請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28872完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡睿哲(Jui-che Tsai) | |
| dc.contributor.author | Kuo-Tien Chen | en |
| dc.contributor.author | 陳國田 | zh_TW |
| dc.date.accessioned | 2021-06-13T00:27:08Z | - |
| dc.date.available | 2007-07-27 | |
| dc.date.copyright | 2007-07-27 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-07-25 | |
| dc.identifier.citation | [1] Richard p. Feynman, There’s plenty of room at the bottom”, Journal of
Microeletromechanical Systems, VOL. 1, NO. 1, March 1992 [2] http://mml.es.ncku.edu.tw/study/Intro/MEMS_intro.htm [3] 行政院國家科學委員會精密儀器發展中心出版,微機電系統技術與應用 (Micro Electro Mechanicl Systems Technology &Application) [4] http://Wii.com [5] Hiroshi Toshiyoshi, UCLA;工研院IEK ITIS計畫 [6] http://www.gamer.com.tw [7] L. M. Roylance and J. B. Angell, A batch fabricated silicon accelerometer, IEEE Trans. Electron Devices, vol. ED-26, pp. 1911–1917, Dec.1979. [8] Rudolf, A micromechanical capacitive accelerometer with a two-point inertial mass suspension, Sensors and Adualors, 4(1983) 191-198. [9] Howard K. Rockstad, J. K. Reynolds,T. K. Tang, T. W. Kenny, W. J. Kaiser, and Thomas B. Gabrielson, A MINIATURE HIGH SENSITIVITY, ELECTRON TUNNELING ACCELEROMETER, TRANSDUCERS '95 * EUROSENSORS IX [10] T. W. Kenny et al., Wide-bandwidth electromechanical actuators for tunneling displacement transducer, IEEE J. Microelectromech. Syst., vol. 3, pp. 97–104, Sept. 1994. [11] Roger De Reus, Jens Ole Gullov, and Patrick R Scheeper, Fabrication and characterization of a piezoelectric accelerometer, Journal of Micromechanics and Micraengineering, Vol. 9 (1999). pp. 123-126 [12] N. Yazdi, F. Ayazi, and K. Najafi, Micromachined inertial sensors,Proc. IEEE,vol. 86, pp. 1640–1658, 1998. [13] Arjun Selvakumar, Khalil Najafi, A High-Sensitivity -Axis Capacitive Silicon Microaccelerometer with a Torsional Suspension, JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 7, NO. 2, JUNE 1998 [14] Yoshiyuki Watanabe, Toshiyaki Mitsui Matsuei, Takashi Mineta, Seiya Kobayashi, Nobumitsu Taniguchi, Kazuhiro Okada, Five-axis motion sensor with electrostatic drive and capacitive detection fabricated by silicon bulk micromachining, JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 7, NO. 2, JUNE 1998 [15] Junseok Chae, Member, IEEE, Haluk Kulah, and Khalil Najafi, A Monolithic Three-Axis Micro-g Micromachined Silicon Capacitive Accelerometer, TRANSDUCERS, 81- 84 vol.1, Solid-State Sensors, Actuators and Microsystems, 12th International Conference on, 2003 [16] http://www.memscap.com/en_mumps.html [17] Marc J. Madou, Fundamentals of MICROFABRICATION [18] http://me.csu.edu.tw/hschen/mf-9/mf-9_frame.htm [19] http://nano.nchc.org.tw/dictionary/Optical_Lithography.html [20] Shamus McNamaraa, Yogesh B. Gianchandani, LIGA fabricated 19-element threshold accelerometer array, Sensors and Actuators A: Physical, Volume1 12, Issue 1, 15 April 2004, Pages 175-183 [21] http://nano.kuas.edu.tw/science2006/note/sixth%20speech.pdf [22] http://mems.sandia.gov/samples/doc/SUMMiT_V_Dmanual_V3.0.pdf [23] L. Zimmermann, J.Ph. Ebersohl, F. Le Hung, J.P. Berry , F. Baillieu , P. Rey , B. Diem, S. Renard d, P. Caillat, Airbag application: a microsystem including a silicon capacitive accelerometer, CMOS switched capacitor electronics and true self-test capability, Sensors and Actuators A 46-47 (1995)190-195 [24] Gregory T.A. Kovacs, Micromachined Transducers Sourcebook [25] M.Elwenspoek, R. Wiegerink , Mechanical Microsensor [26] Arjun Selvakumar, Khalil Najafi, A High-Sensitivity -Axis Capacitive Silicon Microaccelerometer with a Torsional Suspension, Electron Devices, IEEE Transactions, p.48- 56, Jan 1982 [27] V.P. Jaecklin, C. Linder, N.F. de Rooij, J.M. Moret, Micromechanical comb actuators with low driving voltage, Journal of Micromechanics and Microengineering, v01.2, no.4, p. 250-5 [28] Toshiyuki Tsuchiya, Hirofumi Funabashi, A z-axis differential capacitive SOI accelerometer with vertical comb electrodes, Sensors and Actuators A 116 (2004) 378–383 [29] W. L. Wang, X. Jiang,K. Taube, and C.-P. Klages, Piezoresistivity of polycrystalline p-type diamond films of various doping levels at different temperatures, J. Appl. Phys., Vol. 82, No. 2, 15 July 1997 [30] G. Kovacs, Micromachined Transducers Sourcebook, 1998 [31] http://www.ieee-uffc.org/education/piezoresistivity2_files/frame.htm [32] C Canalit, G Ferla, B Morten and A Taronif, Piezoresistivity effects in MOS-FET useful for pressure transducers, J. Phys. D: AppI. Phys., Vol. 12,1979 [33] Stephen D. Senturia, Microsystem Design [34] Tai-Ran Hsu, MEMS & Microsystems. Design and Manufacture [35] Y Nemirovsky, P Muralt, N Setter, A Nemirovsky , Design of a novel thin-film piezoelectric accelerometer, Sensors and Actuators A: Physical, 1996 [36] Roger de Reus, Jens Ole Gullov and Patrick R Scheeper, Fabrication and characterization of a piezoelectric accelerometer, J. Micromech. Microeng. 9 (1999) 123–126. [37] T. W. Kenny et al., Wide-bandwidth electromechanical actuators for tunneling displacement transducer, IEEE J. Microelectromech. Syst., vol. 3, pp. 97–104, Sept. 1994. [38] Chingwen Yeh and Khalil Najafi, A Low-Voltage Tunneling-Based Silicon Microaccelerometer, IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 44, NO. 11, NOVEMBER 1997 [39] Haifeng Donga, Yubin Jiaa, Yilong Haoa, Sanmi Shenb, A novel out-of-plane MEMS tunneling accelerometer, Sensors and Actuators A 120 (2005) 360–364, [40] Andrew Cao, Phyllis Yuerh, and, Liwei Lin, BI-DIWCTIONAL MICRO RELAYS WITH LIQUID-METAL WETTED CONTACTS, 371- 374, Micro Electro Mechanical Systems, 2005 [41] http://www.memscap.com/mumps/documents/metalmumps.materialprops | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28872 | - |
| dc.description.abstract | 本篇論文旨在研究增進微加速感測計之感測方式與利用微機電製程技術以達大量生產之可能性。
本論文係利用美國MEMSCAP Inc.所提供之獨佔性MetalMUMPs微機電製程生產本篇論文所設計之微加速感測計。MetalMUMPs製程是近年來新興的一種微機電代工製程,其屬於MUMPs製程之一分支 ,最大特色在於將20微米厚之鎳金屬以電鍍方式導入製程以當作此製程之主結構與導電溝通橋樑。 此微加速計之長寬為1970微米×1610微米。其重要突破在於一般傳統微加速感測計均為單一種感測方式而本論文所設計的微加速計為縱向雙感測,感測方式計有電容式感測及壓阻式感測:在微加速計之兩邊採用鍍上金箔之厚鎳金屬當作梳狀形平行板電容結構,以作為電容式感測,其每一邊各有100組梳狀手指亦即200個間隔可增加電容值以達可量測範圍;利用氮化矽包覆具有壓阻性質之多晶矽以進行壓阻式感測,並加以惠斯同電橋將多晶矽之電阻改變量轉為電壓方式輸出。緊接著利用有限元素法之ANSYS軟體及MATHCAD數學軟體進行初步模擬,最後討論比較實驗數據與模擬結果。 | zh_TW |
| dc.description.abstract | The goal of this thesis is to increase the sensing types in a micro accelerometer and to achieve batch-fabricated utilizing a kind of MEMS fabrication technology.
The micro accelerometer’s dimension is 1970μm×1610μm, and it is fabricated by the MetalMUMPs process supplied by MEMSCAP Inc., America. The most distinguishing feature in MetalMUMPs is that electroplated nickel, about 20 μm, is used as the primary structural material and electrical interconnect layer. There was only one sensing type in traditional micro accelerometers while the one proposed in this thesis has two kinds of sensing types in the sensing axis. One is capacitive sensing: Utilizing Nickel as the comb fingers in the capacitive parallel plates structure, there 100 fingers (200 gaps ) in each side to increase the capacitance. The other is piezoresistive sensing: Utilizing piezoresistive poly-silicon clad by Si3N4 as sensing the change of resistance. Furthermore, Wheatstone Bridge is substituted for change of resistance, i.e. voltage out is instead of resistance out. Besides, simulation and math tools, ANSYS & MATHCAD, are applied to simply simulate the micro accelerometers. Finally, the experimental data and simulated datat will be discussed and compared in this article. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T00:27:08Z (GMT). No. of bitstreams: 1 ntu-96-R94941052-1.pdf: 2770674 bytes, checksum: 68b9a353775ab769deedc6d454562216 (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | 目 錄
誌謝…………………………………………………………………………i 中文摘要…………………………………………………………………...ii 英文摘要…………………………………………………………………..iii 圖目錄……………………………………………………………………..vi 表目錄……………………………………………………………………..ix 第一章 緒論……………………………………………………………...1 1.1 前言……………………………………………………………..1 1.2 研究動機與目的………………………………………………..4 1.3 文獻回顧……………………………………………………......4 1.4 研究流程………………………………………………………..5 第二章 微機電製程技術………………………………………………...6 2.1 微影技術………………………………………………………..6 2.2 體型微加工技術………………………………………………..7 2.3 表面微加工技術………………………………………………13 2.4 微光刻電鑄造模技術…………………………………………19 2.5 微機電製程代工………………………………………………20 第三章 微加速感測計………………………………………………….24 3.1 原理……………………………………………………………24 3.2 平行板電容感測………………………………………………26 3.3 差動式電容感測………………………………………………29 3.4 壓阻式感測……………………………………………………31 3.5 壓電感測………………………………………………………36 3.6 穿隧方法感測…………………………………………………37 第四章 微加速感測元件之設計與代工……………………………….38 4.1 電容方式感測設計……………………………………………38 4.2 壓阻方式感測設計……………………………………………39 4.3 元件總體介紹…………………………………………………43 第五章 模擬與實驗…………………………………………………….50 5.1 模擬數據………………………………………………………50 5.2 電容感測實驗…………………………………………………54 5.3 壓阻感測實驗…………………………………………………57 第六章 結論……………………………………………………………...60 參考文獻………………………………………………………………….62 圖目錄 圖1-1 微機電主要產品………………………………………………….3 圖1-2 應用於Wii Remote Controller的加速感測計…………………...3 圖1-3 研究方法流程圖………………………………………………….5 圖2-1 正光阻與負光阻之介紹………………………………………….7 圖2-2 蝕刻過程………………………………………………………….8 圖2-3 矽晶格方向介紹………………………………………………...10 圖2-4 等向性蝕刻……………………………………………………...10 圖2-5 非等向性蝕刻…………………………………………………...11 圖2-6 矽與矽陽極接合示意圖………………………………………...12 圖2-7 矽與陽極玻璃接合示意圖……………………………………...13 圖2-8 進行成長製程示意圖…………………………………………...14 圖2-9 進行沉積製程示意圖…………………………………………...15 圖2-10 化學蒸鍍法之機構……………………………………………...16 圖2-11 物理蒸鍍法之機構……………………………………………...17 圖2-12 物理濺鍍法之機構……………………………………………...18 圖2-13 利用LIGA Process製作出的微加速感測計…………………..19 圖2-14 PolyMUMPs製程剖面圖………………………………………21 圖2-15 SOIMUMPs製程剖面圖………………………………………21 圖2-16 MetalMUMPs 製程剖面圖……………………………………22 圖2-17 SUMMiT VTM 製程剖面圖……………………………………22 圖3-1 安全氣囊………………………………………………………...24 圖3-2 微加速計之機構………………………………………………...26 圖3-3 平行板電容……………………………………………………...27 圖3-4 梳狀形並聯電容………………………………………………...28 圖3-5 差動式電容之微加速計………………………………………...29 圖3-6 以電壓輸出方式表達差動式電容感測之電容變……………...30 圖3-7 長方形直條之電阻公式分析…………………………………...31 圖3-8 壓阻性材料受一維方向力的負荷……………………………...34 圖3-9 應力和應變介紹………………………………………………...35 圖3-10 穿隧方法感測計之橫切面示意圖……………………………...37 圖4-1 穩定及可動梳狀形手指之示意圖……………………………...38 圖4-2 惠斯同電橋(Wheatstone bridge) ……………………………….39 圖4-3 惠斯同電橋之輸出電壓………………………………………...40 圖4-4 有一個可變電阻之惠斯同電橋(R4=Rx) ……………………….41 圖4-5 MetalMUMPs製程所設計的簡單惠斯同電橋………………..42 圖4-6 可變電阻造成惠斯同電橋輸出訊號改變……………………...43 圖4-7 MetalMUMPs 設計規則手冊上提供此製程的簡要說明……44 圖4-8 利用L-edit軟體所設計的元件總圖……………………………44 圖4-9 以MetalMUMPs製程做出的晶片……………………………...45 圖4-10 上半部圖之介紹為二組雙可變電阻式惠斯同電橋…………...47 圖4-11 本論文所設計的梳狀式電容…………………………………...48 圖4-12 微加速感測計所設計之雙可變電阻式惠斯同電橋…………...49 圖5-1 運用ANSYS模擬………………………………………………52 圖5-2 本論文所設計的梳狀式電容…………………………………...52 圖5-3 實驗儀器………………………………………………………...55 圖5-4 探針和微加速計………………………………………………...55 圖5-5 以探針推動微加速計造成電容輸出值改變…………………...56 圖5-6 本論文所設計之微加速感測計中惠斯同電橋所在處………...58 圖5-7 以探針推動微加速計造成惠斯同電橋輸出電壓值改變……...59 表目錄 表2-1 微機電標準製程服務或研發技術的單位與技術特色………….23 表3-1 各種材料的Gauge Factor………………………………………...33 表3-2 半導體材料之壓阻係數………………………………………….35 表5-1 MetalMUMPs製程所使用材料之性質…………………………51 表5-2 本論文所設計之微加速感測計之理論值規格表……………….53 表5-3 微加速計移動時,位移和電容C2-C1改變量的作圖……………57 表5-4 壓阻式感測位移與輸出電壓改變量之實驗數據圖…………….58 | |
| dc.language.iso | zh-TW | |
| dc.subject | MetalMUMPs | zh_TW |
| dc.subject | 微機電 | zh_TW |
| dc.subject | 加速計 | zh_TW |
| dc.subject | 電容式感測 | zh_TW |
| dc.subject | 壓阻式感測 | zh_TW |
| dc.subject | piezoresistive sensing | en |
| dc.subject | MetalMUMPs | en |
| dc.subject | MEMS | en |
| dc.subject | accelerometers | en |
| dc.subject | capacitive sensing | en |
| dc.title | 使用混成感測技術之微型加速計的設計與製作 | zh_TW |
| dc.title | Design and Fabrication of Micro Accelerometers with a Hybrid Sensing Technology | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃鼎偉,孫家偉 | |
| dc.subject.keyword | 微機電,加速計,電容式感測,壓阻式感測,MetalMUMPs, | zh_TW |
| dc.subject.keyword | MEMS,accelerometers,capacitive sensing,piezoresistive sensing,MetalMUMPs, | en |
| dc.relation.page | 65 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-07-26 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 2.71 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
