Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 資訊管理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29019
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李瑞庭
dc.contributor.authorMing-Chih Linen
dc.contributor.author林明志zh_TW
dc.date.accessioned2021-06-13T00:35:11Z-
dc.date.available2008-07-27
dc.date.copyright2007-07-27
dc.date.issued2007
dc.date.submitted2007-07-24
dc.identifier.citation[1] Fátima Al-Shahrour, Ramón Díaz-Uriarte and Joaquín Dopazo, FatiGO: a web tool for finding significant associations of Gene Ontology terms with groups of genes, Bioinformatics, vol. 20, 2004, pp.578-580.
[2] Orly Alter, Patrick O. Brown and David Botstein, Singular value decomposition for genome-wide expression data processing and modeling, In Proceedings of the National Academy of Sciences, vol. 97, 2000, pp. 10101-10106.
[3] Dhammika Amaratunga and Javier Cabrera, Exploration and analysis of DNA microarray and protein array data, Wiley series in probability and statistics, New Jersey, USA, 2004.
[4] Michael Ashburner, Catherine A. Ball, Judith A. Blake, David Botstein, Heather Butler, J. Michael Cherry, Allan P. Davis, Kara Dolinski, Selina S. Dwight, Janan T. Eppig, Midori A. Harris, David P. Hill, Laurie Issel-Tarver, Andrew Kasarskis, Suzanna Lewis, John C. Matese, Joel E. Richardson, Martin Ringwald, Gerald M. Rubin and Gavin Sherlock, Gene Ontology: tool for the unification of biology, Nature Genetics, vol. 25, 2000, pp. 25-29.
[5] Chieh-Chun Chen, Mining regulation relationships between gene clusters by using time-series gene expression data, Master Thesis, National Taiwan University, 2006.
[6] J.M. Cherry, C. Adler, C. Ball, S.A. Chervitz, S.S. Dwight, E.T. Hester, Y. Jia, G. Juvik, T. Roe, M. Schroeder, S. Weng and D. Botstein, SGD: Saccharomyces genome database, Nucleic Acids Research, vol. 26, 1998, pp. 73-79.
[7] Bradley Efron, Robert Tibshirani, John D. Storey and Virginia Tusher, Empirical Bayes analysis of a microarray experiment, Journal of the American Statistical Association, vol. 96, 2001, pp. 1151-1160.
[8] Mika Gustafsson, Michael Hörnquist and Anna Lombardi, Constructing and Analyzing a Large-Scale Gene-to-Gene Regulatory Network-Lasso-Constrained Inference and Biological Validation, IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 2, 2005, pp. 254-261.
[9] Liping Ji and Kian-Lee Tan, Identifying time-lagged gene clusters using gene expression data, Bioinformatics, vol. 21, 2005, pp. 509-516.
[10] Andrew T. Kwon, Holger H. Hoos and Raymond Ng, Inference of transcriptional regulation relationships from gene expression data, Bioinformatics, vol. 19, 2003, pp. 905-912.
[11] Phil Huoun Lee and Doheon Lee, Modularized learning of genetic interaction networks from biological annotations and mRNA expression data, Bioinformatics, vol. 21, 2005, pp. 2739-2747.
[12] Simen Myhre, Henrik Tveit, Torulf Mollestad and Astrid Lægreid, Additional Gene Ontology structure for improved biological reasoning, Bioinformatics, vol. 22, 2006, pp. 2020-2027.
[13] Dougu Nam, Sang-Bae Kim, Seon-Kyu Kim, Sungjin Yang, Seon-Young Kim and In-Sun Chu, ADGO: analysis of differentially expressed gene sets using composite GO annotation, Bioinformatics, vol. 22, 2006, pp. 2249-2253.
[14] Graham Ramsay, DNA chips: state-of-the art, Nature Biotechnology, vol. 16, 1998, pp. 40-44.
[15] Mark Schena, Dari Shalon, Ronald W. Davis and Patrick O. Brown, Quantitative monitoring of gene expression patterns with a complementary DNA microarray, Science, vol. 270, 1995, pp. 467-470.
[16] Alexander Schliep, Alexander Schonhuth and Christine Steinhoff, Using hidden Markov models to analyze gene expression time course data, Bioinformatics, vol. 19, 2003, pp. 264-272.
[17] Paul T. Spellman, Gavin Sherlock, Michael Q. Zhang, Vishwanath R. Iyer, Kirk Anders, Michael B. Eisen, Patrick O. Brown, David Botstein and Bruce Futcher, Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization, Molecular Biology of the Cell, vol. 9, 1998, pp. 3273-3297.
[18] Aravind Subramanian, Pablo Tamayo, Vamsi K. Mootha, Sayan Mukherjee, Benjamin L. Ebert, Michael A. Gillette, Amanda Paulovich, Scott L. Pomeroy, Todd R. Golub, Eric S. Lander and Jill P. Mesirov, Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles, In Proceedings of the National Academy of Sciences, vol. 102, 2005, pp. 15545-15550.
[19] Pablo Tamayo, Donna Slonim, Jill Mesirov, Qing Zhu, Sutisak Kitareewan, Ethan Dmitrovsky, Eric S. Lander and Todd R. Golub, Interpreting patterns of gene expression with self organizing maps: methods and applications to hematopoietic differentiation, In Proceedings of the National Academy of Sciences, vol. 96, 1999, pp. 2907-2912.
[20] Jeffrey G. Thomas, James M. Olson, Stephen J. Tapscott and Lue Ping Zhao, An efficient and robust statistical modeling approach to discover differentially expressed genes using genomic expression profiles, Genome Research, vol. 11, 2001, pp. 1227-1236.
[21] Hannu Toivonen, Sampling large databases for association rules, In Proceedings of 22th International Conference on Very Large Data Bases, 1996, pp. 134-145.
[22] Kang Tu, Hui Yu and MingzhuZhu, MEGO: gene function module expression based on gene ontology, BioTechniques, vol. 38, 2005, pp. 277-283.
[23] Virginia Goss Tusher, Robert Tibshirani, and Gilbert Chu, Significance analysis of microarrays applied to the ionizing radiation response, In Proceedings of the National Academy of Sciences, vol. 98, 2001, pp. 5116-5121.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29019-
dc.description.abstract基因調節網路可以幫助生物學家了解更多系統性的生物現象。在本論文中,我們整合時間序列生物晶片的資訊和基因本體論,並提出了一個資料探勘的方法以尋找基因群之間的調節網路。
首先,我們將時間序列生物晶片的資料轉換成基因改變傾向的資料,並利用基因本體論對基因的註解,將基因分成數個基因群。對於每個基因群,我們尋找基因群內的調節樣式。然後由這些調節樣式,我們尋找基因群和基因群之間包含與相反的調節樣式,以推論基因群之間的調節關係,並建立基因群之間的調節網路。
實驗結果顯示我們所提出的方法具有效率性與擴充性,可以讓我們從一個全觀的角度去了解基因調節網路。我們提出的方法不只可以找到一些被生物學家驗證過的調節關係,同時也可以找到一些新的調節關係須要由生物學家進行進一步的確認。
zh_TW
dc.description.abstractThe gene regulation networks can help biologists know more about the systematical biological phenomena. In this thesis, we integrate time-series microarray and the Gene Ontology, and propose a data mining approach to find gene regulation networks between gene categories.
We first transform the time-series microarray dataset into gene tendency profiles and use the Gene Ontology annotations to classify genes into gene categories. For each gene category, we find its regulation patterns. By using the regulation patterns found for each gene category, we can infer the gene regulation relationships by finding the inclusive and opposite patterns between gene categories. Base on the regulation relationships inferred, we can construct gene regulation networks.
The experiment results show that our proposed method is efficient and scalable. Our method can provide a global view of gene regulation networks, which include not only some meaningful regulation relationships verified by biologists, but also some regulation relationships share regulation patterns, which need to be further verified by biologists.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T00:35:11Z (GMT). No. of bitstreams: 1
ntu-96-R94725053-1.pdf: 395959 bytes, checksum: 0f1b2a90500e1a72b51a764a8fb57d3b (MD5)
Previous issue date: 2007
en
dc.description.tableofcontentsTABLE OF CONTENTS i
LIST OF FIGURES ii
LIST OF TABLES iii
CHAPTER 1 INTRODUCTION 1
CHAPTER 2 PROBLEM DEFINITION 4
2.1 Microarray 4
2.2 Gene Ontology 4
2.3 Gene Regulation Relationships 4
2.4 Problem Definition 5
CHAPTER 3 OUR PROPOSED APPROACH 9
3.1 Data Transformation 10
3.2 Mining Frequent Patterns 12
3.2.1 Seed-pattern Table Generation 12
3.2.2 Frequent Pattern Combination and Extension 14
3.3 Finding the Regulation Relationships 16
CHAPTER 4 PERFORMANCE ANALYSIS 18
4.1 Datasets 18
4.2 Performance Evaluation 19
4.3 Regulation Relationships 22
CHAPTER 5 CONCLUDING REMARKS 28
REFERENCES 29
dc.language.isoen
dc.subject基因本體論zh_TW
dc.subject時間序列生物晶片zh_TW
dc.subject資料探勘zh_TW
dc.subject基因群zh_TW
dc.subject基因調節網路zh_TW
dc.subjecttime-series microarrayen
dc.subjectgene regulation networken
dc.subjectgene categoryen
dc.subjectdata miningen
dc.subjectGene Ontologyen
dc.title由基因本體論分群探勘基因調節網路zh_TW
dc.titleMining Gene Regulation Networks Based on the Categories Divided by Gene Ontology Annotationsen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee苑守慈,呂永和
dc.subject.keyword時間序列生物晶片,基因本體論,資料探勘,基因群,基因調節網路,zh_TW
dc.subject.keywordtime-series microarray,Gene Ontology,data mining,gene category,gene regulation network,en
dc.relation.page31
dc.rights.note有償授權
dc.date.accepted2007-07-26
dc.contributor.author-college管理學院zh_TW
dc.contributor.author-dept資訊管理學研究所zh_TW
顯示於系所單位:資訊管理學系

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
386.68 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved