Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28918
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝傳璋
dc.contributor.authorWen-Che Chenen
dc.contributor.author陳文哲zh_TW
dc.date.accessioned2021-06-13T00:29:29Z-
dc.date.available2016-08-09
dc.date.copyright2011-08-09
dc.date.issued2011
dc.date.submitted2011-08-04
dc.identifier.citation1.The Global Initiative For Asthma(GINA), http://www.ginasthma.org/.
2.呼吸系統, http://www2.cch.org.tw/lungcancer/images/Web_an1.jpg.
3.人類肺部結構, http://life.dayoo.com/health/disease/uploadfile/pic/jbk/2009/12/24/569_20091224060046_99.GIF.
4.M. Mahagnah, a.N.G., Repeatability of Measurement of Normal Lung Sound. Am. J. Respir. Crit. Care Med., 1994. vol. 149: p. 477-481.
5.Y. Shabtai Musih, B.G.J., and G. Noam, Spectral content of forced expiratory wheezes during air, He, and SF6 breathing in normal humans,. journal of applied Physiology, 1992. vol. 72(no. 2): p. 629-635.
6.K. E. Forkheim, D.S., and H. Pasterkamp, A comparison of neural network models for wheeze detection. proceedings of IEEE WESCANEX 95 Conference on Communications, Power, and Computing, 1995. vol. 1: p. 214-219.
7.A. Homs Corbera, R.J., J. A. Fiz, and J. Morera, Algorithm for time-frequency detection and analysis of wheezes. proceedings of the 22nd IEEE Annual International Conference on Engineering in Medicine and Biology Society, 2000. vol. 4: p. 2977-2980.
8.R. J. Riella, P.N., R. F. Borges, and A. L. Stelle, Automatic wheezing recognition in recorded lung sounds. proceedings of the 25nd IEEE Annual International Conference on Engineering in Medicine and Biology Society, 2003. vol. 3: p. 2535-2538.
9.余宗霖, 氣喘肺音監測系統之可行性研究. 國立中央大學, 2005. 碩士論文.
10.楊佳穎, 以HHT為基礎之肺音分析與哮喘音辨識研究. 國立台北科技大學, 2008. 碩士論文.
11.American Thoracic Society(ATS), http://www.thoracic.org/.
12.A. R. A. Sovijarvi, J.V., and J. E. Earis, , Standardization of computerized respiratory sound analysis. European Respiratory Review 2000. vol. 25(no. 4): p. 585-649.
13.1995, 張西川、陳方祝翻譯,呼吸系統,光復書局.
14.Huang, N.E., Shen, Z., Long, S. R., Wu, M. C., Shih, S. H., Zheng, Q., Tung, C. C., and Liu, H. H., The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-stationary Time Series Analysis. proceedings of the Royal Society A, 1998. vol. 454(no. 1971): p. 903-995.
15.Cohen, L., Time-Frequency Analysis. prentice Hall PTR, Englewood Cliffs, 1995.
16.Schwartz, M., Bennett, W. R., and Stein, S., Communications Systems and Techniques. New York, McGraw-Hill., 1966.
17.Rice, S.O., Mathematical Analysis of Random Noise. Bell System Technical Journal 1994(no. 23): p. 282-310.
18.Gabor, D., Communication Theory and Physics. IEEE Transactions on Information Theory, 1953. vol. 1(no. 1): p. 48-59.
19.Bedrosian, E., A Product Theorem for Hilbert Transforms. Proceedings of the IEEE, 1963. vol. 51(no. 5): p. 868-869.
20.Huang, N.E., Shen, Z., Long, S. R., A new view of nonlinear water waves - the Hilbert spectrum. Ann. Rev. Fluid Mech., 1999. vol. 31: p. 417-457.
21.Huang, N.E., Shen, Z., Long, S. R., S. S. Shen, W. D. Qu, P. Gloersen, and K. L. Fan., A confidence limit for the empirical mode decomposition and the Hilbert spectral analysis. Proc, of Roy. Soc. London, 2003. vol. 459A: p. 2317-2345.
22.Jang., J.-S.R., Audio Signal Processing and Recognition. (in Chinese) available at the links for on-line courses at the author's homepage at http://www.cs.nthu.edu.tw/~jang.
23.Pan., H.H.a.J., Speech pitch determination based on Hilbert Huang transform. Signal Processing, 2006. vol. 86(no. 4 ): p. 792-803.
24.Nancy A. Obuchowski, P., Receiver Operating Characteristic Curves and Their Use in Radiology. Diagnostic radiology Statistical analysis 2003. vol. 229: p. 3-8.
25.Seong Ho Park, M., Jin Mo Goo, MD., Chan-Hee Jo, PhD., Receiver Operating Characteristic(ROC) Curve: Practical Review for Radiologists. Korean Radiol, 2004. vol. 5: p. 11-18.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28918-
dc.description.abstract氣喘,又稱為哮喘,是一種慢性支氣管發炎的病症。一般常以聽診器經過醫師等專業的醫護人員聽取肺音作診斷,就肺音而言,常以哮喘音為典型的氣喘發作特徵。台灣醫護人員的人力不足以及看護工或家庭照顧者並沒有氣喘方面的專業知識,因此本研究的目的在於建立一套可以應用於居家照護或長時間監測氣喘發作的小型裝置。
本研究藉由工研院所開發之軟性駐極體裝置,經由頸部擷取肺音訊號,利用數位訊號處理之時頻分析,偵測出異常的肺音,進而判斷哮喘發作之特徵。在時頻分析方面,本研究採用了希爾伯特黃轉換(Hilbert-Huang Transform, HHT)、短時傅立葉轉換(Short-Time Fourier Transform, STFT)及自相關函數(Auto Correlation Function, ACF),三種方法去分析並比較其結果。
本論文主要以電腦呼吸音分析(Computerized Respiratory Sound Analysis, CORSA)定義哮喘音之標準為基礎,下載網路資料庫上的肺音訊號作分析,正確率分別為希爾伯特黃轉換法94.83%,自相關函數法93.1%,短時傅立葉轉換法91.38%;最後由台大醫院胸腔門診的氣喘病患量測的臨床訊號作驗證,辨識率之結果分別為希爾伯特黃轉換法85%,自相關函數法70%,短時傅立葉轉換法78%。因此,本研究選擇HHT方法作為哮喘音的辨識,期許未來可以應用在小型嵌入式系統作居家照護與長時氣喘病患的監控上。
zh_TW
dc.description.abstractAsthma is a common chronic inflammatory disease. Through the stethoscope the characteristics of lung sounds are taken for diagnosis by physicians usually. Wheezing is a typical feature of asthma attack.
The purpose of this study is to establish a small device for asthma attack monitoring in long-term care.
In this study, three methods, say , the Hilbert-Huang Transform(HHT), the Auto Correlation Function(ACF) and the Short Time Fourier Transform(STFT) were used to detect the threshold of Wheezing for medical alarm.
The criterion suggested by the Computerized Respiratory Sound Analysis (CORSA) for wheezing detection is adopted in this study. By using the sample data down load from the data base, the experimental result shows that the identification rates are 94.83% for HHT, 93.1% for ACF and 91.38% for STFT respectively. On the other hand, the lung sound signal of asthma patient measured in the National Taiwan University Hospital chest clinic are used for validation of these three methods. The identification rates are 85% for HHT, 70% for ACF and 78% for STFT respectively. Therefore, this study shows that the HHT method is a better choice for wheezing recognition.
In the future, it is hope that this algorithm can be used in the home-care asthma monitoring system.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T00:29:29Z (GMT). No. of bitstreams: 1
ntu-100-R98525053-1.pdf: 3381141 bytes, checksum: a31e9c0fb12b8a409bcdae9075b2de8a (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents目錄
誌謝 I
中文摘要 II
英文摘要 III
目錄 IV
圖目錄 VII
表目錄 X
第一章 緒論
1.1 研究動機與目的 1
1.2 肺音 2
1.2.1 正常肺音 2
1.2.2 異常肺音 3
1.3 哮喘音相關文獻回顧 5
1.4 論文架構 7
第二章 氣喘簡介
2.1 氣喘的特徵 9
2.2 氣喘的診斷 10
第三章 時頻分析方法
3.1 希爾伯特黃轉換(Hilbert-Huang Transform, HHT) 11
3.1.1 瞬時頻率 (Instantaneous Frequency, IF) 11
3.1.2 本質模態函數 (Intrinsic Mode Function, IMF) 18
3.1.3 經驗模態分解 (Empirical Mode Decomposition, EMD) 19
3.1.4 HHT之特性 23
3.2 基頻分析(Pitch Analysis) 24
3.2.1 窗函數(Window Function) 24
3.2.2 自相關函數(Auto Correlation Function, ACF) 27
3.3 短時傅立葉轉換(Short Time Fourier Transform, STFT) 29
3.3.1 短時傅立葉轉換之定義 29
3.3.2 短時傅立葉轉換之限制 30
第四章 研究方法
4.1 資料前處理 31
4.2 偵測哮喘 33
4.2.1 希爾伯特黃轉換法 34
4.2.2 自相關函數法 35
4.2.3 短時傅立葉轉換法 35
4.3 訂定門檻值 37
4.3.1 二分法診斷 38
4.3.2 ROC曲線之定義 38
第五章 實驗結果
5.1 希爾伯特黃轉換方法 45
5.2 自相關函數方法 50
5.3 短時傅立葉轉換法 54
5.4 實驗結果之比較 58
5.4.1 誤判檔案之比較 59
5.5 研究方法之驗證 62
第六章 結論與展望
6.1 結論 67
6.2 展望 68
參考文獻
附錄A
dc.language.isozh-TW
dc.subject哮喘音zh_TW
dc.subject肺音zh_TW
dc.subject數位訊號處理zh_TW
dc.subjectHHTzh_TW
dc.subjectSTFTzh_TW
dc.subjectACFzh_TW
dc.subjectLung sounden
dc.subjectWheezeen
dc.subjectSTFTen
dc.subjectACFen
dc.subjectHHTen
dc.title以呼吸聲頻之數位訊號作哮喘病徵之辨識zh_TW
dc.titleThe use of the digital breathing frequency signal for wheezing recognitionen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee丁肇隆,黃維信,王昭男
dc.subject.keyword肺音,哮喘音,數位訊號處理,HHT,STFT,ACF,zh_TW
dc.subject.keywordLung sound,HHT,ACF,STFT,Wheeze,en
dc.relation.page72
dc.rights.note有償授權
dc.date.accepted2011-08-04
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工程科學及海洋工程學研究所zh_TW
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
3.3 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved