Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28988
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳光禎
dc.contributor.authorSheng-Yuan Tuen
dc.contributor.author杜勝元zh_TW
dc.date.accessioned2021-06-13T00:33:28Z-
dc.date.available2007-07-26
dc.date.copyright2007-07-26
dc.date.issued2007
dc.date.submitted2007-07-24
dc.identifier.citation[1] J. Mitola III, 'Software radio architecture: a mathematical perspective,' Selective Areas in Communications, IEEE Journal on, vol. 17, pp. 514-538, Apr. 1999.
[2] ------, “Cognitive radio for flexible mobile multimedia communications,” Mobile Multimedia Communications, IEEE International Workshop on, pp. 3-10, Nov. 1999.
[3] ------, 'Cognitive radio: an integrated agent architecture for software defined radio,' Ph.D. dissertation, Royal institute of Technology (KTH), Stockholm, Sweden, 2000.
[4] NTIA, “U.S. Frequency Allocation chart ,” 2003, http://www.ntia.doc.gov/osmho- me/allochrt.html
[5] FCC Spectrum Policy Task Force, “FCC Report of the Spectrum Efficiency Working Group,” 2002, http://www.fcc.gov/sptf/files/SEWGFinalReport1.pdf
[6] N. Devroye, P. Mitran, and V. Tarokh, “Achievable rates in cognitive radio channels”, IEEE Tran. Information Theory, vol. 52, pp. 1813-1827, May 2006.
[7] K. S. Gilhousen, I. M. Jacobs, R. Padovani, A. J. Viterbi, L. A. Weaver, and C. E. Wheatley, “On the capacity of a cellular CDMA system,” IEEE Trans. Vehicular Technology, vol. 40, pp. 303-312, May 1991.
[8] A. M. Viterbi, and A. J. Viterbi, “Erlang capacity of a power controlled CDMA system,” Selected Areas in Communications, IEEE Journal on, vol. 11, pp. 892-900, Aug. 1993.
[9] 3GPP home page: http://www.3GPP.org
[10] 3GPP2 home page: http://www.3GPP2.org
[11] S. Parkvall, E. Englund, M. Lundevall, and J. Torsner, “Evolving 3G mobile systems: broadband and broadcast services in WCDMA,” IEEE Communication Magazine, pp. 68-74, Feb. 2006.
[12] H. Ekstrom, A. Furuskar, J. Karlsson, M. Meyer, S. Parkvall, J. Torsner, and M. Wahlqvist, “Technical solutions for the 3G long-term evolution,” IEEE Communication Magazine, pp. 38-45, Mar. 2006.
[13] IEEE Standard for Local and Metropolitan Area Networks Part 16: Air Interface for Fixed Broadband Wireless Access Systems
[14] S. Haykin, “Cognitive radio: brain-empowered wireless communications,” Selected Areas in Communications, IEEE Journal on, vol. 23, pp. 201-220, Feb. 2005.
[15] S. M. Mishra, A. Sahai, and R. W. Broderson, “Cooperative sensing among cognitive radios,” Proc. IEEE International Conference on Communications, 2006.
[16] Y. Hur, J. Park, W. Woo, K. Lim, C. H. Lee, HS. Kim, and J. Laskar, “A wideband analog multi-resolution spectrum sensing (MRSS) technique for cognitive radio (CR) systems,” Proc. IEEE Circuits and Systems, pp. 4090-4093, May 2006.
[17] T. Yucek and H. Arslan, “Spectrum characterization for opportunistic cognitive radio systems,” MILCOM, pp. 1-6, Oct. 2006.
[18] G. Ganesan and Y. Li, “Cooperative spectrum sensing in cognitive radio networks,” IEEE New Frontiers in Dynamic Spectrum Access Networks, pp. 137-143, Nov. 2005.
[19] A. Ghasemi and E. S. Sousa, “Collaborative spectrum sensing for opportunistic access in fading environments,” IEEE New Frontiers in Dynamic Spectrum Access Networks, pp. 131-136, Nov. 2005.
[20] K. C. Chen, R. Prasad, and L. H. Kung, “Self-organized cognitive radio architecture,” submitted for publications.
[21] C. Politis, T. Oda, S. Dixit, A. Schieder, H. Y. Lach, M. I. Smirnov, S. Uskela, R. Tafazolli, “Cooperative networks for the future wireless world,” IEEE Communications Magazine, pp. 70-79, Sep. 2004.
[22] A. J. Goldsmith and S. G. Chua, “Variable-rate variable power MQAM for fading channels,” IEEE Trans. Communications, vol. 45, pp. 1218-1230, Oct. 1997.
[23] ------,” Adaptive coded modulation for fading channels”, IEEE Trans. Communications, vol. 46, pp. 595-602, May 1998.
[24] T. S. Rappaport, Wireless communications: principles and practice. PH PTR, 2002.
[25] IEEE Standard for local and metropolitan area networks part 15.2: coexistence of wireless personal area networks with other wireless devices operating in unlicensed frequency bands
[26] C. M Teng, and K. C. Chen, “A unified algorithm for wireless MAC protocol,” Proc. IEEE VCT, 2002
[27] M. S. Hsieh, and K. C. Chen, “A novel interference identification,” Proc. IEEE VTC, pp. 1886-1890, May 2002.
[28] W. A. Gardner, “Signal interception: A unifying theoretical framework for feature detection,” IEEE Tran. Communications, vol. 38, pp 897-906, Aug. 1988.
[29] W. A. Gardner, and C. M. Spooner, “Signal interception: Performance advantages of cyclic-feature detectors,” IEEE Trans. Communications, vol. 40, pp 149-159, Jan. 1992.
[30] E. A. Lee, and D. G. Messerschmitt, Digital communication. Kluwer Academic, 1994.
[31] F. M. Gardner, “A BPSK/QPSK timing-error detector for sampled receivers,” IEEE Trans. Communications, vol. 34, pp. 423-429, May 1986.
[32] M. Oerder, and H. Meyr, “Digital filter and square timing recovery,” IEEE Trans. Communications, vol. 36, May 1988.
[33] H. L. Van Trees, Detection, estimation, and modulation theory – Part 1, John Wiley & Sons, Inc, 2001.
[34] S. Kay, Fundamental of statistical signal processing vol. 2 – detection theory, Prentice-Hall PTR, 1998.
[35] A. Papoulis, and S. U. Pillai, Probability, random variables and stochastic process, McGraw-Hill, 2002.
[36] D. C. Rife, and R. R. Boorstyn, “Single-tone parameter estimation from discrete-time observations,” IEEE Tran. Information Theory, vol. 20, pp. 591-598, Sep. 1974.
[37] B. Yang, K. B. Letaief, R. S. Cheng, and Z. Cao, “Burst frame synchronization for OFDM transmission in multipath fading links,” Proc. IEEE VCT, pp. 300-304, 1999.
[38] J. J. van de Beek, M. Sandell, and P. O. Borjesson, “ML estimation of timing and frequency offset in OFDM systems,” IEEE Trans. Signal Processing, vol. 45, pp. 1800-1805, Jul. 1997.
[39] D. Landstrom, S. K. Wilson, J. J. van de Beek, P. Odling, and P. O. Borjesson, “Symbol time offset estimation in coherent OFDM systems,” IEEE Trans. Communications, vol. 50, pp. 545-549, Apr. 2002.
[40] B. Yang, K. B. Letaief, R. S. Cheng, and Z. Cao, “Windowed DFT based pilot-symbol-aided channel estimation for OFDM systems in multipath fading channels,” Proc. IEEE VCT, vol. 2, pp. 1480-1484, 2000.
[41] F. S. Chu, and K. C. Chen, “Fair adaptive radio resource allocation of mobile OFDMA,” IEEE Proc. PIMRC, Sep. 2006.
[42] Z. Sheng, J. G. Andrews, and B. L. Evans, “Adaptive resource allocation in multiuser OFDM systems with proportional rate constraints,” IEEE Trans. Wireless Communications, vol. 4, pp. 2726-2737, Nov. 2005.
[43] C. C. Tseng, H. T. Chen, and K. C. Chen, “On the distance distributions of the wireless Ad Hoc networks,” Proc. IEEE VTC, pp. 772-776, 2006.
[44] W. C. Wu and K. C. Chen, “Identification of active users in synchronous CDMA multiuser detection,” Selective Areas in Communications, IEEE Journal on, vol. 16, pp 1723-1735, Dec. 1998.
[45] D. B. Lin, R. T. Juang, and H. P. Lin, “Robust mobile location estimation based on signal attenuation for cellular communication systems,” Proc. IEEE VTC, pp. 2425-2428, 2005.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28988-
dc.description.abstract為了徹底使用無線電資源進而增加頻譜使用效率,感知無線電會偵測環境以及辨識訊號來源,如此次要通訊系統得以和主要通訊系統共存,因此偵測和感知在感知無線電中扮演著重要的角色。在本篇論文中,我們針對正交多工分頻存取系統由於它在未來通訊系統的潛力以及在頻譜偵測的困難度,對於此系統,在提出的頻譜偵測週期之下我們獲得一組有效的感知資訊。為了避免干擾主要通訊系統,第一步是偵測主要通訊系統是否存在以及是否有使用者在使用此系統,在此我們透過量測接收訊號強度、追蹤符碼率的基本頻率、偵測正交多工分頻存取訊號的循環性以及無線通訊系統的控制信號,模擬結果顯示即使訊號雜訊比很低仍然能夠逼近完美的偵測。接著由於事前知道訊框的架構,藉由解訊框表頭我們能夠獲得資料傳輸速率和無線電資源分配狀況,最後透過無線通訊系統中速率和距離關係式決定出感知無線電所擁有的無線電資源並且同時保證對於主要通訊系統的干擾程度,此外藉由參數調整,我們的偵測程序能夠適用於當今任何先進的正交多工分頻存取系統。zh_TW
dc.description.abstractIn order to fully exploit wireless radio resource and then increase spectrum efficiency, cognitive radios for future wireless communication systems shall sense wireless environments and identify interference so that the secondary system(s) may coexist with primary communication systems. As a result, sensing and cognition play a major functionality in cognitive radios. In this thesis, we acquire an effective set of cognitive information under a proposed spectrum sensing cycle for orthogonal frequency division multiple access (OFDMA) systems because of their potential and challenges. To avoid interfering with primary systems, detecting existence and activity of the primary system by measuring RSSI, tracking fundamental symbol rate of the primary system and is the first step in coexistence. Furthermore, using cyclic property of OFDMA signal and control and management signal in wireless communication systems, we can precisely determine existence and activity of the target OFDMA system in one frequency band, via Neyman-Pearson criterion. Simulation results show that near perfection detection is achieved even at low SNR. With a priori knowledge of frame structure in potential primary systems, communication parameters, such as data transmission rate and resource allocation state, can be extracted by decoding frame header. Finally, we can determine available radio resource with respect to cognitive radios using rate-distance relationship, while guarantee interference to primary systems. Moreover, by parametric adjustment, our sensing procedure can be applied to any state-of-the-art OFDMA systems nowadays.en
dc.description.provenanceMade available in DSpace on 2021-06-13T00:33:28Z (GMT). No. of bitstreams: 1
ntu-96-R94942023-1.pdf: 1366066 bytes, checksum: 36602206ac08f837b0c054d2770af848 (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents誌謝......................................................I
摘要....................................................III
Abstract..................................................V
List of Figures..........................................XI
Chapter 1 Introduction....................................1
1.1 Cognitive Radio..................................1
1.2 Rate-Distance Relationship.......................4
1.3 Organization.....................................6
Chapter 2 Spectrum Sensing Procedure......................7
2.1 System Model..........................................7
2.1.1 Primary System......................................7
2.1.2 Cognitive Radios....................................9
2.2 Spectrum Sensing.....................................11
2.2.1 Sensing/Cognitive Cycle............................11
2.2.2 Spectrum Sensing Algorithm.........................13
2.2.3 Spectrum Sensing Block Diagram.....................15
Chapter 3 Discrimination of States of the Primary System.17
3.1 Received Signal Strength Indicator (RSSI)............18
3.2 Fundamental Symbol Rate..............................22
3.3 Cyclic Prefix (CP) of OFDMA Signal...................26
3.4 Control and Management Signal........................31
3.5 Definition of Cost Function..........................36
Appendix 3.A Derivation of (3.19)........................39
Appendix 3.B Likelihood Ratio Test of Detecting CP of OFDMA Signal...................................................42
Appendix 3.C Statistics of (3.28) under Null Hypothesis..44
Appendix 3.D Likelihood Ratio Test of Detecting CP of OFDMA Signal with Unknown Total Power..........................47
Appendix 3.E Likelihood Ratio Test of Detecting Control Signal...................................................50
Chapter 4 Evaluation of Available Radio Resource with Respect to Secondary System..............................52
4.1 Frequency-Time Utilization...........................53
4.2 Radio Resource of Secondary System...................53
4.2.1 Theoretical Bound..................................53
4.2.2 Practical Consideration............................55
Appendix 4.A Deviation of PDF of Distance between the Primary Mobile Station and Cognitive Radio...............59
Chapter 5 Numerical Results..............................63
5.1 Detector of State of the Primary system..............63
5.1.1 Energy Detector....................................64
5.1.2 Fundamental Symbol Rate Detector...................66
5.1.3 CP Detector........................................69
5.1.4 Control Signal Detector............................73
5.2 Radio Resource of Secondary System...................77
Chapter 6 Conclusions and Future Works...................81
Bibliography.............................................84
dc.language.isoen
dc.title適用於正交多工分頻存取系統之感知無線電頻譜偵測zh_TW
dc.titleSpectrum Sensing of OFDMA Systems for Cognitive Radiosen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蘇育德,林嘉慶,李學智
dc.subject.keyword感知無線電,無線電資源,頻譜使用率,頻譜偵測,偵測/感知週期,正交多工分頻存取系統,速率距離關係,zh_TW
dc.subject.keywordCognitive radio,radio resource,spectrum efficiency,spectrum sensing,sensing/cognition cycle,orthogonal frequency division multiple access (OFDMA),rate-distance relationship,en
dc.relation.page90
dc.rights.note有償授權
dc.date.accepted2007-07-26
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  目前未授權公開取用
1.33 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved