請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28876完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林亮音 | |
| dc.contributor.author | Yen-Chiung Cheng | en |
| dc.contributor.author | 程彥瓊 | zh_TW |
| dc.date.accessioned | 2021-06-13T00:27:20Z | - |
| dc.date.available | 2007-08-08 | |
| dc.date.copyright | 2007-08-08 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-07-26 | |
| dc.identifier.citation | 1. Löwenberg B, Downing JR, Burnett A. Acute Myeloid Leukemia. N Engl J Med 1999;341:1051-1062.
2. 何敏夫. 血液學: 合記圖書出版社1998. 3. Harris NL, Jaffe ES, Diebold J, et al. World Health Organization classification of neoplastic diseases of the hematopoietic and lymphoid tissues: report of the clinical advisory committee meeting—Airlie House, Virginia, November 1997. Journal of Clinical Oncology. 1999;17:3835-3849. 4. Dash A, Gilliland DG. Molecular genetics of acute myeloid leukaemia. Best Practice & Research Clinical Haematology 2001;14:49-64. 5. Nagasawa T, Hrotaf S, Tachibana K, et al. Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature. 1996;382. 6. Zou Y-R, Kottmann AH, Kuroda M, Taniuchi I, Littman DR. Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature. 1998;393:595-599. 7. Ma Q, Jones D, Borghesani PR, et al. Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4- and SDF-1-deficient mice. Proc Natl Acad Sci U S A. 1998;95:9448-9453. 8. Feng Y, Broder CC, Kennedy PE, Berger EA. HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science. 1996;272:872-877. 9. Ratajczak MZ, Zuba-Surma E, Kucia M, Reca R, Wojakowski W, Ratajczak J. The pleiotropic effects of the SDF-1–CXCR4 axis in organogenesis, regeneration and tumorigenesis. Leukemia. 2006;20:1915-1924. 10. Kucia M, Reca R, Miekus K, Wanzeck J, Wojakowski W, Janowska-Wieczorek A. Trafficking of normal stem cells and metastasis of cancer stem cells involve similar mechanisms: pivotal role of the SDF-1–CXCR4 axis. Stem Cells. 2005;23:879–894. 11. Doitsidou M, Reichman-Fried M, Stebler J. Guidance of primordial germ cell migration by the chemokine SDF-1. Cell. 2002;111:647-659. 12. Tachibana K, Hirota S, Iizasa H, et al. The chemokine receptor CXCR4 is essential for vascularization of the gastrointestinal tract. Nature. 1998;393:591-594. 13. Kucia M, Dawn B, Hunt G, Guo Y, Wysoczynski M, Majka M. Cells expressing early cardiac markers reside in the bone marrow and are mobilized into the peripheral blood after myocardial infarction. Circ Res. 2004;95:1191–1199. 14. Kollet O, Shivtiel S, Chen YQ, Suriawinata J, Thung SN, Dabeva MD. HGF, SDF-1, and MMP-9 are involved in stress-induced human CD34+ stem cell recruitment to the liver. J Clin Invest. 2003;112:160-169. 15. Möhle R, Bautz F, Rafii S, Moore MAS, Brugger W, Kanz L. The chemokine receptor CXCR-4 is expressed on CD34+ hematopoietic progenitors and leukemic cells and mediates transendothelial migration induced by stromal cell-derived factor-1. Blood. 1998;91:4523-4530. 16. Moser B, Loetscher P. Lymphocyte traffic control by chemokines. Nat Immunol. 2001;2:123-128. 17. Ma Q, Jones D, Springer TA. The chemokine receptor CXCR4 is required for the retention of B lineage and granulocytic precursors within the bone marrow microenvironment. Immunity. 1999;10:463-471. 18. Peled A, Petit I, Kollet O, et al. Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. Science. 1999;283:845-848. 19. Kahn J, Byk T, Jansson-Sjostrand L, et al. Overexpression of CXCR4 on human CD34+ progenitors increases their proliferation, migration, and NOD/SCID repopulation. Blood. 2004;103:2942-2949. 20. Neben S, Marcus K, Mauch P. Mobilization of hematopoietic stem and progenitor cell subpopulations from the marrow to the blood of mice following cyclophosphamide and/or granulocyte colony-stimulating factor. Blood. 1993;81:1960-1967. 21. Laterveer L, Lindley IJD, Hamilton MS, Willemze R, Fibbe WE. Interleukin-8 induces rapid mobilization of hematopoietic stem cells with radioprotective capacity and long-term myelolymphoid repopulating ability. Blood. 1995;85:2269-2275. 22. Liles WC, Broxmeyer HE, Rodger E, et al. Mobilization of hematopoietic progenitor cells in healthy volunteers by AMD3100, a CXCR4 antagonist. Blood. 2003;102:2728-2730. 23. Devine SM, Flomenberg N, Vesole DH, et al. Rapid mobilization of CD34 cells following administration of the CXCR4 antagonist AMD3100 to patients with multiple myeloma and non- Hodgkin's lymphoma. J Clin Oncol. 2004;22:1095-1102. 24. Hattori K, Heissig B, Tashiro K, et al. Plasma elevation of stromal cell-derived factor-1 induces mobilization of mature and immature hematopoietic progenitor and stem cells. Blood. 2001;97:3354-3360. 25. Kim CH, Broxmeyer HE. In vitro behavior of hematopoietic progenitor cells under the influence of chemoattractants: stromal cell-derived factor-1, steel factor, and the bone marrow environment. Blood. 1998;91:100-110. 26. Foudi A, Jarrier P, Zhang Y, et al. Reduced retention of radioprotective hematopoietic cells within the bone marrow microenvironment in CXCR4-/- chimeric mice. Blood. 2006;107:2243-2251. 27. Müller A, Homey B, Soto H, et al. Involvement of chemokine receptors in breast cancer metastasis. Nature. 2001;410:50-56. 28. Li YM, Pan Y, Wei Y, et al. Upregulation of CXCR4 is essential for HER2-mediated tumor metastasis. Cancer Cell. 2004;6:459-469. 29. Scotton C, Wilson J, Scott K. Multiple actions of the chemokine CXCL12 on epithelial tumor cells in human ovarian cancer. Cancer Res. 2002;62:5930-5938. 30. Burger M, Glodek A, Hartmann T, et al. Functional expression of CXCR4 (CD184) on small-cell lung cancer cells mediates migration, integrin activation, and adhesion to stromal cells. Oncogene. 2003;22:8093-8101. 31. Sun YX, Wang J, Shelburne CE, Lopatin DE, Chinnaiyan AM, Rubin MA. Expression of CXCR4 and CXCL12 (SDF-1) in human prostate cancers (PCa) in vivo. J Cell Biochem. 2003;89:462-473. 32. Geminder H, Sagi-Assif O, Goldberg L, Meshel T, Rechavi G, Witz IP. A possible role for CXCR4 and its ligand, the CXC chemokine stromal cell-derived factor-1, in the development of bone marrow metastases in neuroblastoma. J Immunol. 2001;167:4747–4757. 33. Burger JA, Kipps TJ. CXCR4: a key receptor in the crosstalk between tumor cells and their microenvironment. Blood. 2006;107:1761-1767. 34. Rombouts EJC, Pavic B, Löwenberg B, Ploemacher RE. Relation between CXCR-4 expression, Flt3 mutations, and unfavorable prognosis of adult acute myeloid leukemia. Blood. 2004;104:550-557. 35. Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat Rev Genet. 2002;3:415-428. 36. Wolffe AP, Matzke MA. Epigenetics: regulation through repression. Science. 1999;286:481-486. 37. Li E, Beard C, Jaenisch R. Role for DNA methylation in genomic imprinting. Nature. 1993;366:362–385. 38. Panning B, Jaenisch R. DNA hypomethylation can activate Xist expression and silence X-linked genes. Genes Dev. 1996;10:1991–2002. 39. Feinberg AP. Phenotypic plasticity and the epigenetics of human disease. Nature. 2007;447:433-440. 40. Zhu W-G, Srinivasan K, Dai Z, et al. Methylation of adjacent CpG sites affects Sp1/Sp3 binding and activity in the p21Cip1 romoter Mol Cell Biol. 2003;23:4056-4065. 41. Bestor TH. The DNA methyltransferases of mammals. Hum Mol Genet. 2000;9:2395-2402. 42. Plass C. Cancer epigenomics. Hum Mol Genet. 2002;11:2479-2488. 43. Singal R, Ginder GD. DNA Methylation. Blood. 1999;93:4059-4070. 44. Tate PH, Bird AP. Effects of DNA methylation on DNA-binding proteins and gene expression. Curr Opin Genet Dev. 1993;3:226-231. 45. Nan X, Campoy FJ, Bird A. MeCP2 is a transcriptional repressor with abundant binding sites in genomic chromatin. Cell. 1997;88:471-481. 46. Jones PL, Veenstra GCJ, Wade PA, et al. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription Nat Genet. 1998;19:187 - 191. 47. Kouzarides T. Chromatin Modifications and Their Function. Cell. 2007;128:693–705. 48. Robertson KD, Ait-Si-Ali S, Yokochi T, Wade PA, Jones PL, Wolffe AP. DNMT1 forms a complex with Rb, E2F1 and HDAC1 and represses transcription from E2F-responsive promoters Nat Genet. 2000;25:338 - 342. 49. Rountree MR, Bachman KE, Baylin SB. DNMT1 binds HDAC2 and a new co-repressor, DMAP1, to form a complex at replication foci. Nat Genet. 2000;25:269-277. 50. Fuks F, Burgers WA, Godin N, Kasai M, Kouzarides T. Dnmt3a binds deacetylases and is recruited by a sequence-specific repressor to silence transcription. The EMBO Journal 2001;20:2536–2544. 51. Harikrishnan KN, Chow MZ, Baker EK, et al. Brahma links the SWI/SNF chromatin-remodeling complex with MeCP2-dependent transcriptional silencing. Nat Genet. 2005;37:254 - 264. 52. Zhang Y, Ng HH, Erdjument-Bromage H, Tempst P, Bird A, Reinberg D. Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation. Genes Dev. 1999;13:1924–1935. 53. Galm O, Herman JG, Baylin SB. The fundamental role of epigenetics in hematopoietic malignancies. Blood Reviews. 2006;20:1–13. 54. El-Deiry WS, Nelkin BD, Celano P, et al. High expression of the DNA methyltransferase gene characterizes human neoplastic cells and progression stages of colon cancer. Proc Natl Acad Sci U S A. 1991;88:3470–3474. 55. Issa JP, Vertino PM, Wu J, et al. Increased cytosine DNA-methyltransferase activity during colon cancer progression. J Natl Cancer Inst. 1993;85:1235-1240. 56. Belinsky SA, Nikula KJ, Baylin SB, Issa JP. Increased cytosine DNA-methyltransferase activity is target-cell-specific and an early event in lung cancer. Proc Natl Acad Sci U S A. 1996;93:4045–4050. 57. Melki JR, Warnecke P, Vincent PC, Clark SJ. Increased DNA methyltransferase expression in leukaemia Leukemia. 1998;12:311–316. 58. Mizuno S-i, Chijiwa T, Okamura T, et al. Expression of DNAmethyltransferases DNMT1, 3A, and 3B in normal hematopoiesis and in acute and chronic myelogenous leukemia. Blood. 2001;97:1172-1179. 59. Bolden JE, Peart MJ, Johnstone RW. Anticancer activities of histone deacetylase inhibitors. Nat Rev. 2006;5:769-784. 60. Jüttermann R, Li E, Jaenisch R. Toxicity of 5-aza-2'-deoxycytidine to mammalian cells is mediated primarily by covalent trapping of DNA methyltransferase rather than DNA demethylation. Proc Natl Acad Sci U S A. 1994;91:11797–11801. 61. Daskalakis M, Nguyen TT, Nguyen C, et al. Demethylation of a hypermethylated P15/INK4B gene in patients with myelodysplastic syndrome by 5-Aza-2' deoxycytidine (decitabine) treatment. Blood. 2002;100:2957-2964. 62. Mack GS. Epigenetic cancer therapy makes headway. J Natl Cancer Inst. 2006;98:1443-1444. 63. Xiong Z, Laird PW. COBRA: a sensitive and quantitative DNA methylation assay. Nucleic Acids Research. 1997;25:2532–2534. 64. J.Clark S, Harrison J, L.Paul C, Frommer M. High sensitivity mapping of methylated cytosines. Nucleic Acids Research. 1994;22:2990-2997. 65. Herman JG, Graff JR, Myöhänen S, Nelkin BD, Baylin SB. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci U S A. 1996;93:9821–9826. 66. 劉佩玲. Studies on the significance of CXCR4-CXCL12 interaction on leukemic cell passing throug 'marrow-blood barrier'. 醫學檢驗暨生物技術學研究所: 國立台灣大學; 2003. 67. Elwin J. C. Rombouts BP, Bob Löwenberg, Rob E. Ploemacher. Relation between CXCR-4 expression, Flt3 mutations, and unfavorable prognosis of adult acute myeloid leukemia. Blood. 2004;104:550-557. 68. Spoo AC, Lübbert M, Wierda WG, Burger JA. CXCR4 is a prognostic marker in acute myelogenous leukemia. Blood. 2007;109:786-791. 69. Sato N, Matsubayashi H, Fukushima N, Goggins M. The Chemokine Receptor CXCR4 is Regulated by DNA Methylation in Pancreatic Cancer. Cancer Biology & Therapy. 2005;4:70-76. 70. Mori T, Kim J, Yamano T, et al. Epigenetic Up-regulation of C-C Chemokine Receptor 7 and C-X-C Chemokine Receptor 4 Expression in Melanoma Cells. Cancer Res. 2005;65:1800-1807. 71. Cameron EE, Bachman KE, Myöhänen S, Herman JG, Baylin SB. Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat Genet. 1999;21:103-107. 72. Rutherford TR, Clegg JB, Weatherall DJ. K562 human leukaemic cells synthesise embryonic haemoglobin in response to haemin. Nature. 1979;280:164–165. 73. Tabilio A, Pelicci PG, Vinci G, et al. Myeloid and megakaryocytic properties of K-562 cell lines. Cancer Res. 1983;43:4569–4574. 74. Pinto A, Maio M, Attadia V, Zappacosta S, Cimino R. Modulation of HLA-DR antigens expression in human myeloid leukaemia cells by cytarabine and 5-aza-2' deoxycytidine. Lancet. 1984;2:867–868. 75. Richel DJ, Colly LP, Kluin-Nelemans JC, Willemze R. The antileukaemic activity of 5-Aza-2 deoxycytidine (Aza-dC) in patients with relapsed and resistant leukaemia. Br J Cancer. 1991;64:144–148. 76. Issa JP, Ottaviano YL, Celano P, Hamilton SR, Davidson NE, Baylin SB. Methylation of the oestrogen receptor CpG island links ageing and neoplasia in human colon. Nat Genet. 1994;7:536-540. 77. Issa JP, Vertino PM, Boehm CD, Newsham IF, Baylin SB. Switch from monoallelic to biallelic human IGF2 promoter methylation during aging and carcinogenesis. Proc Natl Acad Sci U S A. 1996;93:11757–11762. 78. Gilliland DG, Griffin JD. The roles of FLT3 in hematopoiesis and leukemia. Blood. 2002;100:1532-1542. 79. Dettke M, Jurko S, Rüger BM, et al. Increased serum flt3-ligand in healthy donors undergoing granulocyte colony-stimulating factor-induced peripheral stem cell mobilization. J Hematother Stem Cell Res. 2001;10:317-320. 80. 林宗縉. A novel fluorescence-based multiplex PCR assay for rapid simultaneous detection of CEBPA mutations, NPM mutations, and FLT3/ITD in patients with acute myeloid leukemia. 醫學檢驗暨生物技術學研究所: 國立台灣大學; 2006. 81. Altucci L, Clarke N, Nebbioso A, Scognamiglio A, Gronemeyer H. Acute myeloid leukemia: therapeutic impact of epigenetic drugs. Int J Biochem Cell Biol. 2005;37:1752-1762. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28876 | - |
| dc.description.abstract | 基因表觀修飾調控(epigenetic regulation)泛指DNA methylation與histone modification,負責調控基因的表現。目前有許多研究發現CpG 島的甲基化會抑制基因轉錄。在癌細胞方面,許多腫瘤抑制基因的CpG島亦有高度甲基化的現象,使chromatin形成較緊密的結構,進而抑制基因的表現。DNA 甲基酶(DNMTs)的抑制物與組織蛋白去乙烯酶(HDACs)的抑制物可有效回復基因的表現,故epigenetic therapy已成為當今癌症治療的熱門話題。
近年來許多研究發現諸多癌細胞亦表現CXCR4,且會受到CXCL12的趨化作用而進行轉移。對於AML細胞而言, CXCR4高表現的血癌細胞可能較易受到骨髓中的CXCL12吸引而滯留於骨髓中,躲開化療藥物的攻擊,而與minimal residue disease有關,目前已有研究指出CXCR4低表現的AML病人預後較CXCR4高表現的病人好。 本實驗室以甲基化特異聚合酶鏈鎖反應(MSP)的方法發現K562細胞的CXCR4基因有高度甲基化的現象。接著我們分別以1、2、或5 μM的DNMT抑制物DAC連續處理K562四天,並在最後一天合併加入0.5 μM的HDAC抑制物TSA,由MSP的結果確實可見到去甲基化效果,且real-time PCR的結果亦顯示mRNA的表現量與藥物濃度呈現正相關,免疫細胞化學染色與flow cytometry的結果亦可見到CXCR4蛋白質的表現量與藥物濃度成正相關。目前的實驗結果顯示CXCR4確實是受到表觀修飾調控。 此外,我們也利用MSP分析91位AML病人其CXCR4基因的甲基化狀態,結果發現約30%的病人呈現異合子的甲基化。另一方面,結合本實驗室之前的研究結果,我們也發現在帶有Flt3-ITD突變的病人之中,有高達60%的人其CXCR4基因呈現未甲基化,故我們推測Flt3-ITD突變可能影響CXCR4基因的表觀修飾。 | zh_TW |
| dc.description.abstract | DNA methylation and chromatin modifications are two ways that regulate gene expression without DNA sequences changes, the so-called epigenetic regulation. Methylation of CpG islands in promoter results in transcriptional repression by recruiting transcriptional repression complexes that interact with histone deacetylases (HDACs). HDACs remove the acetyl groups of histone proteins, which leads to a compact, transcriptionally inactive chromatin structure. In tumor cells, several tumor suppressor genes, or genes involved in metastasis, such as p15INK4b, E-cadherin, have been reported to be inactivated by hypermethylation. Hypermethylated genes can be re-activated by DNA methyltransferase (DNMT) inhibitors and HDAC inhibitors, such as DAC (5-aza-2’deoxycytidine) and trichostatin A (TSA) respectively.
The CXCR4-CXCL12 axis plays an important role in hematopoietic progenitors homing, B-lymphocyte development, and tissue repair. In addition, more and more evidences indicate that CXCR4 involves in angiogenesis and metastasis of tumors. In acute myeloid leukemia (AML), CXCR4+ leukemia cells tend to be retained in bone marrow and avoid to be killed by chemotherapy agents, which may be associated with minimal residue disease. Recently, it has been reported that patients with low CXCR4 expression have better prognosis, comparing to those with high CXCR4 expression. Here, we demonstrated that the CXCR4 gene in leukemia cells was under epigenetic regulation. Analyzed by methylation-specific PCR (MSP), the CXCR4 in K562 cells showed hypermethylation in promoter region. After treatment of 1, 2, or 5 μM DAC for four days and combined with 0.5 μM TSA for the last day, the CXCR4 mRNA increased significantly. And the expression of CXCR4 protein, assayed by immunocytochemical staining and flow cytometry, restored and increased in a dose-dependant manner. Furthermore, we examined the CXCR4 methylation status in 91 AML patients. We observed that about 30% patients had heterogeneously methylated CXCR4, and up to 60% patients with Fms-like tyrosine kinase 3 (Flt3)-ITD mutation showed unmethylated CXCR4. It remains to be investigated further whether Flt3-ITD mutation has impacts on epigenetic regulation of CXCR4. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T00:27:20Z (GMT). No. of bitstreams: 1 ntu-96-R94424016-1.pdf: 5118190 bytes, checksum: 56d9705cf429e657a16a7d3850d03be7 (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | 縮寫、別名檢索表…………………………………………………..……1
中文摘要……………………………………………………………..……2 英文摘要…………………………………………………………….…….3 第一章 序論…………………………………………………..…………5 第二章 研究目的……………………………………………..….…….11 第三章 材料與方法…………………………………………..…..……12 第四章 實驗結果與討論……………………………….…..………….26 第五章 結論……………………………………………………………30 參考文獻………………………………………..………………….…….31 圖……………………………………………………………………...….40 表…………………………………………………………………………50 附圖………………………………………………………………...…….51 附表………………………………………………………………………57 | |
| dc.language.iso | zh-TW | |
| dc.subject | 表觀遺傳 | zh_TW |
| dc.subject | 血癌 | zh_TW |
| dc.subject | epigenetic | en |
| dc.subject | CXCR4 | en |
| dc.title | 血癌細胞之CXCR4的表觀遺傳研究 | zh_TW |
| dc.title | Epigenetic Study of CXCR4 in Leukemic Cells | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 呂健惠,曹國倩,周文堅,林淑萍 | |
| dc.subject.keyword | 血癌,表觀遺傳, | zh_TW |
| dc.subject.keyword | CXCR4,epigenetic, | en |
| dc.relation.page | 63 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-07-26 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 醫學檢驗暨生物技術學研究所 | zh_TW |
| 顯示於系所單位: | 醫學檢驗暨生物技術學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 5 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
