請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29050完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 呂勝春(Sheng-Chung Lee) | |
| dc.contributor.author | Wei-Lun Sheng | en |
| dc.contributor.author | 沈暐倫 | zh_TW |
| dc.date.accessioned | 2021-06-13T00:37:03Z | - |
| dc.date.available | 2008-08-08 | |
| dc.date.copyright | 2007-08-08 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-07-25 | |
| dc.identifier.citation | Arad, M., Benson, D. W., Perez-Atayde, A. R., McKenna, W. J., Sparks, E. A., Kanter, R. J., McGarry, K., Seidman, J. G. and Seidman, C. E. (2002). Constitutively active AMP kinase mutations cause glycogen storage disease mimicking hypertrophic cardiomyopathy. J Clin Invest 109, 357-62.
Blair, E., Redwood, C., Ashrafian, H., Oliveira, M., Broxholme, J., Kerr, B., Salmon, A., Ostman-Smith, I. and Watkins, H. (2001). Mutations in the gamma(2) subunit of AMP-activated protein kinase cause familial hypertrophic cardiomyopathy: evidence for the central role of energy compromise in disease pathogenesis. Hum Mol Genet 10, 1215-20. Castagna, M., Takai, Y., Kaibuchi, K., Sano, K., Kikkawa, U. and Nishizuka, Y. (1982). Direct activation of calcium-activated, phospholipid-dependent protein kinase by tumor-promoting phorbol esters. J Biol Chem 257, 7847-51. Cheung, P. C., Salt, I. P., Davies, S. P., Hardie, D. G. and Carling, D. (2000). Characterization of AMP-activated protein kinase gamma-subunit isoforms and their role in AMP binding. Biochem J 346 Pt 3, 659-69. Czifra, G., Toth, I. B., Marincsak, R., Juhasz, I., Kovacs, I., Acs, P., Kovacs, L., Blumberg, P. M. and Biro, T. (2006). Insulin-like growth factor-I-coupled mitogenic signaling in primary cultured human skeletal muscle cells and in C2C12 myoblasts. A central role of protein kinase Cdelta. Cell Signal 18, 1461-72. Day, P., Sharff, A., Parra, L., Cleasby, A., Williams, M., Horer, S., Nar, H., Redemann, N., Tickle, I. and Yon, J. (2007). Structure of a CBS-domain pair from the regulatory gamma1 subunit of human AMPK in complex with AMP and ZMP. Acta Crystallogr D Biol Crystallogr 63, 587-96. Gollob, M. H., Green, M. S., Tang, A. S., Gollob, T., Karibe, A., Ali Hassan, A. S., Ahmad, F., Lozado, R., Shah, G., Fananapazir, L. et al. (2001a). Identification of a gene responsible for familial Wolff-Parkinson-White syndrome. N Engl J Med 344, 1823-31. Gollob, M. H., Seger, J. J., Gollob, T. N., Tapscott, T., Gonzales, O., Bachinski, L. and Roberts, R. (2001b). Novel PRKAG2 mutation responsible for the genetic syndrome of ventricular preexcitation and conduction system disease with childhood onset and absence of cardiac hypertrophy. Circulation 104, 3030-3. Griner, E. M. and Kazanietz, M. G. (2007). Protein kinase C and other diacylglycerol effectors in cancer. Nat Rev Cancer 7, 281-94. Gschwendt, M., Dieterich, S., Rennecke, J., Kittstein, W., Mueller, H. J. and Johannes, F. J. (1996). Inhibition of protein kinase C mu by various inhibitors. Differentiation from protein kinase c isoenzymes. FEBS Lett 392, 77-80. Hahn-Windgassen, A., Nogueira, V., Chen, C. C., Skeen, J. E., Sonenberg, N. and Hay, N. (2005). Akt activates the mammalian target of rapamycin by regulating cellular ATP level and AMPK activity. J Biol Chem 280, 32081-9. Hardie, D. G. (2004). The AMP-activated protein kinase pathway--new players upstream and downstream. J Cell Sci 117, 5479-87. Hardie, D. G., Carling, D. and Carlson, M. (1998). The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell? Annu Rev Biochem 67, 821-55. Hardie, D. G. and Hawley, S. A. (2001). AMP-activated protein kinase: the energy charge hypothesis revisited. Bioessays 23, 1112-9. Hardie, D. G. and Sakamoto, K. (2006). AMPK: a key sensor of fuel and energy status in skeletal muscle. Physiology (Bethesda) 21, 48-60. Hawley, S. A., Pan, D. A., Mustard, K. J., Ross, L., Bain, J., Edelman, A. M., Frenguelli, B. G. and Hardie, D. G. (2005). Calmodulin-dependent protein kinase kinase-beta is an alternative upstream kinase for AMP-activated protein kinase. Cell Metab 2, 9-19. Horman, S., Vertommen, D., Heath, R., Neumann, D., Mouton, V., Woods, A., Schlattner, U., Wallimann, T., Carling, D., Hue, L. et al. (2006). Insulin antagonizes ischemia-induced Thr172 phosphorylation of AMP-activated protein kinase alpha-subunits in heart via hierarchical phosphorylation of Ser485/491. J Biol Chem 281, 5335-40. Lizcano, J. M., Goransson, O., Toth, R., Deak, M., Morrice, N. A., Boudeau, J., Hawley, S. A., Udd, L., Makela, T. P., Hardie, D. G. et al. (2004). LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1. Embo J 23, 833-43. Pang, T., Xiong, B., Li, J. Y., Qiu, B. Y., Jin, G. Z., Shen, J. K. and Li, J. (2007). Conserved alpha-helix acts as autoinhibitory sequence in AMP-activated protein kinase alpha subunits. J Biol Chem 282, 495-506. Parker, P. J. and Parkinson, S. J. (2001). AGC protein kinase phosphorylation and protein kinase C. Biochem Soc Trans 29, 860-3. Peterson, R. T. and Schreiber, S. L. (1999). Kinase phosphorylation: Keeping it all in the family. Curr Biol 9, R521-4. Scott, J. W., Hawley, S. A., Green, K. A., Anis, M., Stewart, G., Scullion, G. A., Norman, D. G. and Hardie, D. G. (2004). CBS domains form energy-sensing modules whose binding of adenosine ligands is disrupted by disease mutations. J Clin Invest 113, 274-84. Scott, J. W., Ross, F. A., Liu, J. K. and Hardie, D. G. (2007). Regulation of AMP-activated protein kinase by a pseudosubstrate sequence on the gamma subunit. Embo J 26, 806-15. Tsay, Y. G., Wang, Y. H., Chiu, C. M., Shen, B. J. and Lee, S. C. (2000). A strategy for identification and quantitation of phosphopeptides by liquid chromatography/tandem mass spectrometry. Anal Biochem 287, 55-64. Walker, J. L., Castagnino, P., Chung, B. M., Kazanietz, M. G. and Assoian, R. K. (2006). Post-transcriptional destabilization of p21cip1 by protein kinase C in fibroblasts. J Biol Chem 281, 38127-32. Warden, S. M., Richardson, C., O'Donnell, J., Jr., Stapleton, D., Kemp, B. E. and Witters, L. A. (2001). Post-translational modifications of the beta-1 subunit of AMP-activated protein kinase affect enzyme activity and cellular localization. Biochem J 354, 275-83. Wellner, M., Maasch, C., Kupprion, C., Lindschau, C., Luft, F. C. and Haller, H. (1999). The proliferative effect of vascular endothelial growth factor requires protein kinase C-alpha and protein kinase C-zeta. Arterioscler Thromb Vasc Biol 19, 178-85. Williamson, D. L., Bolster, D. R., Kimball, S. R. and Jefferson, L. S. (2006). Time course changes in signaling pathways and protein synthesis in C2C12 myotubes following AMPK activation by AICAR. Am J Physiol Endocrinol Metab 291, E80-9. Woods, A., Dickerson, K., Heath, R., Hong, S. P., Momcilovic, M., Johnstone, S. R., Carlson, M. and Carling, D. (2005). Ca2+/calmodulin-dependent protein kinase kinase-beta acts upstream of AMP-activated protein kinase in mammalian cells. Cell Metab 2, 21-33. Woods, A., Vertommen, D., Neumann, D., Turk, R., Bayliss, J., Schlattner, U., Wallimann, T., Carling, D. and Rider, M. H. (2003). Identification of phosphorylation sites in AMP-activated protein kinase (AMPK) for upstream AMPK kinases and study of their roles by site-directed mutagenesis. J Biol Chem 278, 28434-42. Xia, P., Aiello, L. P., Ishii, H., Jiang, Z. Y., Park, D. J., Robinson, G. S., Takagi, H., Newsome, W. P., Jirousek, M. R. and King, G. L. (1996). Characterization of vascular endothelial growth factor's effect on the activation of protein kinase C, its isoforms, and endothelial cell growth. J Clin Invest 98, 2018-26. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29050 | - |
| dc.description.abstract | 腺苷單磷酸活化蛋白質激酶(AMPK)為一由三個次體組成的蛋白質激酶,可藉由細胞中腺苷單磷酸(AMP)的量來感知細胞的能量狀態。AMPK可因AMP與ATP比例的上升而活化,進而抑制細胞中的耗能反應並促進能量分子ATP的產生。AMP可與AMPK之 gamma 調節次體結合並活化 alpha 催化次體的酵素活性。在 gamma 2 調節次體上我們觀察到一157位之絲胺酸(Ser157)坐落於一段符合AGC家族激酶所能辨認之一致性序列(consensus sequence)的胺基酸序列中,利用質譜儀分析配合西方墨點法我們確認在細胞內Ser157確實可被磷酸化。我們將此絲胺酸突變成為殘基無法被磷酸化之丙胺酸(alanine)後,發現此 gamma 2 突變體可使與其結合的 alpha 催化次體保持在活化的狀態,而這可解釋成是因為此突變體在與AMP結合後無法促使Ser157被磷酸化,進而不能對 alpha 催化次體產生抑制的作用,因為和Ser157被磷酸化之 gamma 2 調節次體結合的 alpha 催化次體並不因AMPK活化物AICAR的處理而上升。Ser157的磷酸化是受到來自生長激素的訊號所調控,而一些與生長有關之AGC激酶的家族成員似乎參與了Ser157的磷酸化。因此,我們提出了一個 gamma 2 調節次體抑制 alpha 催化次體的機制,為經由 gamma 2 調節次體上157位絲胺酸的磷酸化所達成。 | zh_TW |
| dc.description.abstract | AMP-activated protein kinase (AMPK) is a heterotrimeric serine/threonine kinase which senses the cellular energy state by monitoring the AMP level. It is activated when the [AMP]/[ATP] ratio is elevated, and then the ATP consumption pathways are decreased together with the acceleration of ATP production. AMP can bind to the γ regulatory subunits of AMPK complex and allosterically activate the catalytic activity of α subunits. On the γ2 subunit we have observed a potential phosphorylation site, Ser157, which lies in a consensus sequence recognized by AGC family kinase. We confirmed its phosphorylation in vivo by mass spectrometry along with Western blot using phospho-specific antibody. α subunits that associated with S157A mutant are constitutively activated, and this can be explained by the lack of negative regulation induced by AMP binding and the subsequent Ser157 phosphorylation on γ2 subunits, since the α subunits associated with Ser157-phosphorylated γ2 are not activated by AICAR, a drug that is metabolized into AMP analog in vivo. Ser157 phosphorylation is mediated by growth signals, and multiple AGC family kinases relating to cell growth are involved. Therefore, we provide here a negative regulation mechanism of AMPK by the regulatory γ2 subunit when its Ser157 is phosphorylated. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T00:37:03Z (GMT). No. of bitstreams: 1 ntu-96-R94448001-1.pdf: 987380 bytes, checksum: b4c198df99316a33e2d46143e9d8a160 (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | Master Thesis i
致謝 ii 中文摘要 iii ABSTRACT iv CONTENTS v INTRODUCTION 1 MATERIALS AND METHODS 7 DNA constructs and site-directed mutagenesis 7 Drugs and antibodies 9 Cell culture and transfection 10 Immunoprecipitation 11 Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) 11 Western blot 12 Bacterial expression of His-tagged recombinant AMPK γ2 N terminal region 13 In vitro kinase assay 14 In-gel digestion 14 RESULTS 16 AMPK γ2 Ser157 is a phosphorylation site in vivo 16 Phosphorylation of Ser157 negatively regulates AMPK activity 17 AICAR induces Ser157 phosphorylation. 18 Phosphorylation of Ser157 is triggered by AMP binding and requires growth signals. 20 Activities of multiple AGC family kinases are correlated with Ser157 phosphorylation. 21 Inhibition of Akt and PKC caused direct activation of AMPK activity. 22 DISCUSSION 23 REFERENCES 30 FIGURES AND TABLES 35 Fig. 1. Amino acid sequence surrounding Ser157 on the AMPK γ2 subunit. 35 Fig. 2. Mass spectrometry analysis of AMPK γ2 phosphorylation on Ser157. 36 Fig. 3. Western blot analysis of AMPK γ2 phosphorylation on Ser157. 37 Fig. 4. S157A mutant γ2 elevated catalytic activity of α subunits. 38 Fig. 5. AICAR induced Ser157 phosphorylation on γ2 subunits but not Thr172 phosphorylation on the α subunits associated with Ser157-phosphorylated γ2. 39 Fig. 6. Thr172 and Ser157 phosphorylation status of endogenous α and overexpressed γ2 subunits during the time course of AICAR treatment. 40 Fig. 7. Ser157 phosphorylation is triggered by AMP binding and requires growth signals. 41 Fig. 8. Multiple AGC family kinases are involved in Ser157 phosphorylation. 42 Fig. 9. PKCs play an essential role in AICAR-induced Ser157 phosphorylation. 43 Fig. 10. Inhibition of Akt and PKC activity resulted in AMPK activation. 44 Fig. 11. Purification of recombinant proteins of AMPK γ2 N terminal region as the substrate for in vitro kinase assay 45 Fig. 12. Akt phosphorylated AMPK γ2 N terminal region at multiple sites in vitro. 46 Fig. 13. Schematic representation of AMPK γ2 Ser157 phosphorylation during AMPK activation. 47 Table 1. Recipe to make different percentage of polyacrylamide gel for SDS-PAGE 48 | |
| dc.language.iso | en | |
| dc.subject | AGC家族 | zh_TW |
| dc.subject | 腺苷 | zh_TW |
| dc.subject | 單磷酸活化蛋白質激酶 | zh_TW |
| dc.subject | AICAR藥物 | zh_TW |
| dc.subject | 磷酸化 | zh_TW |
| dc.subject | 調節次體 | zh_TW |
| dc.subject | phosphorylation | en |
| dc.subject | AMPK | en |
| dc.subject | AGC family | en |
| dc.subject | regulatory subunit | en |
| dc.subject | AICAR | en |
| dc.title | 腺苷單磷酸活化蛋白質激酶調節次體之157位絲胺酸殘基磷酸化對其活性之調控 | zh_TW |
| dc.title | Regulation of AMPK activity by phosphorylation of Ser157 on its regulatory gamma 2 subunit | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳瑞華(Ruey-Hwa Chen),施修明(Hsiu-Ming Shih) | |
| dc.subject.keyword | 腺苷,單磷酸活化蛋白質激酶,AICAR藥物,磷酸化,調節次體,AGC家族, | zh_TW |
| dc.subject.keyword | AMPK,AICAR,phosphorylation,regulatory subunit,AGC family, | en |
| dc.relation.page | 48 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-07-26 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 分子醫學研究所 | zh_TW |
| 顯示於系所單位: | 分子醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 964.24 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
