請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28877完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 白書禎(Su-Cheng Pai) | |
| dc.contributor.author | Ying-Chun Lin | en |
| dc.contributor.author | 林盈君 | zh_TW |
| dc.date.accessioned | 2021-06-13T00:27:23Z | - |
| dc.date.available | 2007-07-27 | |
| dc.date.copyright | 2007-07-27 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-07-25 | |
| dc.identifier.citation | [ 1 ] Alain Aminot, D.S. Kirkwood, R. Kérouel (1997), Determination of ammonia in seawater by the indophenol-blue method:Evaluation of the ICES NUTS IC 5 questionnaire. Mar. Chem. 56,59.
[ 2 ] Alain Aminot , Roger Kérouel(2006), The determination of total dissolved free primary amines in seawater:Critical factors, optimized procedure and artefact correction. Mar. Chem. 98,223-240. [ 3 ] Berthelot M.(1859), Repertoire de Chemie Applique, 1, 284. [ 4 ] F. Azzaro , M. Galletta (2006), Automatic colorimetric analyzer prototype for high frequency. Mar Chem , 99,191. [ 5 ] J. González-Rodr´ıguez , P. Pérez-Juan , M.D. Luque de Castro(2002), Method for monitoring urea and ammonia in wine and must by flow injection–pervaporation,Anal Chim. Acta 471, 105–111 [ 6 ] J.P. Riley, R. Chester, Introduction to Marine Chemistry, Academic Press, London, 1971, p. 121. [ 7 ] L. Solórzano(1969). Determination of ammonia in natural waters by the phenolhypochlorite method. Limnol. Oceanogr. 5,799-801. [ 8 ] Lijuan Wang a, Terence J. Cardwell a, Robert W. Cattrall a, Maria D. Luque de Castro b, Spas D. Kolev(2003),Determination of ammonia in beers by pervaporation flowinjection analysis and spectrophotometric detection. Talanta 60 , 1269-1275 [9] Molins-Legua C, Meseguer-Lloret S, Moliner-Martinez Y, Campins-Falco P (2006), A guide for selecting the most appropriate method for ammonium determination in water analysis. IN Anal Chem25, 3 [10] Pai, S.C., Tsau, Y.J., Yang, T.I. (2001), pH and buffering capacity problems involved in the determinationof ammonia in saline water using the indophenol blue spectrophotometric method , Anal. Chim. Acta , 434,209. [11] Qian Perry Lia , Jia-Zhong Zhang , Frank J. Millero, Dennis A. Hansell (2005) ,Continuous colorimetric determination of trace ammonium inseawater with a long-path liquid waveguide capillary cell. Mar. Chem. 96, 73. [12] Roger Kérouel, Alain Aminot (1997),Fluorometric determination of ammonia in sea and estuarine waters by direct segmented flow analysis. Mar. Chem. 57,265-275. [13] Strickland, J. D. H. and T. R. Parson(1972), A Practical Handbook of Seawater Analysis. Bull. Fish. Res. Boasd Can., 2nd Edn., 167: 311. [14] 刑麗玉(2004),國立中山大學海洋地質及化學研究所碩士學位論文-台灣海峽有機氮、磷及營養鹽消耗程度分佈情形。 [15] 林恆毅(1999),國立台灣大學海洋研究所碩士學位論文-自然水體中氨氮靛藍分析法之探討與蘭陽溪氮磷物種之分佈。 [16] 高玉安(1999),國立台灣大學水產養殖研究所碩士學位論文-靛藍法測氨之鹽度效應的剖析和pH校正及試劑配方改良之研究。 [17] 楊岱宜(2001) ,國立台灣大學海洋研究所碩士學位論文-海水中氨氮測定干擾之研究。 [18] 蔡宇涵(2005),國立台灣大學海洋研究所碩士學位論文-南海有光層中溶解性氮物種分析與季節變化初探。 [19] 鍾仕偉、溫良碩、莊佳穎、蘇宗德,(2001),鹽度效應對營養鹽測定之影響. The Chinese Chem. SOC. Taipei,59(3),311-316. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28877 | - |
| dc.description.abstract | 本文主要在研究硫酸錳催化靛藍法測氨的方法,並探討溫度、final pH及鹽度對硫酸錳催化靛藍呈色的影響。溫度和final pH 都不會影響靛藍呈色的光譜(最大吸收波長630 nm)。但是final pH會影響硫酸錳催化靛藍呈色之反應速率及莫耳吸光係數, final pH越高,靛藍呈色的反應速率越快。淡水的靛藍呈色在final pH = 9.89有最大莫耳吸光係數約8000 M-1cm-1,而海水靛藍呈色則是在final pH = 9.74有最大莫耳吸光係數約6400 M-1cm-1。由於不同的鹽度對final pH影響太大,會影響氨氮的測定,為了方便實驗操作的進行,所以本文建議:不論是測定海水或淡水,所使用的試劑皆相同,但是都必須以final pH對吸光值之校正公式計算「淨吸光值」,校正公式為:Abs(corr.)=(Abs(actuality)-blank)× (0.4704×pH2 -9.935×pH +53.442) ,校正後之淨吸光值再依莫耳吸光係數為7600 M-1 cm-1計算原樣水中的氨濃度。本法的精密度約為1% ( at 20 mM level),偵測極限約0.5 mM, 線性範圍可至100 mM),雖然本法的試劑空白偏高,但如能精準控制二氯異三聚氰酸(DIC)試劑的加入量,仍可保持相當可信的再現性。由於硫酸錳催化之反應時間非常快(常溫下約7分鐘可達平衡),很容易將操作改為自動分析,非常適用於近岸河口海洋環境中高濃度氨樣水之測定。 | zh_TW |
| dc.description.abstract | The feasibility of using MnSO4 as a catalyst for the determination of ammonia in natural water based on the Indophenol blue reaction is studied. The salt interference on pH and color formation rate, the temperature effect on the kinetics of the formation reaction are examined in details. It was found that, using the MnSO4 catalyst, the reaction rate and the final molar extinction coefficient of the Indophenol blue complex are not affected by temperature but by the final pH, which is in oppose to the traditional Indophenol blue method using nitroprusside as a catalyzing agent. The maximum extinction coefficient of the freshwater samples is about 8000 M-1cm-1 at final pH=9.89 but it of the seawater samples is about 6600 M-1cm-1 at final pH=9.74. Samples of different salinities which would result in different final pH and different molar extinction coefficients. It is suggested the samples of different salinities should be added the same reagents to make the operation of determining ammonia in water easier. An empirical equation is nominated to correct for such salt error: Abs(corr.)=(Abs(actuality)-blank)× (0.4704×pH2 -9.935×pH +53.442)
Although the molar extinction coefficient by the proposed procedure is comparatively low, to be 7600 cm-1M-1, it takes advantage that the reaction time is much shorter (can be completed within 7 minutes under room temperature) than that of the traditional Indophenol blue method. The precision was 1 % at a concentration level of 20 mM, and the detection range is 0.5∼100 mM. The rapid reaction time also render this method to be readily adopted by auto-analysis, thus becomes a useful tool for the study of ammonia in estuarine and coastal environment. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T00:27:23Z (GMT). No. of bitstreams: 1 ntu-96-R93241407-1.pdf: 730603 bytes, checksum: f51c9d3c4ac97e598cc139edae5de61c (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | 中文摘要∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ i
英文摘要 ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ ii 目錄∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ iii 圖目錄∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙v 表目錄∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙vi 第一章 緒論∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙1 1.1概述∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙1 1.2靛藍法測氨的歷史演進及問∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙1 1.3研究動機與目標∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙4 第二章 靛藍法試劑配方之最佳化∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙6 2.1靛藍法測氨原理 ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙6 2.2催化劑及主要試劑之選擇∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙6 2.2.1探討催化劑硫酸錳替代亞硝醯鐵氰化鈉加快靛藍呈色反應的 可行性∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙6 2.2.2探討主要試劑對硫酸錳催化靛藍法之適用性∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙8 2.2.3結果與討論∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙10 2.3加藥順序對硫酸錳催化靛藍呈色的影響∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙11 2.4二氯異三聚氰酸試劑之問題與配製方式改良∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙12 2.5結果與討論∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙12 第三章 溫度及酸鹼值對硫酸錳催化靛藍呈色光譜及反應動力之影響∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙15 3.1概述∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙15 3.2探討溫度對靛藍呈色之影響∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙15 3.2.1試劑、儀器及實驗步驟∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙15 3.2.2 結果與討論∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 17 3.3探討pH值對硫酸錳催化靛藍呈色之影響∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙17 3.3.1 實驗步驟∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 18 3.3.2 結果與討論∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙18 第四章 鹽度對靛藍呈色之干擾∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙28 4.1 緩衝系統對pH漂移之測試∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙28 4.1.1試劑與實驗步驟∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙28 4.1.2結果與討論∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙31 4.2探討不同鹽度水體靛藍呈色之final pH 及莫耳吸光係數差異∙∙∙32 4.2.1試劑及操作步驟∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙32 4.2.2結果與討論∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙33 第五章 本文建議的方法∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 41 5.1本文建議之配方及實驗操作步驟∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙41 5.2檢量線、精密度測試及建議測定濃度範圍∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙42 第六章 應用錳催化靛藍法於感潮帶的氨氮測定∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙47 6.1概述 ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙47 6.2試劑與方法∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙47 6.3實際測試之結果∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙48 第七章 結論∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙53 參考文獻 ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙55 圖目錄 圖2.2靛藍呈色曲線圖∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙13 圖3.1溫度對亞硝醯鐵氰化鈉催化靛藍呈色反應平衡速率之影響∙∙∙20 圖3.2-1溫度對硫酸錳催化靛藍之呈色反應的影響∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙21 圖3.2-2溫度對硫酸錳催化靛藍呈色光譜的影響∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙22 圖3.3-1最終酸鹼值對硫酸錳催化靛藍呈色反應平衡速率之影響∙∙∙23 圖3.3-2最終酸鹼值對靛藍呈色光譜之影響∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙24 圖3.2-3最終酸鹼值對硫酸錳催化靛藍呈色之莫耳吸光係數的影響25 圖4.1滴定曲線與緩衝容量繪圖∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙35 圖4.2-1鹽度對硫酸錳催化靛藍呈色之最終酸鹼值的影響∙∙∙∙∙∙∙∙∙∙∙∙∙∙36 圖4.2-2硫酸錳催化靛藍呈色之莫耳吸光係數與鹽度之關係∙∙∙∙∙∙∙∙∙∙37 圖4.2-3不同鹽度樣水之最終酸鹼值與淨吸光值之關係∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙38 圖4.2-4淡水與半鹹水之吸光值比值與半鹹水最終酸鹼值的關係圖39 圖5.2-1氯化銨溶液的濃度與錳催化靛藍呈色之莫耳吸光係數關係 圖∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙44 圖5.2-2氯化銨標準樣品的濃度對靛藍呈色淨吸光值之檢量線∙∙∙∙∙∙∙45 圖6.1海研二號(ORII-1444)的採樣站位及氨濃度分佈∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙49 圖6.3硝醯鐵氰化鈉催化靛藍法與硫酸錳催化靛藍法氨氮實測濃度 之相對關係∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙52 表目錄 表1.2 Strickland and Parsons 與Pai et al.(2001)的測氨方法之 比較∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙5 表2.3試劑順序對錳催化靛藍呈色之莫耳吸光係數的影響∙∙∙∙∙∙∙∙∙∙∙∙∙∙14 表3.3-1最終酸鹼值對硫酸錳催化靛藍呈色的反應速率及莫耳吸光係 數之影響∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙26 表3.3-2最終酸鹼值對海水之靛藍呈色的反應速率及莫耳吸光係數之 影響∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙27 表4.2鹽度對樣水之靛藍呈色的最終酸鹼值與莫耳吸光係數之影響∙∙∙40 表5.2氯化銨溶液靛藍呈色吸光值之重複組實驗∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙46 表6.1海研二號採樣站位表(2007年聯合航次,ORII-1444)∙∙∙∙∙∙∙∙∙50 表6.3亞硝醯鐵氰化鈉催化靛藍法與硫酸錳催化靛藍法測氨之濃度比 較∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙51 | |
| dc.language.iso | zh-TW | |
| dc.subject | 靛藍呈色 | zh_TW |
| dc.subject | 自動分析 | zh_TW |
| dc.subject | 硫酸錳催化反應 | zh_TW |
| dc.subject | 測氨的方法 | zh_TW |
| dc.subject | 靛藍法 | zh_TW |
| dc.subject | color formation of Indophenol blue | en |
| dc.subject | the MnSO4 catalyst | en |
| dc.subject | determination of ammonia | en |
| dc.subject | auto-analysis | en |
| dc.subject | Indophenol blue reaction | en |
| dc.title | 硫酸錳催化靛藍法測氨之研究 | zh_TW |
| dc.title | Determination of ammonia in water by the Indophenol blue method catalyzed by manganese sulfate | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 龔國慶,溫良碩,何東垣 | |
| dc.subject.keyword | 靛藍法,靛藍呈色,測氨的方法,硫酸錳催化反應,自動分析, | zh_TW |
| dc.subject.keyword | Indophenol blue reaction,color formation of Indophenol blue,determination of ammonia,the MnSO4 catalyst,auto-analysis, | en |
| dc.relation.page | 57 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-07-26 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 海洋研究所 | zh_TW |
| 顯示於系所單位: | 海洋研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 713.48 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
