Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28886
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鍾孫霖
dc.contributor.authorHao-Yang Leeen
dc.contributor.author李皓揚zh_TW
dc.date.accessioned2021-06-13T00:27:52Z-
dc.date.available2008-08-02
dc.date.copyright2007-08-02
dc.date.issued2007
dc.date.submitted2007-07-24
dc.identifier.citationAitchison, J.C., Ali, J.R., Davis, A.M. (2007) When and where did India and Asia collide? J. Geophys. Res., 112, B05423, doi:10.1029/2006JB004706.
Alam, M., Alam, M.M., Curray, J.R., Chowdhury, M.L.R. and Gani, M.R. (2003) An overview of the sedimentary geology of the Bengal Basin in relation to the regional tectonic framework and basin-fill history. Sediment. Geology, 155: 179-208.
Allègre, C.J. and 34 others (1984) Structure and evolution of the Himalaya-Tibet orogenic belt. Nature, 307: 17-22.
Bacon, C.R. and Druitt, T.H. (1988) Compositional evolution of the zoned calcalkaline magma chamber of Mount-Mazama, Crater Lake, Oregon. Contrib. Mineral. Petrol., 98: 224-256.
Baksi, A.K., Archibald, D.A. and Farrar, E. (1996) Intercalibration of 40Ar-39Ar dating standards. Chem. Geol., 129: 307-324.
Blatt, H. and Tracy, R.J. (1995) Petrology: igneous, sedimentary, and metamorphic. W. H. Freeman, 2nd Edition, 529 pp.
Bureau of Geology and Mineral Resources of Xizang Autonomous Region (1993) Regional Geology of Xizang (Tibet), with 1/1,500,000 Geological Map. Geol. Publ. House, Beijing, 707 pp.
Chemenda, A.I., Burg, J.-P. and Mattauer, M. (2000) Evolutionary model of the Himalaya-Tibet system: geopoem based on new modeling, geological and geophysical data. Earth Planet. Sci. Lett., 174: 397-409.
Chu, C.-H. (2005) Generation of high-Mg andesites in the Kueishantao volcano, the southernmost part of the Okinawa Trough. MS Thesis, Department of Geosciences, National Taiwan University, 99 pp. (in Chinese)
Chu, M.-F., Chung, S.-L., Song, B., Liu, D., O’Reilly, S.Y., Pearson, N.J., Ji, J. and Wen, D.-J. (2006) Zircon U-Pb and Hf isotope constraints on the Mesozoic tectonics and crustal evolution of southern Tibet. Geology, 34: 745-748.
Chu, M.-F. (2006) Application of ICP-MS to the study of Transhimalayan petrogenesis. Ph.D. Dissertation, Department of Geosciences, National Taiwan University, 259 pp.
Chung, S.-L., Sun, S.-s., Tu, K., Chen, C.-H. and Lee, C.-Y. (1994) Late Cenozoic basaltic volcanism around the Taiwan Strait, SE China: product of lithosphere-asthenosphere interaction during continental extension. Chem. Geol., 112: 1-20.
Chung, S.-L., Jahn, B.-M., Chen, S., Lee, T. and Chen, C.-H. (1995) Miocene basalts in northwestern Taiwan: evidence for EM-type mantle sources in the continental lithosphere. Geochim. Cosmochim. Acta, 59: 549-555.
Chung, S.-L., Liu, D., Ji, J., Chu, M.-F., Lee, H.-Y., Wen, D.-J., Lo, C.-H., Lee, T.-Y., Qian, Q. and Zhang, Q. (2003a) Adakites from continental collision zones: Melting of thickened lower crust beneath southern Tibet. Geology, 31: 1021-1024.
Chung, S.-L., Lo, C.-H. and Lee, T.-Y. (2003b) Petrologic case for Eocene slab breakoff during the Indo-Asian collision (Comment). Geology, 31: e7.
Chung, S.-L., Chu, M.-F., Zhang, Y., Xie, Y., Lo, C.-H., Lee, T.-Y., Lan, C.-Y., Li, X., Zhang, Q. and Wang, Y. (2005) Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism. Earth Sci. Rev., 68: 173-196.
Coulon, C., Maluski, H., Bollinges, C. and Wang, S. (1986) Mesozoic and Cenozoic volcanic rocks from central and southern Tibet: 39Ar-40Ar dating, petrological characteristics and geodynamical significance. Earth Planet. Sci. Lett., 79: 281-302.
Coulon, C., Megartsi, M., Fourcade, S., Maury, R., Bellon, H., Louni-Hacini, A., Cotten, J., Coutelle, A. and Hermitte, D. (2002) Post-collisional transition from calc-alkaline to alkaline volcanism during the Neogene in Oranie (Algeria): magmatic expression of a slab breakoff. Lithos, 62: 87-110.
Copeland, P., Harrison, T.M., Pan, Y., Kidd, W.S.F., Roden, M. and Zhang, Y.-Q. (1995) Thermal evolution of the Gangdese batholith, southern Tibet: a history of episodic unroofing. Tectonics, 14: 223-236.
Davies, J.H. and von Blanckenburg, F. (1995) Slab breakoff: A model of lithosphere detachment and its test in the magmatism and deformation of collisional orogens. Earth Planet. Sci. Lett., 129: 85-102.
DeCelles, P.G., Robinson, D.M. and Zandt, G. (2002) Implications of shortening in the Himalayan fold-thrust belt for uplift of the Tibetan plateau. Tectonics, 21: 1062-1087.
Dewey, J.F., Shackleton, R.M., Chang, C. and Sun, Y. (1988) The tectonic evolution of the Tibetan Plateau. Philos. Trans. R. Soc. Lond., A327: 379-413.
Dong, G., Mo, X., Zhao, Z., Wang, L. and Zhou, S. (2005) A new understanding of the stratigraphic successions of the Linzizong volcanic rocks in the Linzhou basin, northern Lhasa, Tibet, China. Geol. Bull. China, 24: 549-557. (in Chinese)
Ducea, M. (2001) The California arc: thick granitic batholiths, eclogitic residures, lithospheric-scale thrusting, and magmatic flare-ups. GSA Today, 11: 4-10.
Garzanti, E., Fort, P.L. and Sciunnach, D. (1999) First report of lower Permian basalts in southern Tibet: tholeiitic magmatism during break-up and incipient opening of Neotethys. J. Asian Earth Sci., 17: 533-546.
Gill, J.B. (1981) Orogenic andesites and plate tectonics. Berlin: Springer, 390 pp.
Guillot, S., Garzanti, E., Baratoux, D., Marquer, D., Mahéo, G. and de Sigoyer, J. (2003) Reconstructing the total shortening history of the NW Himalaya. Geochem. Geophys. Geosyst., 4, 1064, doi:10.1029/2002GC000484.
Gradstein, F.M., Ogg, J.G. and Smith, A.G. (2004) A Geologic Time Scale 2004. Cambridge University Press, Cambridge, U.K., 384 pp.
Griffin, W.L., Wang, X., Jackson, S.E., Pearson, N.J., O’Reilly, S.Y., Xu, X. and Zhou, X. (2002) Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos, 61: 237-269.
He, S., Kapp, P., DeCelles, P.G., Gehrels, G.E. and Heizler, M. (2007) Cretaceous-Tertiary geology of the Gangdese arc in the Linzhou area, southern Tibet. Tectonophysics, 433: 15-37.
Hodges, K.V. (2000) Tectonics of the Himalaya and southern Tibet from two perspectives. Geol. Society Amer. Bull., 112: 324-350.
Huppert, E.H. and Sparks, R.J.S. (1988) The generation of granitic magmas by intrusion of basalt into continental crust. J. Petrol., 29: 599-624.
Jin, Y., McNutt, M.K. and Zhu, Y.Z. (1996) Mapping the descent of Indian and Eurasian plates beneath the Tibetan plateau from gravity anomalies. J. Geophys. Res., 101: 11275-11290.
Kapp, P., Yin, A., Harrison, T.M. and Ding, L. (2005) Cretaceous-Tertiary shortening, basin development, and volcanism in central Tibet. GSA Bull., 117: 865-878.
Klootwijk, C.T., Gee, J.S., Peirce, J.W., Smith, G.M. and McFadden, P.L. (1992) An early India-Asia contact: paleomagnetic constraints from Ninetyeast Ridge, ODP Leg 121. Geology, 20: 395-398.
Kohn, M.J. and Parkinson, C.D. (2002) Petrologic case for Eocene slab breakoff during the Indo-Asian collision. Geology, 30: 591-594.
Le Bas, M.J., Le Maitre, R.W., Streckeisen, A. and Zanettin, B. (1986) A chemical classification of volcanic rocks based on the total alkali-silica diagram. J. Petrol., 27: 745-750.
Lee, C.-Y., Tsai, J.-H., Ho, H.-H., Yang, T.F., Chung, S.-L. and Chen, C.-H. (1997) Quantitative analysis in rock samples by a X-ray fluorescence spectrometer (Ⅰ) major elements. Program with Abstracts of 1997 Annual Meeting of Geological Society of China, Taipei, p. 418-420. (in Chinese)
Lee, H.-Y., Chung, S.-L., Wen, D.-J., Ji, J., Qian, Q., Lo, C.-H. and Lee, T.-Y. (2003) Age and geochemical constraints on the genesis of the Paleogene Linzizong volcanic successions in southern Tibet. EGS-AGU-EUG Joint Meeting Abstracts, p. 487.
Lee, H.-Y., Chung, S.-L., Wen, D.-J., Lo, C.-H., Ji, J., Qian, Q. and Lee, T.-Y. (2004) New age and geochemical constraints for the origin of the Linzizong volcanic successions, southern Tibet. Eos Trans. AGU, Western Pacific Geophysics Meeting Abstracts, p. 164.
Leech, M.L., Singh, S., Jain, A.K., Klemperer, S.L. and Manickavasagam, R.M. (2005) The onset of India-Asia continental collision: Early, steep subduction required by the timing of UHP metamorphism in the western Himalaya. Earth Planet. Sci. Lett., 234: 83-97.
Lindsay, J.F., Holliday, D.W. and Hulbert, A.G. (1991) Sequence stratigraphy and evolution of Ganges-Brahmaputra Delta complex. Amer. Assoc. Petrol. Geol. Bull., 75: 1233-1254.
Liu, H. (1993) Division of Linzizong volcanic series and its geochronology in Lhasa area. Xizang Geology, 2: 59-69. (in Chinese)
Liu, Y.-H., Yang, H.-J., Shau, Y.-H, Meng, F., Zhang, J., Yang, J., Xu, Z. and Yu, S.-C. (2007) Compositions of high Fe-Ti eclogites from the Sulu UHP metamorphic terrane, China: HFSE decoupling and protolith characteristics. Chem. Geol., 239: 64-82.
Lo, C.-H., Chung, S.-L., Lee, T.-Y. and Wu, G. (2002) Age of the Emeishan flood magmatism and relations to Permian-Triassic boundary events. Earth Planet. Sci. Lett., 198: 449-458.
Mahéo, G., Guillot, S., Blichert-Toft, J., Rolland, Y. and Pêcher, A. (2002) A slab breakoff model for the Neogene thermal evolution of South Karakoram and South Tibet. Earth Planet. Sci. Lett., 195: 45-58.
Maluski, H., Proust, F. and Xiao, X.C. (1982) 39Ar/40Ar dating of the trans-Himalayan calc-alkaline magmatism of southern Tibet. Nature, 298: 152-154.
Maury, R., Fourcade, S., Coulon, C., Azzouzi, M.E., Bellon, H., Coutelle, A., Ouabadi, A., Semroud, B., Megartsi, M., Cotten, J., Belanteur, O., Louni-Hacini, A., Piqué, A., Capdevila, R., Hernandez, J. and Réhault, J.-P. (2000) Post-collisional Neogene magmatism of the Mediterranean Maghreb margin: a consequence of slab breakoff. Earth Planet. Sci., 331: 159-173.
Miller, C., Schuster, R., Klötzli, U., Frank, W. and Purtscheller, F. (1999) Post-collisional potassic and ultrapotassic magmatism in SW Tibet: geochemical and Sr-Nd-Pb-O isotopic constraints for mantle source characteristics and petrogenesis. J. Petrol., 40: 1399-1424.
Miller, C., Schuster, R., Klötzli, U., Frank, W. and Grasemann B. (2000) Late Cretaceous-Tertiary magmatic and tectonic events in the Transhimalaya batholith (Kailas area, SW Tibet). Schweiz. Mineral. Petrograph. Mitt., 80: 1-20.
Mo, X., Zhao, Z., Deng, J., Dong, G. and Zhou, S. (2003) Response of volcanism to the India-Asia collision. Earth Sci. Frontiers, 10: 135-148. (in Chinese)
Murphy, M.A., Yin, A., Harrison, T.M., Dürr, S.B., Chen, Z., Ryerson, F.J., Kidd, W.S.F., Wang, X. and Zhou, X. (1997) Did the Indo-Asian collision alone create the Tibetan plateau? Geology, 25: 719-722.
Pan, G., Ding, J., Yao, D. and Wang, L. (2004) Guidebook of 1:1,500,000 geologic map of the Qinghai-Xizang (Tibet) plateau and adjacent areas. Chengdu, China, Chengdu Cartographic Publishing House, 133 pp.
Pearce, J.A. and Mei, H. (1988) Volcanic rocks of the 1985 Tibet Geotraverse: Lhasa to Golmud. Philos Trans. R. Soc. Lond., A327: 169-201.
Pearce, J.A. and Peate, D.W. (1995) Tectonic implications of the composition of volcanic arc magmas. Annu. Rev. Earth Planet. Sci., 23: 251-285.
Renne, P.R., Swister, C.C., Deino, A.l., Karner, D.B., Owens, T.L. and DePaolo, D.J. (1998) Intercalibration of standards, absolute ages and uncertainties in 40Ar/39Ar dating. Chem. Geol., 145: 117-152.
Rowley, D.B. and Currie, B.S. (2006) Paleo-altimetry of the late Eocene to Miocene Lunpola basin, central Tibet. Nature, 439: 677-681.
Rudnick, R.L. and Gao, S. (2004) Composition of the continental crust. In: Treatise on Geochemistry, Holland, H.D., Turekian, K.K. and Rudnick, R.L. (Eds), 3: 1-64.
Shinjo, R., Chung, S.-L., Kato, Y. and Kimura, M. (1999) Geochemical and Sr-Nd isotopic characteristics of volcanic rocks from the Okinawa Trough and and Ryukyu Arc: Implications for the evolution of a young, intracontinental back arc basin. J. Geophys. Res., 104: 10591-10608.
Smith, A.D. and Huang, L.-Y. (1997) The use of extraction chromatographic materials in procedures for the isotopic analysis of neodymium and strontium in rocks by thermal ionization mass spectrometry. J. Natl. Cheng-Kung Univ., 32: 1-10.
Song, B., Zhang, Y., Wan, Y. and Jian, P. (2002) Mount making and procedure of the SHRIMP dating. Geological Review, 48 (Supplement): 26-30. (in Chinese)
Steiger, R.H. and Jäger, E. (1977) Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmochronology. Earth Planet. Sci. Lett., 36: 359-362.
Stern, R.J. (2002) Subduction zones. Rev. Geophys., 40: 1-36.
Sun, S.-s. and McDonough, W.F. (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Magmatism in the Ocean Basin. Geological Society, London, Special Publications, Saunders, A.D. and Norry, M.J. (Eds), 42: 313-345.
Tanaka, T. and 18 others (2000) JNdi-1: a neodymium isotopic reference in consistency with LaJolla neodymium. Chem. Geol., 168: 279-281.
Tatsuni, Y. and Eggins, S. (1995) Subduction Zone Magmatism. Blackwell Sci., 211 pp.
Tatsumi, Y. (2000) Continental crust formation by crustal delamination in subduction zones and complementary accumulation of the enriched mantleⅠ component in the mantle. Geochem. Geophys. Geosyst., 1, doi:10.1029/2000GC000094.
van de Zedde, D.M.A. and Wortel, M.J.R. (2001) Shallow slab detachment as a transient source of heat at midlithospheric depths. Tectonics, 20: 868-882.
von Blanckenburg, F. and Davies, J.H. (1995) Slab breakoff: A model for syncollisional magmatism and tectonics in the Alps. Tectonics, 14: 120-131.
Wang, K.-L., Chung, S.-L., O’Reilly, S.Y., Sun, S.-s., Shinjo, R. and Chen, C.-H. (2004) Geochemical constraints for the genesis of post-collisional magmatism and the geodynamic evolution of the northern Taiwan region. J. Petrol., 45: 975-1011.
Wen, D.-J., Liu, D., Chung, S.-L., Chu, M.-F., Ji, J., Zhang, Q., Song, B., Lee, T.-Y., Yeh, M.-W. and Lo, C.-H. (2007) Zircon SHRIMP U-Pb ages of the Gangdese Batholith and the evolution from accretionary to collisional orogeny in southern Tibet. Submitted to Chem. Geol.
Wen, D.-J. (2007) The Gangdese Batholith, southern Tibet: Ages, geochemical characteristics and petrogenesis. Ph.D. Dissertation, Department of Geosciences, National Taiwan University.
Welson, M. (1989) Igneous petrogenesis. Chapman & Hall, 462 pp.
Wortel, M.J.R. and Spakman, W. (2000) Subduction and slab detachment in the Mediterranean-Carpathian region. Science, 290: 1910-1917.
Wu, F.-Y., Yang, Y.-H., Xie, L.-W., Yang, J.-H. and Xu, P. (2006) Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology. Chem. Geol., 234: 105-126.
Wyllie, P.J. and Sekine, T. (1982) The formation of mantle phlogopite in subduction zone hybridization. Contrib. Mineral. Petrol., 79: 375-380.
Xu, R.-H., Schärer, U. and Allègre, C.J. (1985) Magmatism and metamorphism in the Lhasa block (Tibet): a geochronological study. J. Geol., 93: 41-57.
Xu, P., Wu, F., Xie, L. and Yang, Y. (2004) Hf isotopic compositions of the standard zircons for U-Pb dating. Chin. Sci. Bull., 49: 1403-1410. (in Chinese)
Xu, J.-f. and Castillo, P.R. (2004) Geochemical and Nd-Pb isotopic characteristics of the Tethyan asthenosphere: implications for the origin of the India Ocean mantle domain. Tectonophysics, 393: 9-27.
Yang, J.-H., Chung, S.-L., Wilde, S.A., Wu, F.-Y., Chu, M.-F., Lo, C.-H. and Fan, H.-R. (2005) Petrogenesis of post-orogenic syenites in the Sulu Orogenic Belt, East China: Geochronological, geochemical and Nd-Sr isotopic evidence. Chem. Geol., 214: 99-125.
Yang, J.-H., Wu, F.-Y., Chung, S.-L., Wilde, S.A. and Chu, M.-F. (2006a) A hybrid origin for the Qianshan A-type granite, northeast China: Geochemical and Sr-Nd-Hf isotopic evidence. Lithos, 89: 89-106.
Yang, J.-H., Wu, F.-Y., Wilde, S.A., Xie, L.-W., Yang, Y.-H. and Liu, X.-M. (2006b) Trace magma mixing in granite genesis: in-situ U-Pb dating and Hf isotope analysis of zircons. Contrib. Mineral. Petrol., in press. doi:10.1007/s00410-006-0139-7.
Yin, A. and Harrison, T.M. (2000) Geologic evolution of the Himalayan-Tibetan orogen. Annu. Rev. Earth Planet. Sci., 28: 211-280.
Zhou, S., Mo, X., Dong, G., Zhao, Z, Qiu, R., Wang, L, and Guo, T. (2004) 40Ar/39Ar geochronology of Cenozoic Linzizong volcanic rocks from Linzhou Basin, Tibet. China, Chin. Sci. Bull., 49: 2095-2103. (in Chinese)
Zhu, D., Pan, G., Mo, X., Wang, L., Liao, Z., Zhao, Z., Dong, G. and Zhou C. (2006a) Late Jurassic-Early Cretaceous geodynamic setting in middle-northern Gangdese: New insights from volcanic rocks. Acta Petrol. Sin., 22: 534-546. (in Chinese)
Zhu, D.-C., Pan, G.-T., Chung, S.-L., Mo, X.-X., Zhao, Z.-D., Liao, Z.-L., Wang, L.-Q., Li, G.-M. and Dong, G.-C. (2006b) SHRIMP zircon age and geochemical constraints on the origin of early Jurassic volcanic rocks from the Yeba Formation, southern Gangdese in south Tibet. Submitted.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28886-
dc.description.abstract在藏南拉薩陸塊廣泛出露的林子宗火山岩,一般認為形成於印度-亞洲碰撞之前,是新特提斯洋板塊向北隱沒所造成的安地斯山型島弧岩漿產物。本研究在拉薩陸塊中系統性採集了火山岩從事鋯石鈾-鉛和全岩氬-氬定年,希望進一步了解林子宗火山岩的時空分佈,再進行地球化學分析工作,藉以探討林子宗火山岩的岩石成因。定年結果顯示,一般習稱的林子宗火山岩其實是兩期火山活動的產物,即:(1)白堊紀活動期,介於112~71 Ma,普遍分佈在拉薩陸塊上;(2)早第三紀活動期,介於63~43 Ma,僅分佈在拉薩陸塊南部。根據原始定義,後者才是“真正的”林子宗火山岩,並可由老至年輕分為典中組、年波組及帕那組等三個火山地層單元。整體而言,從白堊紀到早第三紀,藏南火山活動展現南向遷移而且規模加劇的特徵,並在50 Ma左右形成廣泛的岩漿“大噴發”(magmatic “flare-up”)。
地球化學資料顯示,林子宗火山岩的成份從玄武岩變化到流紋岩(SiO2=45~80 wt.%),性質以鈣鹼質為主,都具有大離子半徑元素(LILE)富集和高場力鍵結元素(HFSE)虧損的典型島弧岩漿特徵。在大噴發時期產生的火山岩(即:帕那組)最不均質,組成從低鉀拉斑質、鈣鹼質變化到鉀玄質,並且呈現不同程度的輕稀土元素富集,我們據此可將本期林子宗火山岩區分為鈣鹼質系列(calc-alkaline suite)、低鉀系列(low-K suite)、高稀土系列(high-REE suite)和鉀玄系列(shoshonitic suite)四類。
就大部分的鈣鹼質林子宗火山岩(63~50 Ma)而言,它們的鍶釹同位素比值 [
zh_TW
dc.description.abstractThe Linzizong volcanic successions that crop out in the Lhasa terrane, southern Tibet have been widely regarded as the products of northward subduction of the Neo-Tethyan oceanic slab that resulted in an Andean-type convergent margin along South Asia before its collision with India. In this study, 2 zircon U-Pb ages and 26 whole-rock Ar-Ar ages along with geochemical analysis of 129 volcanic rocks collected from the Lhasa terrane were carried out to better constrain the temporal-spatial distribution and petrogenesis of the Linzizong volcanism. The age results delineate two discrete episodes of volcanic activity. These are (1) a widespread Cretaceous episode (ca. 112~71 Ma), and (2) an intense, but geographically confined, Paleogene episode (ca. 63~43 Ma) that occurred only in the southern part of the Lhasa terrane. The second episode is here re-defined as the “real” Linzizong volcanic successions that comprise, from bottom to top, Dianzhong, Nianbo and Pana Formations. The age results furthermore indicate a southward migration and intensification of volcanism, which culminated at ca. 50 Ma (“flare-up” period).
The Linzizong volcanic successions consist dominantly of calc-alkaline rocks that range from basalt to rhyolite compositions (SiO2=45~80 wt.%) and show typical arc-lava geochemical features marked with LILE enrichment and HFSE depletion in the spidergram. Those formed during the flare-up period, i.e., the Pana Formation, however, show significant geochemical variations from low-K tholeiitic through calc-alkaline to shoshonitic compositions coupled with increasing enrichment in LREEs. Therefore, the volcanic successions are divided into four suites, namely, calc-alkaline suite, low-K suite, high-REE suite and shoshonitic suite.
Most Linzizong calc-alkaline rocks (ca. 63 to 50 Ma) show Sr and Nd isotope compositions [
en
dc.description.provenanceMade available in DSpace on 2021-06-13T00:27:52Z (GMT). No. of bitstreams: 1
ntu-96-F88224102-1.pdf: 20424318 bytes, checksum: fbedc2a9b9e55d976f0b5e9f2b5806ad (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents誌 謝 I
摘 要 II
ABSTRACT IV
LIST OF FIGURES X
LIST OF TABLES XIII
LIST OF PLATES XIII
CHAPTER 1.INTRODUCTION 1
CHAPTER 2.GEOLOGICAL BACKGROUND AND SAMPLING 5
CHAPTER 3.ANALYTICAL METHODS 12
3.1. Ar-Ar dating 12
3.2. Zircon U-Pb dating 12
3.3. Major- and trace-element measurements 13
3.4. Sr-Nd isotope analysis 14
3.5. Zircon Hf isotope analysis 15
CHAPTER 4.ANALYTICAL RESULTS 18
4.1. Geochronological results 18
4.1.1. Whole-rock Ar-Ar ages 18
4.1.2. Zircon U-Pb ages 23
4.2. Major- and trace-element results 27
4.2.1. Major-element compositions 27
4.2.1.1. Southern Province (Linzizong volcanic successions) 27
4.2.1.2. Northern Province and Sangri Group 40
4.2.2. Trace-element compositions 41
4.2.2.1. Southern Province (Linzizong volcanic successions) 41
4.2.2.2. Northern Province and Sangri Group 52
4.3. Whole-rock Sr-Nd and zircon Hf isotope results 58
4.3.1. Whole-rock Sr-Nd isotope compositions 58
4.3.1.1. Southern Province (Linzizong volcanic successions) 58
4.3.1.2. Northern Province and Sangri Group 63
4.3.2. Zircon Hf isotope data 63
CHAPTER 5.DISCUSSION 65
5.1. Temporal-spatial distribution of the Linzizong volcanic successions 65
5.2. Geochemical changes in magmas through time 70
5.3. Source components: mantle wedge, asthenosphere and crust 73
5.4. Zircon Hf isotopic constraints 76
5.5. Magma generation of the Linziong volcanic successions 79
5.5.1. Dianzhong and Nianbo Formations (ca. 63 to 50 Ma) 79
5.5.2. Pana Formation (ca. 50 to 43 Ma) 80
5.6. Geodynamic significance inferred from age and geochemical constraints 85
5.6.1. ca. 63 to 50 Ma 85
5.6.2. ca. 50 to 43 Ma 88
CHAPTER 6.CONCLUSIONS 94
REFERENCES 96
PLATES 109
APPENDIX 111
Table DR-1 111
Refereed Paper 1.Miocene Jiali faulting and its implications for Tibetan tectonic evolution EPSL (2003) 120
Refereed Paper 2.藏南林周盆地林子宗火山岩的時代、成因及其地質意義:鋯石U-Pb年齡和Hf同位素證據 岩石學報(2007) 138
Refereed Paper 3.Age and Geochemical Characteristics of the Linzizong Volcanism for Neotethyan Slab Breakoff in Southern Tibet (Submitted to Geology) 146
dc.language.isoen
dc.subject板塊脫離zh_TW
dc.subject地球化學zh_TW
dc.subject年代zh_TW
dc.subject西藏zh_TW
dc.subject林子宗火山岩zh_TW
dc.subject新特提斯洋隱沒zh_TW
dc.subjectLinzizong volcanic successionsen
dc.subjectslab breakoffen
dc.subjectNeo-Tethyan subductionen
dc.subjectgeochemistryen
dc.subjectageen
dc.subjectTibeten
dc.title藏南林子宗火山岩的年代學、地球化學和地體構造意義zh_TW
dc.titleThe Linzizong Volcanic Successions, Southern Tibet: Ages, Geochemical Characteristics and Geodynamic Significanceen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree博士
dc.contributor.oralexamcommittee江博明,陳正宏,羅清華,楊燦堯,李通藝,王國龍
dc.subject.keyword林子宗火山岩,西藏,年代,地球化學,新特提斯洋隱沒,板塊脫離,zh_TW
dc.subject.keywordLinzizong volcanic successions,Tibet,age,geochemistry,Neo-Tethyan subduction,slab breakoff,en
dc.relation.page174
dc.rights.note有償授權
dc.date.accepted2007-07-26
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept地質科學研究所zh_TW
顯示於系所單位:地質科學系

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
19.95 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved