Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28944
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳誠亮(Cheng-Liang Chen)
dc.contributor.authorFu-Li Linen
dc.contributor.author林富麗zh_TW
dc.date.accessioned2021-06-13T00:30:52Z-
dc.date.available2007-07-30
dc.date.copyright2007-07-30
dc.date.issued2007
dc.date.submitted2007-07-24
dc.identifier.citation[1] A. Brooke, D. Kendrick, A. Meeraus, R. Raman, and R. E. Rosenthal GMAS : A User’s Guide, GAMS Development Corporation.
[2] B. E. Poling The properties of gases and liquids, McGraw-Hill Book Co., 2001.
[3] C. J. Ho “Energy saving and reduction of co2 emission in chemical processesintroduction of heat integrated distillation column,” Chemical monthly, pp. 18–28, 6 2006.
[4] J.M. Douglas Conceptual Design of Chemical Processes, McGraw-Hill, Inc., 1988.
[5] J. Viswanathan and I. E. Grossmann “A combined penalty function and outer approximation method for minlp optimization,” Comp. Chem. Eng., vol. 14, pp. 769–782, 1990.
[6] J. Viswanathan and I. E. Grossmann “An alternate minlp model for finding the number of trays required for a specified separation objective,” Computers Chemical Engineering, vol. 17, pp. 949–955, 9 1993.
[7] K. Huang, K. Matsuda, K. Iwakabe, T. Takamatsu and M. Nakaiwa “Graphical synthesis of an internally heat-integrated distillation column,” J. Chem. Eng. Jpn, vol. 39, no. 7, pp. 703–708, 2006.
[8] K. Huang, K. Matsuda, T. Takamatsu and M. Nakaiwa “The influences of pressure distribution on an ideal heat-integrated distillation column (hidic),” J. Chem. Eng. Jpn, vol. 39, no. 6, pp. 652–660, 2006.
[9] K. Huang, M. Nakaiwa, M. Owa, T. Akiya, K. Aso and T. Takamatsu “Determining appropriate configuration of ideal heat integrated distillation columns (hidic),” J. Chem. Eng. Jpn, vol. 30, no. 3, pp. 575–579, 1997.
[10] K. Huang, M. Nakaiwa, T. Akiya, K. Aso and T. Takamatsu “A numerical consideration on dynamic modeling and control of ideal heat integrated distillation columns,” J. Chem. Eng. Jpn, vol. 29, no. 2, pp. 344–351, 1996.
[11] K. Huang, M. Nakaiwa, T. Akiya, M. Owa, K. Aso and T. Takamatsu “Dynamics of ideal heat integrated distillation columns,” J. Chem. Eng. Jpn, vol. 29, no. 4, pp. 656–661, 1996.
[12] K. Huang, M. Nakaiwa, T. Akiya, M. Owa, K. Aso and T. Takamatsu “Performance evalution of ideal heat integrated distillation columns,” J. Chem. Eng. Jpn, vol. 30, no. 1, pp. 108–115, 1997.
[13] K. Iwakabe, M. Nakaiwa, K. Huang and T. Nakanishi “Energy saving in multicomponent separation using an internally heat-integrated distillation column (hidic),” Applied Thermal Engineering, vol. 26, pp. 1362–1368, 2006.
[14] K. Iwakabe, M. Nakaiwa, K. Huang, T. Nakanishi and A. Rosjorde “Performance of an internally heat-integrated distillation column (hidic) in separation of ternary mixtures,” J. Chem. Eng. Jpn, vol. 39, no. 4, pp. 417–425, 2006.
[15] K. Naito,M. Nakaiwa, K. Huang, A. Endo, K. Aso and T. Nakanishi “Operation of a bench-scale ideal heat integrated distillation column (hidic) an experimental study,” Computers and Chemical Engineering, vol. 24, pp. 495–499, 2000.
[16] M. Gadalla, Z. Olujic, A. de Rijke and P. J. Jansens “Reducing co2 emissions of internally heat-integrated distillation columns for separation of close boiling mixtures,” Energy, vol. 31, pp. 2073–2081, 2006.
[17] M. Nakaiwa, K. Huang, A. Endo, T. Ohmori, T. Akiya and T. Takamatsu “Internally heat-integrated distillation columns: A review,” Trans IChemE, vol. 81, Part A, pp. 162–177, 1 2003.
[18] M. Nakaiwa, K. Huang, K. Naito, A. Endo, M. Owa, T. Akiya, T. Nakane and T. Takamatsu “Anewconfiguration of ideal heat integrated distillation columns,” Computers and Chemical Engineering, vol. 24, pp. 239–245, 2000.
[19] M. Nakaiwa, K. Huang, K. Naito, A. Endo, T. Akiya, T. Nakane and T. Takamatsu “Parameter analysis and optimization of ideal heat integrated distillation columns,” Computers and Chemical Engineering, vol. 25, pp. 737–744, 2001.
[20] M. Nakaiwa, K. Huang, M. Owa, T. Akiya, T. Nakane, M. Sato and T. Takamatsu “Energy saving in heat-integrated distillation column,” Energy, vol. 22, no. 6, pp. 621–625, 1997.
[21] M. Nakaiwa, K. Huang, M. Owa, T. Akiya, T. Nakane,M. Sato, T. Takamatsu and H. Yoshitome “Potential energy savings in ideal heat-integrated distillation column,” Applied Thermal Engineering, vol. 18, no. 11, pp. 1077–1087, 1998.
[22] R. S. H. Mah, J. J. Nicholas, JR. and R. B. Wodnik “Distillation with secondary reflux and vaporization: A comparative evaluation,” AIChE Journal, vol. 23, no. 5, pp. 651–657, 1977.
[23] T. Fukushima, T.Tominari, M. Kano and S. Hasebe “A study of dynamics and control of heat integrated distillation column (HIDiC),” PSE Asia, pp. 706–711, 2005.
[24] T. Takamatsu, M. Nakaiwa, K. Huang, T. Akiya, H. Noda, T. Nakanishi and K. Aso “Simulation oriented development of a new heat integrated distillation column and its characteristics for energy saving.pdf,” Computers Chem. Engng., vol. 21, no. Suppl., pp. 243–247, 1997.
[25] T. Takamatsu, V. Lueprasitsakul and M. Nakaiwa “Modeling and design method for internal heat-integrated packed distillation column,” J. Chem. Eng. Jpn, vol. 21, no. 6, pp. 595–601, 1988.
[26] V. Lueprasitsakul, S. Hasebe, I. Hashimoto and T. Takamatsu “Study of energy efficiency of a wetted-wall distillation column with internal heat integration,” J. Chem. Eng. Jpn, vol. 23, no. 5, pp. 580–587, 1990.
[27] W. L. Luyben Plantwide Dynamic Simulators In Chemical Processing and Control, Marcel Dekker, 2002.
[28] Z. Olujic, F Fakhri, A de Rijke, J de Graauw and P. J. Jansens “Internal heat integration- the key to an energy-conserving distillation column,” Journal of Chemical Technology and Biotechnology, vol. 78, pp. 241–248, 2003.
[29] Z. Olujic, L. Sun, A. de Rijke and P. J. Jansens “Conceptual design of an internally heat integrated propylene-propane splitter,” Energy, vol. 31, pp. 3083–3096, 2006.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28944-
dc.description.abstract由於石油價格持續高漲,高耗能之化學工業開始重視能源議題,而其中又以蒸餾程序佔約45%的能源耗損為最多,因此在新替代能源還在研發之同時,提升現有程序之能源使用效率是當務之急。目前對於蒸餾程序之改善已有許多研究,本文將針對其中利用內部能量整合之技術進行深入討論。
內熱整合蒸餾塔(Heat-integrated Distillation Column, HIDiC)之研究在日本與荷蘭已行之多年,以往研究著重於HIDiC之能源節省方面,本文利用數學規劃法提出一普遍且完整之模式,其中包含能量使用以及年總成本之計算,期望可以在省能效益與經濟效益之中取得平衡,可直接決定當年總成本最小時之設計,並且藉由模擬可深入討論傳統蒸餾塔與HIDiC之適用時機,發現當能源價格暴漲,或蒸汽再壓縮機與電力價格下降時,HIDiC在成本上之競爭力即可提升。
zh_TW
dc.description.abstractDue to the uprising price of crude oil, the chemical industries with higher energy consumption are forced to face the energy issue. In chemical industries, the distillation processes account for 45% of total energy consumption. Before the renewable energy can replace the fossil energy completely, it is crucial to improve the energy efficiency of present processes. Nowadays there are many studies about distillation process improvement. This thesis will discuss the design of internal energy-integrated distillation processes.
Studies about the internally heat-integrated distillation column (HIDiC) have been investigated for many years. Those studies focused on energy savings of HIDiC. This study will bring up a general and complete model involving energy consumption and total annual costs calculation by mathematical programming approach. It is expected to get balance between energy savings and economical benefits. This model will directly determine the design with minimal TAC and discuss the proper opportunities to use conventional distillation and HIDiC. It is finally discovered that the competitiveness of HIDiC on TAC will increase when the energy price rises suddenly and sharply or the investment cost of the gas compressor and the cost of electricity declines.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T00:30:52Z (GMT). No. of bitstreams: 1
ntu-96-R94524069-1.pdf: 1797095 bytes, checksum: 34b5e3fde02850bd696ed240486e91bd (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents1 緒論 1
1.1 前言………………………………………………………1
1.2 HIDiC 之原理與結構介紹………………………………2
1.3 文獻回顧與當前之技術背景……………………………4
1.4 研究動機與目的…………………………………………6
1.5 組織章節…………………………………………………7
2 內熱整合蒸餾塔之熱力學理論 9
2.1 HIDiC 之熱力學分析……………………………………9
2.2 修正HIDiC之McCabe-Thiele 圖………………………11

3 內熱整合蒸餾塔逐層式超結構模式建構 21
3.1 模式建立之背景說明 …………………………………21
3.2 模式建立之基本假設條件 ……………………………22
3.3 設計流程之介紹 ………………………………………23
3.4 模式之符號、集合、系統參數與系統變數
(Indices, Sets, Parameters, and Variables) …26
3.4.1 符號說明(Indices) …………………………26
3.4.2 集合說明(Sets)………………………………26
3.4.3 系統參數(Parameters)………………………27
3.4.4 系統變數(Variables) ………………………28
3.5 目標函數與限制式(Objective Functions and
Contraints)……………………………………………30
3.5.1 0-1變數決定塔板數限制式(Binary
Representation of Column Trays) ………30
3.5.2 質量及能量平衡限制式(Mass and Energy
Balance Contraints) ………………………31
3.5.3 邏輯限制式(Logical Constraints) ………39
3.5.4 莫耳分率限制式(Mole Fraction
Constraints)…………………………………39
3.5.5 熱力學關係式(Thermodynamics)……………40
3.5.6 變數趨勢限制式(Variable Trend
Constraints)…………………………………41
3.5.7 溫壓限制式(Temperature and Pressure
Constraints)…………………………………42
3.5.8 氣體與液體莫耳熱焓量計算式(Vapor and
Liquid Molar Enthalpy Calculation)……43
3.5.9 蒸氣再壓縮機設計方程式(Compressor
Design Equations) …………………………43
3.5.10 塔結構限制式(Column Structure
Constraints)…………………………………45
3.5.11 莫菲板效率限制式(Murphree Efficiency
Constraints)…………………………………47
3.5.12 規格限制式(Specification Constraints)
…………………………………………………48
3.5.13 年總成本計算式(Total Annual Costs
Calculation)…………………………………48
3.5.14 目標函數(Objective Functions) …………50
4 模式之實例模擬暨模擬結果分析與討論 53
4.1 最適化軟體 ……………………………………………53
4.2 分離系統與基本性質之介紹 …………………………54
4.3 目標函數一:最小化外部提供能量 …………………55
4.4 目標函數二:最小化年總成本 ………………………60
4.5 討論蒸氣再壓縮機之價格 ……………………………72
5 結論與未來展望 77
5.1 結論 ……………………………………………………77
5.2 未來展望 ………………………………………………78
作者簡歷……………………………………………………………85
dc.language.isozh-TW
dc.title以數學規劃法作內熱整合蒸餾塔最適化設計zh_TW
dc.titleInternally Heat-Integrated Distillation Column (HIDiC)Design by Mathematical Programming Approachen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee余政靖(Cheng-Ching Yu),黃孝平(Hsiao-Ping Huang),張玨庭(Chuei-Tin Chang),王逢盛(Feng-Sheng Wang)
dc.subject.keyword內熱整合蒸餾塔,最適化,zh_TW
dc.subject.keywordHIDiC,Optimization,en
dc.relation.page83
dc.rights.note有償授權
dc.date.accepted2007-07-26
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  目前未授權公開取用
1.75 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved