請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29028
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 汪重光(Chorng-Kuang Wang) | |
dc.contributor.author | You-Kuang Chang | en |
dc.contributor.author | 張祐匡 | zh_TW |
dc.date.accessioned | 2021-06-13T00:35:42Z | - |
dc.date.available | 2010-07-30 | |
dc.date.copyright | 2007-07-30 | |
dc.date.issued | 2007 | |
dc.date.submitted | 2007-07-24 | |
dc.identifier.citation | [1.1] C.–H. Chen, et al., “AWireless Bio-MEMS for C-Reactive Protein Detection Based on Nanomechanics ,” ISSCC Dig. Tech. Papers, pp. 376-377, Feb. 2006.
[2.1] S. Mortezapour and E. Lee, “A 1-V 8-bit successive approximation ADC in standard CMOS process,” IEEE J. Solid-State Circuits, vol. 35, no. 4, pp. 642-646, Apr. 2000. [2.2] J. Sauerbrey, D. Schmitt-Landsiedel, and R. Thewes, “A 0.5-V 1-μW Successive Approximation ADC,” IEEE J. Solid-State Circuits, vol. 38, no. 7, pp. 1261-1265, July 2003. [2.3] M. Scott, B. Boser, and K. Pister, “An Ultra Low-Energy ADC for Smart Dust,” IEEE J. Solid-State Circuits, vol. 38, no. 7, pp. 1123-1129, July 2003. [2.4] N. Verma and A. Chandrakasan, “A 25μW 100kS/s 12b ADC for Wireless Micro-Sensor Applications,” ISSCC Dig. Tech. Papers, pp. 222-223, Feb. 2006. [2.5] J. Craninckx and G. Plas, “A 65fJ/Conversion-Step 0-to-50MS/s 0-to-0.7mW 9b Charge-Sharing SAR ADC in 90nm Digital CMOS,” ISSCC Dig. Tech. Papers, pp. 246-247, Feb. 2007. [2.6] B. P. Ginsburg and A. P. Chandrakasan, “An energy-efficient charge recycling approach for a SAR converter with capacitive DAC,” in Proc. IEEE Int. Symp. Circuits and Systems,2005, vol. 1, pp. 184-187. [2.7] D. A. Johns and K. Martin, Analog Integrated Circuit Design. New York: Wiley, 1997. [2.8] L. Sumanen, M. Waltari, V. Hakkarainen, and K. Halonen, “CMOS dynamic comparators for pipeline A/D converters,” in Proc. IEEE Int. Symp. Circuits and Systems,2002, vol. 5, pp. 157-160. [2.9] J. Craninckx and Geert Van der Plas, “A 65fJ/Conversion-Step 0-to-50MS/s 0-to-0.7mW 9b Chare-Sharing SAR ADC in 90nm Digital CMOS,” ISSCC Dig. Tech. Papers, pp. 246-247, Feb. 2007. [3.1] E. Armstrong, “Some recent developments of regenerative circuits, ” Proc. IRE, vol. 10, pp. 244-260, Aug. 1922. [3.2] B. Otis, Y.H. Chee, J. Rabaey, “A 400μW-RX, 1.6mW-TX Super-Regenerative Transceiver for Wireless Sensor Networks,” ISSCC Dig. Tech. Papers, pp. 396-397, Feb. 2005. [3.3] Jia-Yi Chen, Michael P. Flynn, and John P. Hayes, “A Fully Integrated Auto-Calibrated Super-Regenerative Receiver,” ISSCC Dig. Tech. Papers, pp. 376-377, Feb. 2006. [3.4] A. Vouilloz, M. Declercq, and C. Dehollain, “A Low-Power CMOS Super-Regenerative Receiver at 1GHz,” IEEE J. Solid-State Circuits, vol. 36, no. 3, pp. 440-451, Mar. 2001. [3.5] Dennis G. Zill and Michael R. Cullen, Differential Equations with Boundary-Value Problems, 5th edition, Brooks/Cole, 2001. [3.6] J. R. Whitehead, Super-Regenerative Receivers. Cambridge, U.K.: Cambridge Univ. Press, 1950. [3.7] E. Vittoz and J. Felrath, “CMOS Analog Integrated Circuits Based on Weak Inversion Operation,” IEEE J. Solid-State Circuits, vol. SC-12, no. 3, pp. 224-231, June 1977. [3.8] P. Favre, N. Joehl, A. Vouilloz, P. Deval , C. Dehollain, and M. Declercq, “A 2-V 600μ-A 1-GHz BiCMOS Super-Regenerative Receiver for ISM Applications,” IEEE J. Solid-State Circuits, vol. 33, no. 12, pp. 2186-2196, June 1998. [3.9] F. Moncunill-Geniz, P. Pala-Schonwalder and , O. Mas-Casals, “A Generic Approach to the Theory of Superregenerative Reception,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 52, no. 1, pp. 54-70, Jan. 2005. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29028 | - |
dc.description.abstract | 隨著生物醫學微機電系統(Bio-MEMS)與無線網路技術的興起,可植入性生物醫學系統變成非常熱門的一項新興研究領域。在此研究中,如何降低整個系統的功率消耗儼然成為首要的挑戰。電路所消耗的能量是以熱的形式散逸在空氣中並且會提高晶片周遭環境的溫度,所以將系統置入人體內,萬一晶片的功率消耗太大,將會提高體內局部的溫度進而對神經或器官造成嚴重的損傷。在本論文中,將提出應用在此領域的低功率逐步逼近式類比數位轉換器(SAR ADC)與超級再生式接收機(Super-Regenerative Receiver)。
在八位元類比數位轉換器方面,提出一個省電電容切換次序來降低消耗在電容陣列之能量來達到低功率操作的目的。比起傳統的電容切換次序,新提出的方法可以有效降低56%的能量消耗。此類比數位轉換器採用0.18-μm CMOS的製程,操作電壓為1伏特,在500KS/s的取樣頻率下所量測到的訊息噪音和失真比(SNDR)為46.92 dB,而功率消耗僅為7.75-μW。 在本論文後半部分也提出一個操作在915MHz ISM頻帶的超級再生式接收機。超級再生式震盪器,同時也是接收機的核心,被一個五位元的數位類比轉換器所控制,因此可以很準確地定義接收機的選擇率(selectivity)。此外,將電晶體操作在次臨界區可以降低接收機所需要的功率消耗。模擬結果顯示出此接收機在0.18-μm CMOS的製程和1伏特的電壓下,可以達到-90dBm的靈敏度(sensitivity)及1Mbps的位元傳輸率,功率消耗為0.8mW。 | zh_TW |
dc.description.abstract | As the emerging of the bio-MEMS and wireless technology, the implantable bio-medical system becomes a popular research topic. The primary challenge is how to reduce power consumption of the system. Low power operation is essential for any implanted bio-medical system as the heat spread by the circuits will increase local temperature which may damage our organs and neurons. This thesis presents a low power successive-approximation-register analog-to-digital converter (SAR ADC) and a low power super-regenerative receiver for bio-medical applications.
In this 8-bit SAR ADC, an energy-saving switching sequence technique is proposed to achieve low power consumption. The average switching energy of the capacitor array can be reduced by 56% compared to a conventional switching sequence. The measured signal-to-noise-and-distortion ratios of the ADC is 46.92 dB at 500KS/s sampling rate with an ultra-low power consumption of only 7.75-μW from a 1-V supply voltage. The ADC is fabricated in a 0.18-μm CMOS technology. A low-power super-regenerative receiver for 915MHz ISM band is also presented. The super-regenerative oscillator which is the core of the receiver is quenched by a 5-bit DAC and therefore the selectivity of the receiver can be controlled precisely. Furthermore, operating the MOS in sub-threshold region lowers the power consumption of the receiver. The simulation results show that the receiver consumes 0.8mW for a sensitivity of -90dBm and data rate of 1Mbps at 1-V supply voltage in a 0.18-μm CMOS technology. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T00:35:42Z (GMT). No. of bitstreams: 1 ntu-96-R94943098-1.pdf: 2311708 bytes, checksum: a803148702254da812ac3f9b2532b0d7 (MD5) Previous issue date: 2007 | en |
dc.description.tableofcontents | 1. Introduction
1.1 Motivation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Personal Pathology Remote Sensing System . . . . . . . . . . . . . . . . . . . . . 2 1.3 Overview of Thesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.4 Reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2. Design and Implementation of Low-Power SAR ADC 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 An Energy-Saving Switching Sequence for Capacitor Array. . . . . . . . . . . . 9 2.3 SAR ADC Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.4 Circuit Design and Design Considerations. . . . . . . . . . . . . . . . . . . . . . . 25 2.4.1 Capacitor Array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.4.2 Sampling Switches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.4.3 Comparator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.4.4 Successive Approximation Register . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.5 Simulation Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.6 Measurement Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2.7 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3. Design and Implementation of Low-Power Super-Regenerative Receiver 3.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.2 Super-Regenerative Reception Theory . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.3 Super-Regenerative Receiver Architecture. . . . . . . . . . . . . . . . . . . . . . . 60 3.4 Circuit Design and Design Considerations. . . . . . . . . . . . . . . . . . . . . . . 62 3.4.1 Isolation Amplifier/Super-Regenerative Oscillator . . . . . . . . . . . . . . . . 63 3.4.2 DAC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3.4.3 Envelope Detector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3.4.4 Offset Cancellation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.4.5 Comparator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.4.6 Digital Processor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.4.7 Interference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.5 Simulation Results. . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 3.6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75 | |
dc.language.iso | en | |
dc.title | 應用於生醫系統之低功率類比數位轉換器與超級再生式接收機 | zh_TW |
dc.title | Low Power Analog-to-Digital Converter and Super-Regenerative Receiver for Bio-Medical Applications | en |
dc.type | Thesis | |
dc.date.schoolyear | 95-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 吳介琮(Jieh-Tsorng Wu),李泰成(Tai-Cheng Lee),林宗賢(Tsung-Hsien Lin),黃柏鈞(Po-Chiun Huang) | |
dc.subject.keyword | 類比數位轉換器,超級再生式接收機, | zh_TW |
dc.subject.keyword | SAR ADC,Super-Regenerative Receiver, | en |
dc.relation.page | 76 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2007-07-26 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
顯示於系所單位: | 電子工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-96-1.pdf 目前未授權公開取用 | 2.26 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。