Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 分子與細胞生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29002
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor董桂書(Kuei-Shu Tung)
dc.contributor.authorChen-Yun Chenen
dc.contributor.author陳貞云zh_TW
dc.date.accessioned2021-06-13T00:34:15Z-
dc.date.available2012-07-27
dc.date.copyright2007-07-27
dc.date.issued2007
dc.date.submitted2007-07-24
dc.identifier.citationAsakawa, K., S. Yoshida, et al. (2001). 'A novel functional domain of Cdc15 kinase is required for its interaction with Tem1 GTPase in Saccharomyces cerevisiae.' Genetics 157(4): 1437-50.

Bardin, A. J., R. Visintin, et al. (2000). 'A mechanism for coupling exit from mitosis to partitioning of the nucleus.' Cell 102(1): 21-31.

Benjamin, K. R., C. Zhang, et al. (2003). 'Control of landmark events in meiosis by the CDK Cdc28 and the meiosis-specific kinase Ime2.' Genes Dev 17(12): 1524-39.

Blom, N., S. Gammeltoft, et al. (1999). 'Sequence and structure-based prediction of eukaryotic protein phosphorylation sites.' J Mol Biol 294(5): 1351-62.

Boeke, J. D., J. Trueheart, et al. (1987). '5-Fluoroorotic acid as a selective agent in yeast molecular genetics.' Methods Enzymol 154: 164-75.

Bolte, M., P. Steigemann, et al. (2002). 'Inhibition of APC-mediated proteolysis by the meiosis-specific protein kinase Ime2.' Proc Natl Acad Sci U S A 99(7): 4385-90.

Bosl, W. J. and R. Li (2005). 'Mitotic-exit control as an evolved complex system.' Cell 121(3): 325-33.

Cashikar, A. G., M. Duennwald, et al. (2005). 'A chaperone pathway in protein disaggregation. Hsp26 alters the nature of protein aggregates to facilitate reactivation by Hsp104.' J Biol Chem 280(25): 23869-75.

Cha, R. S., B. M. Weiner, et al. (2000). 'Progression of meiotic DNA replication is modulated by interchromosomal interaction proteins, negatively by Spo11p and positively by Rec8p.' Genes Dev 14(4): 493-503.

Chen, Q., J. Thorpe, et al. (2006). 'Ump1 extends yeast lifespan and enhances viability during oxidative stress: central role for the proteasome?' Free Radic Biol Med 40(1): 120-6.

Chu, S., J. DeRisi, et al. (1998). 'The transcriptional program of sporulation in budding yeast.' Science 282(5389): 699-705.

Dahmann, C. and B. Futcher (1995). 'Specialization of B-type cyclins for mitosis or meiosis in S. cerevisiae.' Genetics 140(3): 957-63.

Fares, H., L. Goetsch, et al. (1996). 'Identification of a developmentally regulated septin and involvement of the septins in spore formation in Saccharomyces cerevisiae.' J Cell Biol 132(3): 399-411.

Gladfelter, A. S., J. R. Pringle, et al. (2001). 'The septin cortex at the yeast mother-bud neck.' Curr Opin Microbiol 4(6): 681-9.

Gomez-Esquer, F., J. M. Rodriguez-Pena, et al. (2004). 'CRR1, a gene encoding a putative transglycosidase, is required for proper spore wall assembly in Saccharomyces cerevisiae.' Microbiology 150(Pt 10): 3269-80.

Gray, J. V., G. A. Petsko, et al. (2004). ''Sleeping beauty': quiescence in Saccharomyces cerevisiae.' Microbiol Mol Biol Rev 68(2): 187-206.

Haslbeck, M., A. Miess, et al. (2005). 'Disassembling protein aggregates in the yeast cytosol. The cooperation of Hsp26 with Ssa1 and Hsp104.' J Biol Chem 280(25): 23861-8.

Henderson, K. A., K. Kee, et al. (2006). 'Cyclin-dependent kinase directly regulates initiation of meiotic recombination.' Cell 125(7): 1321-32.

Herman, P. K. (2002). 'Stationary phase in yeast.' Curr Opin Microbiol 5(6): 602-7.

Ho, T.-M. (2005). The role of yeast Hsp26 in sporulation. Institute of Molecular and Cellular Biology. Taipei, Taiwen, Nationsl Taiwam University.

Hoffman, C. S. and F. Winston (1987). 'A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli.' Gene 27: 6.

Honigberg, S. M. and K. Purnapatre (2003). 'Signal pathway integration in the switch from the mitotic cell cycle to meiosis in yeast.' J Cell Sci 116(Pt 11): 2137-47.

Hoyt, M. A. (2000). 'Exit from mitosis: spindle pole power.' Cell 102(3): 267-70.

Ito, H., Y. Fukuda, et al. (1983). 'Transformation of intact yeast cells treated with alkali cations.' J Bacteriol 153(1): 163-8.

Ito, T., T. Chiba, et al. (2001). 'A comprehensive two-hybrid analysis to explore the yeast protein interactome.' Proc Natl Acad Sci U S A 98(8): 4569-74.

Jaspersen, S. L. and M. Winey (2004). 'The budding yeast spindle pole body: structure, duplication, and function.' Annu Rev Cell Dev Biol 20: 1-28.

Kamieniecki, R. J., L. Liu, et al. (2005). 'FEAR but not MEN genes are required for exit from meiosis I.' Cell Cycle 4(8): 1093-8.

Kecman, V. (2001). Learning and Soft Computing. Cambridge, The MIT press.

Kim, J., J. Lee, et al. (2004). 'Prediction of phosphorylation sites using SVMs.' Bioinformatics 20(17): 6.

Knop, M. and K. Strasser (2000). 'Role of the spindle pole body of yeast in mediating assembly of the prospore membrane during meiosis.' Embo J 19(14): 3657-67.

Kupiec, M., B. Byers, et al. (1997). Meiosis and sporulation in Saccharomyces cerevisiae. Cold Spring Harbor, N.Y., Cole Spring Harbor Laboratory Press.

Kurtz, S., J. Rossi, et al. (1986). 'An ancient developmental induction: heat-shock proteins induced in sporulation and oogenesis.' Science 231(4742): 1154-7.

Lew, D. J. and D. J. Burke (2003). 'The spindle assembly and spindle position checkpoints.' Annu Rev Genet 37: 251-82.

Lewis, D. L. and D. K. Gattie (1991). The ecology of quiescent microbes. ASM News. 57: 27-32

Li, R. (2000). 'Mitosis: shutting the door behind when you leave.' Curr Biol 10(21): R781-4.

Lippincott, J., K. B. Shannon, et al. (2001). 'The Tem1 small GTPase controls actomyosin and septin dynamics during cytokinesis.' J Cell Sci 114(Pt 7): 1379-86.

Longo, V. D., E. B. Gralla, et al. (1996). 'Superoxide dismutase activity is essential for stationary phase survival in Saccharomyces cerevisiae. Mitochondrial production of toxic oxygen species in vivo.' J Biol Chem 271(21): 12275-80.

Maier, P., N. Rathfelder, et al. (2007). 'Cytokinesis in yeast meiosis depends on the regulated removal of Ssp1p from the prospore membrane.' Embo J 26(7): 1843-52.

Manning, G., D. B. Whyte, et al. (2002). 'The protein kinase complement of the human genome.' Science 298(5600): 1912-34.

Marston, A. L. and A. Amon (2004). 'Meiosis: cell-cycle controls shuffle and deal.' Nat Rev Mol Cell Biol 5(12): 983-97.

Mitchell, A. P. (1994). 'Control of meiotic gene expression in Saccharomyces cerevisiae.' Microbiol Rev 58(1): 56-70.

Moreno-Borchart, A. C., K. Strasser, et al. (2001). 'Prospore membrane formation linked to the leading edge protein (LEP) coat assembly.' Embo J 20(24): 6946-57.

Mounier, N. and A. P. Arrigo (2002). 'Actin cytoskeleton and small heat shock proteins: how do they interact?' Cell Stress Chaperones 7(2): 167-76.

Nag, D. K., M. P. Koonce, et al. (1997). 'SSP1, a gene necessary for proper completion of meiotic divisions and spore formation in Saccharomyces cerevisiae.' Mol Cell Biol 17(12): 7029-39.

Neiman, A. M. (1998). 'Prospore membrane formation defines a developmentally regulated branch of the secretory pathway in yeast.' J Cell Biol 140(1): 29-37.

Neiman, A. M. (2005). 'Ascospore formation in the yeast Saccharomyces cerevisiae.' Microbiol Mol Biol Rev 69(4): 565-84.

Nickas, M. E. and A. M. Neiman (2002). 'Ady3p links spindle pole body function to spore wall synthesis in Saccharomyces cerevisiae.' Genetics 160(4): 1439-50.

Petko, L. and S. Lindquist (1986). 'Hsp26 is not required for growth at high temperatures, nor for thermotolerance, spore development, or germination.' Cell 45(6): 885-94.

Piatti, S., M. Venturetti, et al. (2006). 'The spindle position checkpoint in budding yeast: the motherly care of MEN.' Cell Div 1(1): 2.

Pinna, L. A. and M. Ruzzene (1996). 'How do protein kinases recognize their substrates?' Biochim Biophys Acta 1314(3): 191-225.

Primig, M., R. M. Williams, et al. (2000). 'The core meiotic transcriptome in budding yeasts.' Nat Genet 26(4): 415-23.

Rabitsch, K. P., A. Toth, et al. (2001). 'A screen for genes required for meiosis and spore formation based on whole-genome expression.' Curr Biol 11(13): 1001-9.

Rahman, D. R., N. J. Bentley, et al. (1995). 'The Saccharomyces cerevisiae small heat shock protein Hsp26 inhibits actin polymerisation.' Biochem Soc Trans 23(1): 77S.

Roeder, G. S. (1997). 'Meiotic chromosomes: it takes two to tango.' Genes Dev 11(20): 2600-21.

Rossi, J. M. and S. Lindquist (1989). 'The intracellular location of yeast heat-shock protein 26 varies with metabolism.' J Cell Biol 108(2): 425-39.

Sambrook, J. and D. W. Russell (2001). Molecular Cloning: A Laboratory Manual (Third edition), Cold spring harbor laboratory press.

Shirayama, M., Y. Matsui, et al. (1994). 'The yeast TEM1 gene, which encodes a GTP-binding protein, is involved in termination of M phase.' Mol Cell Biol 14(11): 7476-82.

Stern, B. M. (2003). 'FEARless in meiosis.' Mol Cell 11(5): 1123-5.

Susek, R. E. and S. L. Lindquist (1989). 'hsp26 of Saccharomyces cerevisiae is related to the superfamily of small heat shock proteins but is without a demonstrable function.' Mol Cell Biol 9(11): 5265-71.

Ubersax, J. A., E. L. Woodbury, et al. (2003). 'Targets of the cyclin-dependent kinase Cdk1.' Nature 425(6960): 859-64.

Vapnik, V. (1995). The Nature of Statistical Learning Theory. New York, Springer.

Vapnik, V. (1998). Statistical Learning Theory. New York, Wiley.

Wang, Y. and T. Y. Ng (2006). 'Phosphatase 2A negatively regulates mitotic exit in Saccharomyces cerevisiae.' Mol Biol Cell 17(1): 80-9.

Wieske, M., R. Benndorf, et al. (2001). 'Defined sequence segments of the small heat shock proteins HSP25 and alphaB-crystallin inhibit actin polymerization.' Eur J Biochem 268(7): 2083-90.

Yaffe, M. B., G. G. Leparc, et al. (2001). 'A motif-based profile scanning approach for genome-wide prediction of signaling pathways.' Nat Biotechnol 19(4): 348-53.

Yoshida, S., M. Guillet, et al. (2005). 'MEN signaling: daughter bound pole must escape her mother to be fully active.' Dev Cell 9(2): 168-70.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29002-
dc.description.abstract減數分裂在有性生殖中扮演重要的角色。在營養缺乏的環境中,一個雙倍體的酵母菌細胞會經由減數分裂產生四個單倍體的孢子。整個減數分裂和孢子形成(spore formation)的過程稱之為孢子生成(sporulation)。
酵母菌熱休克蛋白Hsp26被視為一個伴護蛋白(chaperone),它在熱休克情況下和其他熱休克蛋白共同作用抑制不當摺疊的蛋白累積。過去的研究發現,在hsp26突變的細胞株中,酵母菌的產孢率比野生型對照組高,這樣的差異出現在孢子形成時期,而不是減數分裂的過程。為了瞭解Hsp26詳細的調控機制,我們研究兩個可能和Hsp26蛋白質交互作用的蛋白:Ady3和Tem1。Ady3位在原生孢子膜(prospore membrane)的前緣蛋白鞘(leading edge protein coat)上,主要和原生孢子的形成以及孢子壁的合成有關。Tem1是酵母菌有絲分裂MEN pathway的重要分子,控制細胞完成M期和細胞質分離。
我們發現,和野生型相比,在hsp26突變株中可以偵測到較多包含Ady3的前緣蛋白鞘。這些結果顯示,Hsp26可能參與在Ady3定位於前緣蛋白鞘的調控機制。雖然酵母菌雙雜合系統(yeast two-hybrid)顯示Tem1和Hsp26有直接作用,而在免疫共沉澱法中無法確認Tem1和Hsp26的蛋白質交互作用。我們也發現Tem1有磷酸化的現象。Tem1磷酸化在細胞進入到diauxic shift後會增加,並且在孢子生成的過程中一直存在。磷酸化現象可能是由於養分的缺乏,例如葡萄糖的不足而造成。我們利用溫度敏感株tem1-3。在高溫下,tem1-3突變株會產生孢子,表示Tem1可能對於孢子生成並不是必須的。有趣的是,這株溫度敏感株如果處在靜止期(stationary phase)即使在正常生長溫度下也會出現細胞質分離不完全的缺失。tem1-3的磷酸化和在靜止期的存活率也比野生型差。我們推測磷酸化的Tem1可能有助於維持細胞的生命現象。
zh_TW
dc.description.abstractMeiosis plays an important role in sexual reproduction. A diploid yeast cell undergoes meiosis and produces four haploid spores when nutrients are limited. The overall process of meiosis and spore formation is called sporulation.
Yeast small heat shock protein Hsp26 is considered as a chaperone cooperating with other heat shock proteins to prevent the aggregation of proteins under heat shock stress. Hsp26 is also induced during sporulation. Previous studies found that the sporulation efficiency of the hsp26 mutant is better than that of the wild type, and the cause seems to be at the stage of spore formation, not meiosis. To understand the molecular mechanism of Hsp26 action during sporulation, we studied two potential Hsp26-interacting proteins: Ady3 and Tem1. Ady3 is a component of the leading edge protein coat of the prospore membrane and is important for prospore formation and spore wall synthesis. Tem1 is a critical component in mitotic MEN pathway to terminate M phase and complete cytokinesis.
We found that more Ady3 signals were detected as the leading edge coat in the hasp26 mutant than in the wild-type control. This observation suggests that Hsp26 might be involved in the regulation of Ady3 localization onto the leading edge coat.
We were not able to confirm the interaction between Hsp26 and Tem1 by co-immunoprecipitation. However, we discovered an interesting pattern of Tem1 phosphorylation. Tem1 phosphorylation was detected after diauxic shift and maintained through sporulation. The phosphorylation could be caused by nutrient limitation, such as glucose inadequacy. Because TEM1 is an essential gene, we could not study the function of Tem1 in sporulation by a regular knock-out method. We used the conditional tem1-3 ts mutant to study Tem1 function in sporulation. Since the tem1-3 mutant displayed normal sporulation at restriction temperatures, Tem1 is probably not essential to sporulation. It was interesting that the tem1-3 mutant exhibited cytokinesis defects in early stationary phase even at permissive temperatures. Besides, we found that the tem1-3 mutant had impaired phosphorylation and displayed decreased viability in stationary phase. It indicates that Tem1 phosphorylation may be important for cell viability in stationary phase.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T00:34:15Z (GMT). No. of bitstreams: 1
ntu-96-R94b43003-1.pdf: 2258002 bytes, checksum: 497dbf312f8972fbfdb893670982b171 (MD5)
Previous issue date: 2007
en
dc.description.tableofcontentsTABLE OF CONTENTS
ABSTRACT i
中文摘要 iii
TABLE OF CONTENTS iv
LIST OF TABLES vii
LIST OF FIGURES viii
CHAPTER 1. INTRODUCTION 1
The Importance of Meiosis 1
The Entry of Meiosis 1
Meiotic Cell Cycle 2
Yeast Small Heat Shock Protein Hsp26 4
Spore Formation of S. cerevisiae 5
Ady3 is Important for Spore Formation 7
Tem1 is the Key Component in MEN Pathway 8
The Spindle Position Checkpoint 10
Specific Aim 11
CHAPTER 2. MATERIALS AND METHODS 12
Strains, Media, and Growth Conditions 12
DNA Preparation 12
Plasmid Constructions 13
Yeast Constructions 19
Protein Extraction and Western Blot Analysis 21
Immunoprecipitation and Alkaline Phosphatase Treatment 22
Co-immunoprecipitation 23
Nuclear Division Analyses 25
Immunofluorescence Staining 26
Spore Viability Analyses 27
Synchronization by Treatment with α Factor and Release 28
Cell Growth Curve 28
Analysis of Cellular Viability 29
CHAPTER 3. RESULTS 30
The Interaction between Ady3 and Hsp26 30
The 9Xmyc tagged Ady3 is functional 30
Ady3 is expressed and phosphorylated during sporulation 30
Ady3 physically interacts with Hsp26 31
The genetic interaction between ADY3 and HSP26 in sporulation 32
Subcellular localization of Hsp26 and Ady3 32
More Ady3 is located on the leading edge protein coat
in the hsp26 mutant 34
Ady3 Phosphorylation 35
Ady3 phosphorylation depends on the progression of
meiotic cell cycle 35
Cdc28 is a potential kinase of Ady3 35
Phosphorylation sites prediction 36
Tem1 Phosphorylation 39
Epitope tagging of Tem1 39
Tem1 is expressed and phosphorylated during sporulation 39
Nutrient limitation could cause Tem1 phosphorylation 40
Glucose limitation may be one of the factors that cause
Tem1 phosphorylation 41
Tem1 was phosphorylated at log phase in YPAacetate medium 41
Tem1 was not phosphorylated in vegetative cell-cycle 42
The tem1-3 mutant displays incomplete cytokinesis
in early stationary phase 43
Phosphorylation of the tem1-3 mutant is impaired 43
The tem1-3 mutant cells display no obvious growth defect 44
The tem1-3 mutation causes a decrease in viability of
cells at stationary phase 44
The tem1-3 mutant can not reach the maximal density as
the wild-type does in YPAacetate medium 45
Tem1 in Sporulation 46
Tem1 may be not essential for sporulation 46
CHAPTER 4. DISCUSSION 47
Hsp26 may play a Regulatory Role of Ady3 Localization onto
the Leading Edge Protein Coat 47
Phosphorylation of Ady3 in Sporulation 48
Tem1 Phosphorylation may be Important for Cell Viability 50
The Relationship between Hsp26 and Tem1 52
Conclusion 53
REFERENCES 54
LIST OF TABLES
Table
1 Yeast strains 60
2 Plasmid list 62
3 Primer list 64
4-1 Complementation test of 9Xmyc-tagged Ady3 65
4-2 Types of asci in ady3 complementation test 65
5-1 Sporulation efficiency of wild-type, hsp26 mutant, ady3 mutant and hsp26 ady3 double mutant in liquid sporulation medium 66
5-2 Ascus types of wild-type, hsp26 mutant, ady3 mutant and hsp26 ady3 double mutant in liquid sporulation medium 66
6-1 Sporulation frequency of wild-type, hsp26 mutant, ady3 mutant and hsp26 ady3 double mutant on sporulation plates at 30℃ 67
6-2 Sporulation frequency of wild-type, hsp26 mutant, ady3 mutant and hsp26 ady3 double mutant on sporulation plates at 32.5℃ 67
7-1 Complementation test of ady3 mutants based on Cdc28 consensus target sites 68
7-2 Ascus types of ady3 mutants at 32.5℃ 68
8-1 Complementation test of ady3 mutants which were confirmed according to the PredPhospho website prediction at 32.5℃ 69
8-2 Ascus types of ady3 mutants at 32.5℃ 69
9 Complementation test of 6Xmyc-tagged Tem1 70
10 Morphology of wild type and the tem1-3 mutant in early stationary phase 71
11 Sporulation efficiency of wild-type, tem1-3mutant, hsp26 mutant and tem1-3 hsp26 double mutant at 25℃, 34℃, or 25℃ with a shift to 34℃ 72

LIST OF FIGURES
Figure
1 Ady3 expression and phosphorylation pattern 73
2 Co-immunoprecipitation of Ady3 and Hsp26 74
3 Hsp26 was localized in nuclei in meiosis 75
4 Ady3 was localized on the leading edge protein coat 76
5 Hsp26 and Ady3 were not co-localized 77
6 Comparison of Ady3 localization in wild type and the hsp26 mutant cells 78
7 Phosphorylation of Ady3 in the ndt80-arrested cells 79
8 Ady3 phosphorylation in the cdc28-63 mutant 80
9 The phosphorylation of ady3 mutants 81
10 The phosphorylation of ady3 mutants 82
11 Tem1 expression and phosphorylation pattern 83
12 Time course of Tem1 phosphorylation 84
13 Addition of glucose increased the nphosphorylated Tem1 85
14 The effect of carbon source on Tem1 phosphorylation 86
15 Tem1 was not phosphorylated during vegetative cell cycle 87
16 Incomplete cytokinesis in the tem1-3 mutant 88
17 The tem1-3 mutant displayed a phosphorylation defect 89
18 Cytokinesis defect of the tem1-3 mutant at 37℃ heat shock 90
19 Growth curve of the tem1-3 mutant in YPAD medium 91
20 Cell viability in stationary phase 92
21 Growth curve of the tem1-3 mutant in YPAacetate medium 93
22 Tem1 expression under the CLB2 promoter 94
dc.language.isoen
dc.subject孢子生成zh_TW
dc.subject酵母菌zh_TW
dc.subject減數分裂zh_TW
dc.subjectyeasten
dc.subjectAdy3en
dc.subjectTem1en
dc.subjectHsp26en
dc.subjectsporulationen
dc.title酵母菌Ady3和Tem1在孢子生成中與Hsp26之交互作用zh_TW
dc.titleThe interaction of Ady3 and Tem1 with Hsp26 in yeast sporulationen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳蕾惠(Rey-Huei Chen),呂俊毅(Jun-Yi Leu)
dc.subject.keyword酵母菌,孢子生成,減數分裂,zh_TW
dc.subject.keywordyeast,sporulation,Hsp26,Tem1,Ady3,en
dc.relation.page59
dc.rights.note有償授權
dc.date.accepted2007-07-26
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept分子與細胞生物學研究所zh_TW
顯示於系所單位:分子與細胞生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
2.21 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved