. (a) Waldbott, G. Clinical Toxicology 1981, 18, 531–541. “Mass intoxication from accidental overfluoridation of drinking water” (b) Matuso, S.; Kiyomiya, K.-I.; Kurebe, M. Arch. Toxicol. 1998, 72, 798–806. “Mechanism of toxic action of fluoride in dental fluorosis: whether trimeric G proteins participate in the disturbance of intracellular transport of secretory ameloblast exposed to fluoride” (c) Zhang, S.-W.; Swager, T. M. J. Am. Chem. Soc. 2003, 125, 3420–3421. “Fluorescent detection of chemical warfare agents: functional group specific ratiometric chemosensors” (d) Riggs, B. L. Bone and Mineral Research, 1984, 366–393. “Treatment of osteoporosis with sodium fluoride: an appraisal” (e) Laisalmi, M.; Kokki, H.; Soikkeli, A.; Markkanen, H.; Yli-Hankala, A.; Rosenberg, P.; Lindgren L. Acta. Anaesthesiol. Scand. 2006, 50, 982–987. “Effects of cigarette smoking on serum fluoride concentrations and renal function integrity after 1 MAC-h sevoflurane anaesthesia”
10. Peng, X.; Wu, Y.; Fan, J.; Tian, M.; Han, K. J. Org. Chem. 2005, 70, 10524–10531. “Colorimetric and ratiometric fluorescence sensing of fluoride: tuning selectivity in proton transfer”
11. Wu, J.-S.; Zhou, J.-H.; Wang, P.-F.; Zhang, X.-H.; Wu, S.-K. Org. Lett. 2005, 7, 2133–2136. “New fluorescent chemosensor based on exciplex signaling mechanism“
12. Melaimi, M.; Gabbï, P. J. Am. Chem. Soc. 2005, 127, 9680–9681. “A heteronuclear bidentate Lewis acid as a phosphorescent fluoride sensor”
13. Ghosh, S.; Choudhury, A. R.; Row, T. N. G.; Maitra, U. Org. Lett. 2005, 7, 1441–1444. “Selective and unusual fluoride Ion complexation by a steroidal receptor using OH…F– and CH…F– interactions: a new motif for anion coordination? “
14. Badugu, R.; Lakowicz, J. R.; Geddes, C. D. Sensor. Actuat. B-Chem. 2005, 104, 103–110. “A wavelength–ratiometric fluoride–sensitive probe based on the quinolinium nucleus and boronic acid moiety”
15. (a) Boiocchi, M.; Boca, L. D.; Esteban-Gómez, D.; Fabbrizzi, L. ; Licchelli, M.; Monzani, E. J. Am. Chem. Soc. 2004, 126, 16507–16514. “Nature of urea–fluoride interaction: incipient and definitive proton transfer” (b) Esteban-Gómez, D.; Fabbrizzi, L.; Licchelli, M. J. Org. Chem. 2005, 70, 5717–5720. “Why, on interaction of urea–based receptors with fluoride, beautiful colors develop”
16. Lee, C.-H.; Lee, J.-S.; Na H.-K.; Yoon, D.-W.; Miyaji, H.; Cho, W.-S.; Sessler, J. L. J. Org. Chem. 2005, 70, 2067–2074. “Cis-and trans-strapped calix[4]pyrroles bearing phthalamide linkers: synthesis and anion–binding properties”
17. These experiments were conducted by Dr. Srinivasan Selvi (Department of Chemistry, National Taiwan University).
18. Slevi, S.; Pu, S.-C.; Chen, Y.-M. ; Fang, J.-M. ; Chou, P.-T. J. Org. Chem. 2004, 69, 6674–6678. “Highly fluorescent pyteno[2,1-b]pyrroles: first syntheses, crystal structure, and intriguing photophysical properties”
19. Connors, K. A. Binding Constants Wiley: New York, 1987.
20. (a) Amendola, V.; Esteban-Gómez, D.; Fabbrizzi, L.; Licchelli, M. Acc. Chem. Res. 2006, 39, 343–353. “What anions do to N–H-containing receptors” (b) Kang, S. O.; Powell, D.; Day, V. W.; Bowman-James, K. Angew. Chem. Int. Ed. 2006, 45, 1921–1925. “Trapped bifluoride” (c) Wu, C.-Y.; Chen, M.-S.; Lin, C.-A.; Lin, S.-C.; Sun, S.-S. Chem. Eur. J. 2006, 12, 2263–2269. “Photophysical studies of anion-induced colorimetric response and amplified fluorescence quenching in dipyrrolylquinoxaline-containing conjugated polymers” (d) Black, C. B.; Andrioletti, B.; Try, A. C.; Ruiperez, C.; Sessler, J. L. J. Am. Chem. Soc. 1999, 121, 10438–10439. “Dipyrrolylquinoxalines: efficient sensors for fluoride anion in organic solution”
21. (a) Koradin, C.; Dohle, W.; Rodriguez, A. L.; Schmid, B.; Knochel, P. Tetrahedron, 2003, 59, 1571–1587. “Synthesis of polyfunctional indoles and related heterocycles mediated by cesium and potassium bases” (b) Kabalka, G. W.; Blankley, Wang, L.; Pagni, R. M. Tetrahedron, 2001, 57, 8017–8028. “Sonogashira coupling and cyclization reactions on alumina: a route to aryl alkynes, 2-substituted-benzo[b]furans and 2-substituted indoles” (c) Saulnier, M. G.; Frennesson, D. B.; Deshpande, M. S.; Vyas, D. M. Tetrahedron Lett. 1995, 43, 7841–7844. “Synthesis of a rebeccamycin–related indolo[2,3-a]carbazole by palladium(0) catalyzed polyannulation” (d) Cresp, T. M.; Ojima, J.; Sondheimer, F. J. Org. Chem. 1977, 12, 2130–2134. “Synthesis of methyl-substituted bisdehydro[13lannulenones. Conformational isomerism and ring current effects in conjugated 13-membered cyclic ketones”
22. (a) Ahlrichs, R.; Bar, M.; Haser, M.; Horn, H.; Kolmel, C. Chem. Phys. Lett. 1989, 162, 165–169. “Electronic structure calculations on workstation computers: the program system turbomole” (b) Treutler, O.; Ahlrichs, R. J. Chem. Phys. 1995, 102, 346–354. “Efficient molecular numerical integration schemes” (c) Deglmann, P.; Furche, F. J. Chem. Phys. 2002, 117, 9535–9538. “Efficient characterization of stationary points on potential energy surfaces” (d) Haser, M.; Ahlrichs, R.; Baron, H. P.; Weis, P.; Horn, H. Theoret. Chim. Acta. 1992, 83, 455–470. “Direct computation of second-order SCF properties of large molecules on workstation computers with an application to large carbon clusters”
23. Huntington’s Disease, Bates, G., Harper, P. S., Jones, L., Eds.; Oxford University Press, Oxford, 2002.
24. The Huntington’s Disease Collaborative Research Group Cell 1993, 72, 971–983. “A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes”
25. Blum, D.; Hourez, R.; Galas, M.-C.; Popoli, P.; Schiffmann, S. N. Lancet Neurology 2003, 2, 366–374. “Adenosine receptors and Huntington’s disease: implications for pathogenesis and therapeutics”
26. (a) Jankovic, J.; Beach, J. Neurology 1997, 48, 358–362. “Long-term effects of tetrabenazine in hyperkinetic movement disorders” (b) van Vugt, J. P. P.; Siesling, S.; Vergeer, M.; van der Velde, E. A.; Roos, R. A. C. J. Neurol. Neurosur. Ps. 1997, 63, 35–39. “Clozapine versus placebo in Huntington’s disease: a double blind randomised comparative study” (c) Kieburtz, K.; Feigin, A.; McDermott, M.; Como, P.; Abwender, D.; Zimmerman, C.; Hickey, C.; Orme, C.; Claude, K.; Sotack, J.; Greenamyre, J. T.; Dunn, C.; Shoulson, I. Movement Disorders 1996, 11, 273–277. “A controlled trial of remacemide hydrochloride in Huntington’s disease” (d) Feigin, A.; Kieburtz, K.; Como, P.; Hickey, C.; Claude, K.; Abwender, D.; Zimmerman, C.; Steinberg, K.; Shoulson, I. Movement Disorders 1996, 11, 321–323. “Assessment of coenzyme Q10 tolerability in Huntington’s disease” (e) Bachoud-Levi, A.-C.; Remy, P.; Nguyen, J.-P.; Brugieres, P.; Lefaucheur, J.-P.; Bourdet, C.; Baudic, S.; Gaura, V.; Maison, P.; Haddad, B.; Boisse, M.-F.; Grandmougin, T.; Jeny, R.; Bartolomeo, P.; Barba, G. D.; Degos, J.-D.; Lisovoski, F.; Ergis, A.-M.; Pailhous, E.; Cesaro, P.; Hantraye, P.; Peschanski, M. Lancet 2000, 356, 1975–1979. “Motor and cognitive improvements in patients with Huntington’s disease after neural transplantation”
27. (a) Fredholm, B. B.; Ijzerman, A. P.; Jacobson, K. A.; Klotz, K.-N.; Linden, J. Pharmacl. Rev. 2001, 54, 527–552. “International union of pharmacology. XXV. Nomenclature and classification of adenosine receptors” (b) Sebastião, A. M.; Ribeiro, J. A. Prog. Neurobiol. 1996, 46, 167–189. “Adenosine A2A receptor–mediated excitatory actions on the nervous system” (c) Dunwiddie, T. V.; Masino, S. A. Annu. Rev. Neurosci. 2001, 24, 31–55. “The role and regulation of adenosine in the central nervous system”
28. (a) Kase, H. Biosci. Biotechnol. Biochem. 2001, 65, 1447–1457. “New aspects of physiological and pathophysiological functions of adenosine A2A receptor in basal ganglia” (b) Richardson, P. J.; Kase, H.; Jenner, P. G. Trends Pharmacol. Sci. 1998, 18, 338–344. “Adenosine A2A receptor antagonists as new agents for the treatment of Parkinson’s disease”
29. (a) Huang, N.-K.; Lin, Y.-W.; Huang, C.-L.; Messing, R. O.; Chern, Y. J. Biol. Chem. 2001, 276, 13838–13846. “Activation of protein kinase A and atypical protein kinase C by A2A adenosine receptors antagonizes apoptosis due to serum deprivation in PC12 cells” (b) Chiang, M.-C.; Lee, Y.-C.; Huang, C.-L.; Chern, Y. J. Biol. Chem. 2005, 280, 14331–14340. “cAMP-response element–binding protein contributes to suppression of the A¬2A adenosine receptor promoter by mutant Huntingtin with expanded polyglutamine residues” (c) Mangiarini, L.; Sathasivam, K.; Seller, M.; Cozens, B.; Harper, A.; Hetherington, C.; Lawton, M.; Trottier, Y.; Lehrach, H.; Davies, S. W.; Bates, G. P. Cell, 1996, 87, 493–506. “Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice” (d) Chou, S.-Y.; Lee, Y.-C.; Chen, H.-M.; Chiang, M.-C.; Lai, H.-L.; Chang, H.-H.; Wu, Y.-C.; Sun, C.-N.; Chien, C.-L.; Lin, Y.-S.; Wang, S.-C.; Tung, Y.-Y.; Chang, C.; Chern, Y. J. Neurochem. 2005, 93, 310–320. “CGS21680 attenuates symptoms of Huntington’s disease in a transgenic mouse model”
30. (a) Noji, T.; Karasawa, A.; Kusaka, H. E. Eur. J. Pharmacol. 2004, 495, 1–16. “Adenosine uptake inhibitors” (b) King, A. E.; Ackley, m. A.; Cass, C. E.; Young, J. D.; Baldwin, S. A. Trends Pharmacol. Sci. 2006, 27, 416–425. “Nucleoside transporters: from scavengers to novel therapeutic targets” (c) Baldwin, S. A.; Mackey, J. R.; Cass, C. E.; Young, J. D. Mol. Med. Today 1999, 5, 216–224. “Nucleoside transporters: molecular biology and implications for therapeutic development”
31. (a) Shi, M. M.; Wu, J. R.; Lee, C.; Young, J. D. Biochem. Biophys, Res. Commun. 1984, 118, 594–600. “Adenosine uptake inhibitors” (b) Castillo-Melendez, M.; Jarrott, B.; Lawrence, A. J. J. Auton Nerv. Syst. 1996, 84, 36–42. “Radioligand binding and autoradiographic visualization of adenosine transport sites in human inferior vagal ganglia and their axonal transport along rat vagal afferent neurons.” (c) Parkinson, F. E.; Rudolphi, K. A.; Fredholm, B. B. Gen. Pharmacol. 1994, 25, 1053–1058. “A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes”
32. (a) Zhang, H.-Y. FEBS Lett. 2005, 579, 5260–5264. “One-compound-multiple- targets strategy to combat Alzheimer’s disease” (b) Cavalli, A.; Bolognesi, M. L.; Capsoni, S.; Andrisano, V.; Bartolini, M.; Margotti, E.; Cattaneo, A.; Recanatini, M.; Melchiorre, C. Angew. Chem. Int. Ed. 2007, 46, 3689–3692. “A small molecule targeting the multifactorial nature of Alzheimer’s disease”
33. (a) Huang, N.-K.; Chern, Y.; Fang, J.-M.; Lin, C.-I.; Chen, W.-P.; Lin, Y.-L. J. Nat. Prod., 2007, 70, 571–574. “Neutoprotective principles from Gastrodia eleta” (b) Huang, N. K.; Lin, Y. L.; Cheng, J. J.; Lai, W. L. Life Sci., 2004, 75, 1649–1657. “Gastrodia eleta prevents rat pheochromocytoma cells from serum-deprived apoptosis: the role of the MAPK family”
34. (a) An, S. J.; Park, S. K.; Hwang, I. K.; Choi, S. Y.; Kim, S. K.; Kwon, O. S.; Jung, S. J.; Baek, N. I.; Lee, H. Y.; Won, M. H.; Kang, T. C. J. Neurosci. Res., 2003, 71, 534–543. “Gastrodin decreases immunoreactivities of γ-aminobutyric acid shunt enzymes in the hippocampus of seizure-sensitive gerbils” (b) Kim, H. J.; Moon, K. D.; Oh, S. Y.; Kim, S. P.; Lee, S. R. Neurosci. Lett., 2001, 314, 65–68. “Ether fraction of methanol extracts of Gastrodia elata, a traditional medicinal herb, protects against kainic acid-induced neuronal damage in the mouse hippocampus” (c) Kim, H. J.; Lee, S. R.; Moon, K. D. Phytother. Res., 2003, 17, 909–912. “Ether fraction of methanol extracts of Gastrodia elata, medicinal herb protects against neuronal cell damage after transient global ischemia in gerbils” (d) Kim, H. J.; Moon, K. D.; Lee, D. S.; Lee, S. H. J. Ethnopharmacol,. 2003, 84, 95–98. “Ethyl ether fraction of Gastrodia elata Blume protects amyloid β peptide-induced cell death” (e) Hsieh, C. L.; Chiang, S. Y.; Cheng, K. S.; Lin, Y. H.; Tang, N. Y.; Lee, C. J.; Pon, C. Z.; Hsieh, C. T. Am. J. Chin. Med., 2001, 29, 331–341. “Anticonvulsive and free radical scavenging activities of Gastrodia elata Bl. In kainic acid-treated rats” (f) Hsieh, C. L.; Chang, C. H.; Chiang, S. Y.; Li, T. C.; Tang, N. Y.; Pon, C. Z.; Hsieh, C. T.; Lin, J. G. Life Sci., 2000, 67, 1185–1195. “Anticonvulsive and free radical scavenging activities of vanillyl alcohol in ferric chloride-induced epileptic seizures in Sprague-Dawley rats”
35. Chern, Y.-J. Institute of Biomedical Sciences, Academia Sinica.
36. Huang, N.-K. National Research Institute of Chinese Medicine.
37. Lin, J.-H. Department of Pharmacy, National Taiwan University.
38. (a) Rukenstein, A.; Rydel, R. E.; Greene, L. A. J. Neurosci. 1991, 11, 2552–2563. “Multiple agents rescue PC12 cells from serum-free cell death by translation- and Transcription-independent mechanisms” (b) Batistatou, A.; Greene, L. A. J. Cell Biol. 1991, 115, 461–471. ”Aurintricarboxylic acid rescues PC12 cells and sympathetic neurons from cell death caused by nerve growth factor deprivation: correlation with suppression of endonuclease activity”
39. (a) Mosmann, T. J. Immunol. Meth. 1983, 65, 55–63. “Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays” (b) Liu, Y. Prog. Neuro-psychopharmacol. Biol. Psychiat. 1999, 23, 377–395. “Understanding the biological activity of amyloid β proteins in vitro: from inhibited cellular MTT reduction to altered cellular cholesterol homeostatis”
40. (a) Kurogi, Y.; Güner, O. F. Curr. Med. Chem., 2001, 8, 1035–1055. “Pharmacophore modeling and three-dimensional database searching for drug design using Catalyst” (b) Guner, O.; Clement, O.; Kurogi, Y. Curr. Med. Chem., 2004, 11, 2991–3005. “Pharmacophore modeling and three dimensional database searching for drug design using Catalyst: recent advances” (c) Debnath, A. K. Curr. Pharm. Design, 2005, 11, 3091–3110. “Application of 3D-QSAR techniques in anti-HIV-1 drug design – an overview” (d) Purushottamachar, P.; Khandelwal, A.; Chopra, P.; Maheshwari, N.; Gediya, L. K.; Vasaitis, T. S.; Bruno, R. D.; Clementc, O. O.; Njara, V. C. O. Bioorg. Med. Chem., 2007, 15, 3413–3421. “First pharmacophore-based identification of androgen receptor down-regulating agents: discovery of potent anti-prostate cancer agents” (e) Yu, H.; Wang, Z.; Zhang, L.; Zhanga, J.; Huang, Q. Bioorg. Med. Chem. Lett., 2007, 17, 2126–2133. “Pharmacophore modeling and in silico screening for new KDR kinase inhibitors” (f) Wei, J.; Wang, S.; Gao, S.; Dai, X.; Gao, Q. J. Chem. Inf. Model., 2007, 47, 613–625. “3D–pharmacophore models for selective A2A and A2B adenosine receptor antagonists”
41. Cristalli, G.; Cacciari, B.; Ben, D. D. ; Lambertucci, C. ; Moro, S. ; Spalluto, G. ; Volpini, R. ChemMedChem, 2007, 2, 260–281. “Highlights on the development of A2A adenosine receptor agonists and antagonists”
42. (a) Cusack, N. J.; Hourani, S. M. O. Br. J. Pharmacol. 1981, 72, 443– 447. “5'-N-Ethylcarboxamidoadenosine: A potent inhibitor of human platelet aggregation” (b) de Zwaart, M.; Link, R.; von Friftag Drabbe-KGnzel, J. K.; Cristalli, G.; Jacobson, K. A.; Townsend-Nicholson, A.; IJzerman, A. P. Nucleosides Nucleotides 1998, 17, 969–985. “A functional screening of adenosine analogues at the adenosine A2B receptor: a search for potent agonists”
43. (a) Ohno, M.; Gao, Z.-G.; van Rompaey, P.; Tchilibon, S.; Kim, S.-K.; Harris, B. A.; Gross, A. S.; Duong, H. T.; van Calenbergh, S.; Jacobson, K. A. Bioorg. Med. Chem. 2004, 12, 2995 –3007. “Modulation of adenosine receptor affinity and intrinsic efficacy in adenine nucleosides substituted at the 2-position” (b) Francis, J. E.; Webb, R. L.; Ghai, G. R.; Hutchison, A. J.; Moskal, M. A.; de Jesus, R.; Yokoyama, R.; Rovinski, S. L.; Contardo, N.; Dotson, R.; Barclay, B.; Stone, G. A.; Jarvis, M. F. J. Med. Chem. 1991, 34, 2570–2579. “Highly selective adenosine A2 receptor agonists in a series of N-alkylated 2-aminoadenosines” (c) Stein, H. H.; Somani, P.; Prasad, R. N. Ann. N. Y. Acad. Sci. 1975, 255, 380–389. “Cardiovascular effects of nucleoside analogs” (d) Daly, W.; Padgett, W. L.; Secunda, S. I.; Thompson, R. D.; Olsson, R. A. Pharmacology 1993, 46, 91–100. “Structure-activity relationships for 2-substituted adenosines at A1 and A2 adenosine receptors” (e) Hasan, A.; Hussain, T.; Mustafa, S. J.; Srivastava, P. C. Bioconjugate Chem. 1994, 5, 364–369. “2-Substituted thioadenine nucleoside and nucleotide analogues: synthesis and receptor subtype binding affinities”
44. Cristalli, G. ; Franchetti, P.; Grifantini, M.; Vittori, S.; Klotz, K. N.; Lohse, M. J. J. Med. Chem. 1988, 31, 1179–1183. “Adenosine receptor agonists: synthesis and biological evaluation of 1-deaza analogues of adenosine derivatives”
45. Lehninger Principles of Biochemistry, Nelson, D. L., Cox, M. M., Eds.; Worth Publishers, New York, 2000. p 449–458.
46. (a) Chern, Y.; Lai, H.-L.; Fong, J. C.; Liang, Y. Mol. Pharmacol. 1993, 44, 950–958. “Multiple mechanisms for desensitization of A¬2A adenosine receptor–mediated cAMP elevation in rat pheochromocytoma PC12 cells” (b) Chern, Y.; Chiou, J.-Y.; Lai, H.-L.; Tsai, M.-H. Mol. Pharmacol. 1995, 48, 1–8. “Regulation of adenylyl cyclase type VI activity during desensitization of the A¬2A adenosine receptor–mediated cyclic AMP response: role for protein phosphatase 2A”
47. (a) Griefiths, M.; Beaumont, N.; Yao, S. Y. M.; Sundaram, M.; Boumah, C. E.; Davies, A.; Kwong, F. Y. P.; Coe, I.; Cass, C. E.; Young, J. D.; Baldwin, S. A. Nat. Med. 1997, 3, 89–93. “Cloning of a human nucleoside transporter implicated in the cellular uptake of adenosine and chemotherapeutic drugs” (b) Ward, J. L.; Sherali, A.; Mo, Z.-P.; Tse, C.-M. J. Biol. Chem. 2000, 275, 8375–8381. “Kinetic and pharmacological properties of cloned human equilibrative nucleoside transporters, ENT1 and ENT2, stably expressed in nucleoside transporter-deficient PK15 cells”
48. (a) Paul, B.; Chen, M. F.; Paterson, A. R. P. J. Med. Chem. 1975, 18, 968–973. “Inhibitors of nucleoside transport. A structure-activity study using human erythrocytes” (b) Agbanyo, F. R.; Vijayalakshmi, D.; Craik, J. D.; Gati, W. P.; McAdam, D. P.; Asakura, J.; Robins, M. J.; Paterson, A. R. P.; Cass, C. E. Biochem. J. 1990, 270, 605–614. “5’-S-(2-Aminoethyl)-N6-(4-nitrobenzyl)-5’-thioadenosine (SAENTA), a novel ligand with high affinity for polypeptides associated with nucleoside transporter”
49. (a) Microwave Synthesis: Chemistry at the Speed of Light, Hayes, B. L., Eds.; CEM Publishing, U.S.A., 2002. (b) Luo, G.; Chen, L.; Poindexter, G. S. Tetrahedron Lett., 2002, 43, 5739–5742. “Microwave-assisted synthesis of aminopyrimidines” (c) Fang, W.-P.; Cheng, Y.-T.; Cheng, Y.-R.; Cherng, Y.-J. Tetrahedron, 2005, 61, 3107–3113. “Synthesis of substituted uracils by the reactions of halouracils with selenium, sulfur, oxygen and nitrogen nucleophiles under focused microwave irradiation”
50. (a) Na1gele, E.; Schelhaas, M.; Kuder, N.; Waldmann, H. J. Am. Chem. Soc. 1998, 120, 6889–6902. “Chemoenzymatic synthesis of N-Ras lipopeptides“ (b) Mikawa, H. Bull. Chem. Soc. Jpn. 1954, 27, 50–53. “Hydrogen sulfide cookings of p-oxybenzyl alcohols. I.” (c) United States Rubber Company, US 3322649, 1967, “Protection of organic material from oxidative deterioration with bis(3,5-dihydrocarbyl-4-hydroxybenzyl) sulfoxides.“
51. (a) Trivedi, B. K.; Blankley, C. J.; Bristol, J. A.; Hamilton, H. W.; Patt, W. C.; Kramer, W. J.; Johnson, S. A.; Bruns, R. F.; Cohen, D. M.; Ryan, M. J. J. Med. Chem. 1991, 34, 1043–1049. “N6-Substituted adenosine receptor agonists: potential antihypertensive agents“ (b) Golisade, A.; Wiesner, J.; Herforth, C.; Jomaab, H.; Linka, A. Bioorg. Med. Chem. 2002, 10, 769–777. “Anti-malarial activity of N6-substituted adenosine derivatives. Part I” (c) Koyama, H.; Boueres, J. K.; Han, W.; Metzger, E. J.; Bergman, J. P.; Gratale, D. F.; Miller, D. J.; Tolman, R. L.; MacNaul, K. L.; Berger, J. P.; Doebber, T. W.; Leung, K.; Moller, D. E.; Hecka, J. V.; Sahooa, S. P. Bioorg. Med. Chem. Lett. 2003, 13, 1795–1799. “Discovery of 3-amino-4-chlorophenyl P1 as a novel and potent benzamidine mimic via solid-phase synthesis of an isoxazoline library” (d) Gannett, P. M.; Nagel, D. L.; Reilly, P. J.; Lawson, T.; Sharpe, J.; Toth, B. J. Org. Chem. 1988, 53, 1064–1071. “The Capsaicinoids: their separation, synthesis, and mutagenicity”
52. Hampton, A.; Kappler, F. J. Med. Chem. 1990, 33, 2545–2551. “Approaches to isozyme-specific inhibitors. 17. Attachment of a selectivity-inducing substituent to a multisubstrate adduct. Implications for facilitated design of potent, isozyme-selective inhibitors”
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29061-
dc.description.abstract第一部份:芘駢吡咯及雙芘駢吡咯做為氟離子偵測器之機制研究
本篇論文當中,我們運用本實驗室過去合成的芘駢吡咯及其衍生物-雙芘駢吡咯做為氟離子的偵測器,且選用多種常見的陰離子進行初步篩選,發現此二化合物對於氟離子具有良好選擇性及靈敏度。而在添加氟離子先後,此二化合物均在可見光波長區域產生明顯的吸收或螢光光譜變化,此一光物理性質將可應用於氟離子的即時偵測上。
我們利用螢光及核磁共振光譜對於氟離子的偵測機制進行詳盡的分析。實驗過程中發現,在初始模式中,芘駢吡咯及雙芘駢吡咯與氟離子形成氫鍵附合物;之後加入的氟離子,因其帶有極強的鹼性,將促使吡咯官能基中氮上氫進行去質子化,而造成吸收及螢光光譜的紅位移現象。另外在1H NMR光譜滴定實驗中,我們紀錄並解釋偵測器分子上其他氫訊號的特殊趨勢,並觀測到 [FHF]–陰離子的訊號,更進一步地證實偵測器分子與氟離子間進行去質子化的作用機制。
第二部分:抗神經退化性藥物之研究:腺苷酸類似物之合成
我們從傳統中藥材-天麻中萃取出兩種具有神經保護性的化合物:T1-C和T1-11,且利用有機合成的方法大量製備此二化合物。在老鼠腎上腺髓質嗜鉻細胞瘤細胞(PC12 cells)測試中發現,此二分子透過刺激A2A腺苷酸受體(A2A-R)使細胞免於凋亡。由於A2A-R屬於G蛋白質受體家族,在其單晶結構難以取得的條件下,我們利用電腦軟體建構的pharmacophore模型輔助整個藥物分子的設計。
因為T1-11具有更好的生物活性,所以本篇論文著重在T1-11的衍生。我們替換T1-11分子結構中N6-位置的取代基,並建立具有代表性的分子庫。進行測試後發現,這些腺苷酸類似物的神經保護性與T1-11相差無幾,也就是說A2A-R 刺激物對於N6-位置官能基變化具有一定程度的容忍性。此外,我們也嘗試修飾T1-11結構中的核糖部分,希望能進一步提高對於A2A-R的親和性。在其他生物活性測試中發現,T1-11分子扮演兩種角色:A2A-R 刺激物及腺苷酸轉運體抑制劑。我們認為這類型可針對多種目標物的藥物分子,對於亨丁頓氏舞蹈症或其他神經退化性疾病的臨床治療,具有一定的潛力。
zh_TW
dc.description.abstractPart 1. A Mechanistic Study of Pyreno[2,1-b]pyrrole and Bis(pyreno[2,1-b]pyrrole) as Selective Chemosensors of Fluoride Ion
Pyreno[2,1-b]pyrrole and its dimeric derivative display excellent selectivity and sensitivity for detection of fluoride ion, in comparison with other anions. The bonding with fluoride ion, both in formation and in subsequent dissociation, provides remarkable colorimetric and fluorescent changes in the visible region that are advantageous for real-time and on-site application.
The mechanisms of detection were also investigated by detailed NMR and dynamic fluorescence spectroscopic analyses. The initial interaction modes of pyreno[2,1-b]pyrrole and its dimeric derivative with F− in MeCN can be understood as hydrogen-bonded complexes. Excess F− ions promotes deprotonation of N-protons and results in the bathochromic changes in both absorption and fluorescence spectra. The observation of [FHF]– by 1H NMR in DMSO-d6 also strongly supported the deprotonation mechanism.
Part 2. Synthesis of Adenosine Analogues for Therapy of Huntington’s Disease
We demonstrated the synthesis and biological function of T1-C and T1-11, which are isolated from a Chinese herb, Gastrodia elata (天麻), These compounds have been characterized to exert neuroprotective effect. Previous works has revealed the potency of T1-11 for the therapy of Huntington’s disease. The neuroprotection was mediated by A2A receptor in the apoptotic model of serum-deprived PC12 cells. Because A2A receptor is a GPCR, pharmacophore modeling was used to provide a putative image of the interactions between the target protein, A2A receptor, and its agonists.
There were two approaches to modify T1-11: the alternation of N6-substituted functional groups and the modification of ribose. A representative library of adenosine analogues was developed on the basis of pharmacophore model and screened for the biological activities assays. We also proposed a dual–function mechanism of T1-11, which acted as both A2A receptor agonist and nucleoside transporter inhibitor. Further development of these compounds may promise a novel therapeutic intervention for HD and other neurodegeneration diseases.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T00:37:41Z (GMT). No. of bitstreams: 1
ntu-96-R94223014-1.pdf: 9023827 bytes, checksum: 6a8b5a7ee0f19131af4733d7f9fd2fb9 (MD5)
Previous issue date: 2007
en
dc.description.tableofcontentsAcknowledgements …..………………..……………………………….... I
Abstract in Chinese ……………………………………………………. III
Abstract in English ……………………………………………………... V
Table of Contents ……………………………………………………. VII
Index of Schemes …………………………………………………….. XI
Index of Figures ………………………………………………………. XII
Index of Tables ……………………………………………………....... XV
Abbreviations ……………………….………..…………………….. XVII
Part 1. A Mechanistic Study of Pyreno[2,1-b]pyrrole and Bis(pyreno[2,1-b]pyrrole) as Selective Chemosensors of Fluoride Ion
Chapter 1. Introduction ……………………………………………………………… 1
1.1 Anion Sensors ……………………………………………………………… 1
1.2 Synthetic Sensors for Fluoride Ion Detection …………………………… 2
1.3 NH-Based Fluoride Sensors ………………………………………………. 5
Chapter 2. Results and Discussions …………………………………………………. 7
2.1 Previous Researches ……………………………………………………… 7
2.2 Interaction Mode of Sensor 4 with Fluoride Ion ………………………… 10
2.3 Interaction Mode of Sensor 5 with Fluoride Ion ……………………….. 18
2.4 Conclusion …………………………………………………………………. 26
Part 2. Synthesis of Adenosine Analogues for Therapy of Huntington’s Disease
Chapter 3. Introduction ……………..……………………………………………… 27
3.1 Hutington’s Disease ……………………………………...……………… 27
3.2 Therapeutic Interventions ……………….......... ……………….......…….. 28
3.3 Adenosine Receptors …………………………………………………….. 30
3.4 Adenosine Transporter ………………………………………………….. 33
Chapter 4. Results and Discussions ……………………….…………. ……………. 39
4.1 Synthesis and Characterization of T1-C and T1-11 …...……………… 39
4.2 Pharmacophore Construction ………….................. …………………….. 44
4.3 Adenosine Analogues: N6-Substituted Derivatives ……………………. 47
4.4 Adenosine Analogues: Modification of Ribose ………………………… 54
4.5 Conclusion …………………………………………………………………. 56
Chapter 5. Experimental Sections Conclusion ……………………………………. 57
5.1 General Part …...………………………………………………………… 57
5.2 General Procedure for Absorption and Fluorescence Titrations
…...………………………………………………...………………………..… 58
5.3 General Procedure for Job’s Plot ………………………………………. 58
5.4 General Procedure for 1H and 19F NMR Titrations …………………….. 59
5.5 Molecular Calculation ……………………………………………………. 59
5.6 Syntheses of Sensors 4 and 5 ……………………………………………… 60
5.7 Synthesis of Sensors 6 …………………....................... ………………….. 61
5.8 Synthesis of T1-C …………………………...................………………….. 64
5.9 Syntheses of T1-11 and Other Adenosine Analogues ……………….…… 66
References ………………………..... ……..... ........... …...................… 87
Appendices ......……………………............ …............ …...................… 97
dc.language.isoen
dc.subject氟離子zh_TW
dc.subject酸類似物zh_TW
dc.subject腺&#33527zh_TW
dc.subject神經退化性疾病zh_TW
dc.subject偵測器zh_TW
dc.subjectfluorideen
dc.subjectsensoren
dc.subjectnerodegenerative diseaseen
dc.subjectadenosine analogueen
dc.title第一部份:芘駢吡咯及雙芘駢吡咯做為氟離子偵測器之機制研究
第二部分:抗神經退化性藥物之研究:腺苷酸類似物之合成
zh_TW
dc.titlePart 1. A Mechanistic Study of Pyreno[2,1-b]pyrrole and Bis(pyreno[2,1-b]pyrrole) as Selective Chemosensors of Fluoride Ion
Part 2. Synthesis of Adenosine Analogues for Therapy of Huntington’s Disease
en
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee郭悅雄,陳儀莊
dc.subject.keyword氟離子,偵測器,神經退化性疾病,腺&#33527,酸類似物,zh_TW
dc.subject.keywordfluoride,sensor,nerodegenerative disease,adenosine analogue,en
dc.relation.page99
dc.rights.note有償授權
dc.date.accepted2007-07-25
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept化學研究所zh_TW
Appears in Collections:化學系

Files in This Item:
File SizeFormat 
ntu-96-1.pdf
  Restricted Access
8.81 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved