Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28868
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳世雄
dc.contributor.authorChun-Ping Luen
dc.contributor.author呂君萍zh_TW
dc.date.accessioned2021-06-13T00:26:55Z-
dc.date.available2009-01-01
dc.date.copyright2007-07-30
dc.date.issued2007
dc.date.submitted2007-07-26
dc.identifier.citation1. Cox NJ, Subbarao K: Global epidemiology of influenza: past and present. Annu Rev Med 2000, 51:407-421.
2. Trampuz A, Prabhu RM, Smith TF, Baddour LM: Avian influenza: a new pandemic threat? Mayo Clin Proc 2004, 79:523-530; quiz 530.
3. Romanova J: The fight against new types of influenza virus. Biotechnol J 2006, 1:1381-1392.
4. Gubareva LV, Kaiser L, Hayden FG: Influenza virus neuraminidase inhibitors. Lancet 2000, 355:827-835.
5. Drzeniek R: Viral and bacterial neuraminidases. Curr Top Microbiol Immunol 1972, 59:35-74.
6. Schauer R: Sialic acids and their role as biological masks. Trends Biochem Sci 1985, 10:357-360.
7. Soong G, Muir A, Gomez MI, Waks J, Reddy B, Planet P, Singh PK, Kaneko Y, Wolfgang MC, Hsiao YS et al: Bacterial neuraminidase facilitates mucosal infection by participating in biofilm production. J Clin Invest 2006, 116:2297-2305.
8. Hay AJ, Wolstenholme AJ, Skehel JJ, Smith MH: The molecular basis of the specific anti-influenza action of amantadine. Embo J 1985, 4(11):3021-3024.
9. Pinto LH, Holsinger LJ, Lamb RA: Influenza virus M2 protein has ion channel activity. Cell 1992, 69:517-528.
10. Pinto LH, Lamb RA: Controlling influenza virus replication by inhibiting its proton channel. Mol Biosyst 2007, 3:18-23.
11. Davies WL, Grunert RR, Haff RF, McGahen JW, Neumayer EM, Paulshock M, Watts JC, Wood TR, Hermann EC, Hoffmann CE: Antiviral Activity of 1-Adamantanamine (Amantadine). Science 1964, 144:862-863.
12. Meindl P, Tuppy H: [2-Deoxy-2,3-dehydrosialic acids. II. Competitive inhibition of Vibrio cholerae neuraminidase by 2-deoxy-2,3-dehydro-N-acylneuraminic acids]. Hoppe Seylers Z Physiol Chem 1969, 350:1088-1092.
13. Meindl P, Bodo G, Palese P, Schulman J, Tuppy H: Inhibition of neuraminidase activity by derivatives of 2-deoxy-2,3-dehydro-N-acetylneuraminic acid. Virology 1974, 58:457-463.
14. Holzer CT, von Itzstein M, Jin B, Pegg MS, Stewart WP, Wu WY: Inhibition of sialidases from viral, bacterial and mammalian sources by analogues of 2-deoxy-2,3-didehydro-N-acetylneuraminic acid modified at the C-4 position. Glycoconj J 1993, 10:40-44.
15. von Itzstein M, Wu WY, Kok GB, Pegg MS, Dyason JC, Jin B, Van Phan T, Smythe ML, White HF, Oliver SW et al: Rational design of potent sialidase-based inhibitors of influenza virus replication. Nature 1993, 363:418-423.
16. Kim CU, Lew W, Williams MA, Liu H, Zhang L, Swaminathan S, Bischofberger N, Chen MS, Mendel DB, Tai CY et al: Influenza neuraminidase inhibitors possessing a novel hydrophobic interaction in the enzyme active site: design, synthesis, and structural analysis of carbocyclic sialic acid analogues with potent anti-influenza activity. J Am Chem Soc 1997, 119:681-690.
17. Driquez P-A, Barrere B, Chantegrel B, Deshayes C, Doutheau A, Quash G: Synthesis of sodium salt of ortho-(difluoromethyl)phenyl-[alpha]-ketoside of N-acetylneuraminic acid : a mechanism-based inhibitor of Clostridium perfringens neuraminidase. Bioorg Med Chem Lett 1992, 2:1349-1352.
18. Barrere B, Driguez PA, Maudrin J, Doutheau A, Aymard M, Quash G: A novel synthetic reversible inhibitor of sialidase efficiently blocks secondary but not primary influenza virus infection of MDCK cells in culture. Arch Virol 1997, 142:1365-1380.
19. Watts AG, Damager I, Amaya ML, Buschiazzo A, Alzari P, Frasch AC, Withers SG: Trypanosoma cruzi trans-sialidase operates through a covalent sialyl-enzyme intermediate: tyrosine is the catalytic nucleophile. J Am Chem Soc 2003, 125:7532-7533.
20. Watts AG, Oppezzo P, Withers SG, Alzari PM, Buschiazzo A: Structural and kinetic analysis of two covalent sialosyl-enzyme intermediates on Trypanosoma rangeli sialidase. J Biol Chem 2006, 281:4149-4155.
21. Hinou H, Kurogochi M, Shimizu H, Nishimura S: Characterization of Vibrio cholerae neuraminidase by a novel mechanism-based fluorescent labeling reagent. Biochemistry 2005, 44:11669-11675.
22. Ichikawa M, Ichikawa Y: A mechanism-based affinity-labeling agent for possible use in isolating N-acetylglucosaminidase. Bioorg Med Chem Lett 2001, 11:1769-1773.
23. Azoulay M, Chalard F, Gesson JP, Florent JC, Monneret C: 2-Nitro and 4-nitro-quinone-methides are not irreversible inhibitors of bovine beta-glucuronidase. Carbohydr Res 2001, 332:151-156.
24. Tsai CS, Li YK, Lo LC: Design and synthesis of activity probes for glycosidases. Org Lett 2002, 4:3607-3610.
25. Kurogochi M, Nishimura S, Lee YC: Mechanism-based fluorescent labeling of beta-galactosidases. An efficient method in proteomics for glycoside hydrolases. J Biol Chem 2004, 279:44704-44712.
26. Lo LC, Chu CY, Pan YR, Wan CF, Li YK, Lin JJ: Rapid and selective isolation of beta-xylosidase through an activity-based chemical approach. Biotechnol J 2006, 1:197-202.
27. Halazy S, Berges V, Ehrhard A, Danzin C: Ortho- and para-(difluoromethyl)aryl-[beta]--glucosides: A new class of enzyme-activated irreversible inhibitors of [beta]-glucosidases. Bioorg Chem 1990, 18:330-344.
28. McKimm-Breschkin JL, Colman PM, Jin B, Krippner GY, McDonald M, Reece PA, Tucker SP, Waddington L, Watson KG, Wu WY: Tethered neuraminidase inhibitors that bind an influenza virus: a first step towards a diagnostic method for influenza. Angew Chem Int Ed Engl 2003, 42:3118-3121.
29. Steininger C, Kundi M, Aberle SW, Aberle JH, Popow-Kraupp T: Effectiveness of reverse transcription-PCR, virus isolation, and enzyme-linked immunosorbent assay for diagnosis of influenza A virus infection in different age groups. J Clin Microbiol 2002, 40:2051-2056.
30. Allwinn R, Preiser W, Rabenau H, Buxbaum S, Sturmer M, Doerr HW: Laboratory diagnosis of influenza--virology or serology? Med Microbiol Immunol 2002, 191:157-160.
31. Wetherall NT, Trivedi T, Zeller J, Hodges-Savola C, McKimm-Breschkin JL, Zambon M, Hayden FG: Evaluation of neuraminidase enzyme assays using different substrates to measure susceptibility of influenza virus clinical isolates to neuraminidase inhibitors: report of the neuraminidase inhibitor susceptibility network. J Clin Microbiol 2003, 41:742-750.
32. Wright KE, Wilson GA, Novosad D, Dimock C, Tan D, Weber JM: Typing and subtyping of influenza viruses in clinical samples by PCR. J Clin Microbiol 1995, 33:1180-1184.
33. Ellis JS, Zambon MC: Molecular diagnosis of influenza. Rev Med Virol 2002, 12:375-389.
34. Coughtrie MW, Sharp S, Maxwell K, Innes NP: Biology and function of the reversible sulfation pathway catalysed by human sulfotransferases and sulfatases. Chem Biol Interact 1998, 109:3-27.
35. Hanson SR, Best MD, Wong CH: Sulfatases: structure, mechanism, biological activity, inhibition, and synthetic utility. Angew Chem Int Ed Engl 2004, 43:5736-5763.
36. Parenti G, Meroni G, Ballabio A: The sulfatase gene family. Curr Opin Genet Dev 1997, 7:386-391.
37. Schmidt B, Selmer T, Ingendoh A, von Figura K: A novel amino acid modification in sulfatases that is defective in multiple sulfatase deficiency. Cell 1995, 82:271-278.
38. Dodgson KS, Spencer B, Thomas J: Studies on sulphatases. 6. The localization of arylsulphatase in the rat-liver cell. Biochem J 1954, 56:177-181.
39. Stein C, Hille A, Seidel J, Rijnbout S, Waheed A, Schmidt B, Geuze H, von Figura K: Cloning and expression of human steroid-sulfatase. Membrane topology, glycosylation, and subcellular distribution in BHK-21 cells. J Biol Chem 1989, 264:13865-13872.
40. Hernandez-Guzman FG, Higashiyama T, Pangborn W, Osawa Y, Ghosh D: Structure of human estrone sulfatase suggests functional roles of membrane association. J Biol Chem 2003, 278:22989-22997.
41. Reed MJ, Purohit A, Woo LW, Newman SP, Potter BV: Steroid sulfatase: molecular biology, regulation, and inhibition. Endocr Rev 2005, 26:171-202.
42. Sasano H, Harada N: Intratumoral aromatase in human breast, endometrial, and ovarian malignancies. Endocr Rev 1998, 19:593-607.
43. Sasano H, Suzuki T, Nakata T, Moriya T: New development in intracrinology of breast carcinoma. Breast Cancer 2006, 13:129-136.
44. Chetrite GS, Cortes-Prieto J, Philippe JC, Wright F, Pasqualini JR: Comparison of estrogen concentrations, estrone sulfatase and aromatase activities in normal, and in cancerous, human breast tissues. J Steroid Biochem Mol Biol 2000, 72:23-27.
45. Pasqualini JR, Chetrite G, Blacker C, Feinstein MC, Delalonde L, Talbi M, Maloche C: Concentrations of estrone, estradiol, and estrone sulfate and evaluation of sulfatase and aromatase activities in pre- and postmenopausal breast cancer patients. J Clin Endocrinol Metab 1996, 81:1460-1464.
46. Utsumi T, Yoshimura N, Takeuchi S, Maruta M, Maeda K, Harada N: Elevated steroid sulfatase expression in breast cancers. J Steroid Biochem Mol Biol 2000, 73:141-145.
47. Nussbaumer P, Billich A: Steroid sulfatase inhibitors. Med Res Rev 2004, 24:529-576.
48. Brueggemeier RW, Hackett JC, Diaz-Cruz ES: Aromatase inhibitors in the treatment of breast cancer. Endocr Rev 2005, 26:331-345.
49. Purohit A, Williams GJ, Howarth NM, Potter BV, Reed MJ: Inactivation of steroid sulfatase by an active site-directed inhibitor, estrone-3-O-sulfamate. Biochemistry 1995, 34:11508-11514.
50. Purohit A, Woo LWL, Potter BVL, Reed MJ: In Vivo Inhibition of Estrone Sulfatase Activity and Growth of Nitrosomethylurea-induced Mammary Tumors by 667 COUMATE. Cancer Res 2000, 60:3394-3396.
51. Foster PA, Newman SP, Chander SK, Stengel C, Jhalli R, Woo LLW, Potter BVL, Reed MJ, Purohit A: In vivo Efficacy of STX213, A Second-Generation Steroid Sulfatase Inhibitor, for Hormone-Dependent Breast Cancer Therapy. Clin Cancer Res 2006, 12:5543-5549.
52. Purohit A, Woo LW, Barrow D, Hejaz HA, Nicholson RI, Potter BV, Reed MJ: Non-steroidal and steroidal sulfamates: new drugs for cancer therapy. Mol Cell Endocrinol 2001, 171:129-135.
53. Flood JF, Smith GE, Roberts E: Dehydroepiandrosterone and its sulfate enhance memory retention in mice. Brain Res 1988, 447:269-278.
54. Flood JF, Morley JE, Roberts E: Memory-enhancing effects in male mice of pregnenolone and steroids metabolically derived from it. Proc Natl Acad Sci USA 1992, 89:1567-1571.
55. Li PK, Rhodes ME, Jagannathan S, Johnson DA: Reversal of scopolamine induced amnesia in rats by the steroid sulfatase inhibitor estrone-3-O-sulfamate. Brain Res Cogn Brain Res 1995, 2:251-254.
56. Li PK, Rhodes ME, Burke AM, Johnson DA: Memory enhancement mediated by the steroid sulfatase inhibitor (p-O-sulfamoyl)-N-tetradecanoyl tyramine. Life Sci 1997, 60:PL45-51.
57. Dierks T, Miech C, Hummerjohann J, Schmidt B, Kertesz MA, von Figura K: Posttranslational formation of formylglycine in prokaryotic sulfatases by modification of either cysteine or serine. J Biol Chem 1998, 273:25560-25564.
58. Galsulfase: arylsulfatase B, BM 102, recombinant human arylsulfatase B, recombinant human N-acetylgalactosamine-4-sulfatase, rhASB. Drugs R D 2005, 6:312-315.
59. Ohashi T, Watabe K, Sato Y, Saito I, Barranger JA, Matalon R, Eto Y: Gene therapy for metachromatic leukodystrophy. Acta Paediatr Jpn 1996, 38:193-201.
60. Ghosh D: Mutations in X-linked ichthyosis disrupt the active site structure of estrone/DHEA sulfatase. Biochim Biophys Acta 2004, 1739:1-4.
61. Alperin ES, Shapiro LJ: Characterization of point mutations in patients with X-linked ichthyosis. Effects on the structure and function of the steroid sulfatase protein. J Biol Chem 1997, 272:20756-20763.
62. Falany JL, Falany CN: Regulation of estrogen activity by sulfation in human MCF-7 breast cancer cells. Oncol Res 1997, 9:589-596.
63. Moore KL: The biology and enzymology of protein tyrosine O-sulfation. J Biol Chem 2003, 278:24243-24246.
64. Pawson T, Scott JD: Protein phosphorylation in signaling--50 years and counting. Trends Biochem Sci 2005, 30:286-290.
65. Gama CI, Tully SE, Sotogaku N, Clark PM, Rawat M, Vaidehi N, Goddard WA, 3rd, Nishi A, Hsieh-Wilson LC: Sulfation patterns of glycosaminoglycans encode molecular recognition and activity. Nat Chem Biol 2006, 2:467-473.
66. Zhang ZY: Protein tyrosine phosphatases: structure and function, substrate specificity, and inhibitor development. Annu Rev Pharmacol Toxicol 2002, 42:209-234.
67. Wang Q, Dechert U, Jirik F, Withers SG: Suicide inactivation of human prostatic acid phosphatase and a phosphotyrosine phosphatase. Biochem Biophys Res Commun 1994, 200:577-583.
68. Lo LC, Wang HY, Wang ZJ: Design and synthesis of an activity probe for protein tyrosine phosphatases. J Chinese Chem Soc 1999, 46:715-718.
69. Hughes PJ, Twist LE, Durham J, Choudhry MA, Drayson M, Chandraratna R, Michell RH, Kirk CJ, Brown G: Up-regulation of steroid sulphatase activity in HL60 promyelocytic cells by retinoids and 1alpha,25-dihydroxyvitamin D3. Biochem J 2001, 355:361-371.
70. Wolff B, Billich A, Brunowsky W, Herzig G, Lindley I, Nussbaumer P, Pursch E, Rabeck C, Winkler G: Microtiter plate cellular assay for human steroid sulfatase with fluorescence readout. Anal Biochem 2003, 318:276-284.
71. Leese MP, Hejaz HA, Mahon MF, Newman SP, Purohit A, Reed MJ, Potter BV: A-ring-substituted estrogen-3-O-sulfamates: potent multitargeted anticancer agents. J Med Chem 2005, 48:5243-5256.
72. Kumar S, Zhou B, Liang F, Wang WQ, Huang Z, Zhang ZY: Activity-based probes for protein tyrosine phosphatases. Proc Natl Acad Sci U S A 2004, 101:7943-7948.
73. Jessani N, Liu Y, Humphrey M, Cravatt BF: Enzyme activity profiles of the secreted and membrane proteome that depict cancer cell invasiveness. Proc Natl Acad Sci U S A 2002, 99:10335-10340.
74. Lo LC, Pang TL, Kuo CH, Chiang YL, Wang HY, Lin JJ: Design and Synthesis of Class-Selective Activity Probes for Protein Tyrosine Phosphatases. J Proteome Res 2002, 1:35-40.
75. Howarth NM, Purohit A, Robinson JJ, Vicker N, Reed MJ, Potter BV: Estrone 3-sulfate mimics, inhibitors of estrone sulfatase activity: homology model construction and docking studies. Biochemistry 2002, 41:14801-14814.
76. Elger W, Schwarz S, Hedden A, Reddersen G, Schneider B: Sulfamates of various estrogens are prodrugs with increased systemic and reduced hepatic estrogenicity at oral application. J Steroid Biochem Mol Biol 1995, 55:395-403.
77. Ishida H, Nakata T, Sato N, Li PK, Kuwabara T, Akinaga S: Inhibition of steroid sulfatase activity and cell proliferation in ZR-75-1 and BT-474 human breast cancer cells by KW-2581 in vitro and in vivo. Breast Cancer Res Treat 2006, 104:211-219.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28868-
dc.description.abstract以酵素的活性為基礎的而設計的小分子活性探針可以用來標示、濃縮、分離及區分蛋白質。它會選擇性的與酵素反應並共價鍵結於酵素上。活性探針的組成包含四個主要部分:辨識端、捕捉機制、連結鏈與發報端。在本研究中,活性探針6、11及12被用來測試標定流感病毒唾液酸酶及固醇硫酸酶。以活性探針12為基礎而設計的化合物17、18及19則用以抑制固醇硫酸酶的活性。
[第一部分]
爲了偵測及抑制流行性感冒病毒唾液酸酶,探針6的結構包含四個部分:唾液酸辨識端、quionoe methide捕捉機制、連結鏈及用以偵測分離的生物素發報端。一但唾液酸酶水解唾液酸,所產生的高活性quinone methide便會共價修飾酵素。在本研究中,我們以西方墨點法觀察到生物素標示的Arthrobacter ureafaciens唾液酸酶。針對病毒捕捉的實驗,探針藉由卵白素與生物素的交互作用固定於微孔盤上,並利用酵素免疫分析法證實可以成功地捕捉到流行性感冒病毒。合併反轉錄-聚合酶鏈反應與專一性的引子對可成功的區分被捕捉的流行性感冒病毒種類。本研究這個新的方法提供了一個機會可以快速利用抗體篩選流行性感冒病毒及發展更敏感快速的診斷方法。
[第二部分]
固醇硫酸酶藉由調控estrone sulfate的脫硫反應促進乳癌細胞吸收estrogen。人類固醇硫酸酶被發現在乳癌腫瘤上有表現量及活性增加的趨勢也因此成為藥物發展的標的。在本研究中,兩種固醇硫酸酶活性探針(探針11及12)及三種抑制劑(化合物17、18及19被用來標示及抑制固醇硫酸酶。標示的研究說明了探針11會專一性的與固醇硫酸酶反應。墨點分析也說明了探針11所標示的訊號強度與酵素的活性有關。更進一步的研究發現,探針12比探針11具有更高的特異性與較少的擴散反應發生。在抑制的研究方面,三價的酪氨酸硫酯化衍生物,化合物19,顯示有較化合物17和18更好的抑制能力。活細胞的實驗也證明了化合物19對倉鼠卵巢細胞具有適當的通透性及不具細胞毒性的特性。對於發展乳癌的治療固醇硫酸酶探針12及化合物19將會是一個有用的化學方法用於固醇硫酸酶的鑑別、抑制劑的設計及蛋白質體內標的物功能性狀態的決定。
zh_TW
dc.description.abstractDepending on their enzymatic activities, the small molecular activity probe can be used to tag, enrich or isolate distinct sets of proteins. It only selectively reacts with enzymes that have a catalytic activity and covalent linkage with targeted enzyme. Activity probe contains four major components: a recognition head, a trapping device, a linker and a reporter group. The designed probe 6 was employed by this study to test its labeling effects on influenza virus neuraminidase (NA), whereas for the application of steroid sulfatase (STS), probes 11 and 12 were adopted. Compounds 17, 18 and 19, whose structures were designed on the basis of that of probe 12, were used for inhibiting STS activity.
Part I
For the detection and inhibition of influenza virus NA, the structure of probe 6 was designed to contains four fragments, a sialic acid for recognition, a latent quinone methide for trapping device, a linker and a biotin as reporter for detection and separation. Once a sialic acid is released by the hydrolysis of NA, the enzyme can be covalently modified by the resulting highly reactive quinone methide. In our study, the biotin labeled Arthrobacter ureafaciens NA were observed by Western blotting. For virus capturing experiment, the probe was be used to attach the microplates through avidin-biotin interactions and the captured virus were successfully demonstrated by the ELISA assay. To identify the captured virus, RT-PCR method combined with specific primer sets was future implemented. Overall, the novel approach adopted in this study offers opportunities for the rapid screening of antibodies against influenza virus and development of sensitive, rapid diagnostic methods.
Part II
Steroid sulfatase (STS) facilitates the estrogen uptake of breast cancer cells by mediating the desulfation of estrone sulfate. Human steroid sulfatase has become a target for drug development due to its increased expression and activity in breast carcinoma. In this study, two activity probes (probes 11 and 12) and three inhibitors (compounds 17, 18, and 19) were used for STS labeling and inhibition. Regarding STS labeling, probe 11 was shown to specifically react with STS. The dot signal intensity of probe 11 was illustrated by dot blot analysis to be correlated with enzymatic activity. Compared with probe 11, probe 12 demonstrated that higher specificity and less cross-reactivities. For STS inactivation study, compound 19, trivalent tyrosine sulfate ester derivative, revealed better inhibition ability than compounds 17 and 18. For compound 19, moderate cell permeability and no cytotoxicity for CHO cells were demonstrated in live cell assay. As a result, for the development of breast cancer treatment, probe 12 and compound 19 may be two effective chemical devices in STS identification, STS inhibition, and functional state determination in complex proteome.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T00:26:55Z (GMT). No. of bitstreams: 1
ntu-96-D92b46002-1.pdf: 1399367 bytes, checksum: 39c2d6f7f3f89d13a6c9e71065089f2a (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
Abstract v
Abbreviations x
List of Figures xiii
List of Tables xv
Chapter 1 Biomedical Application of Activity Probe for Influenza Virus Neuraminidase
1.1 Introduction 1
1.1.1 Influenza virus ……………………………………………... 1
1.1.2 NA-targeted inhibitors ………………………………………. 4
1.1.3 Activity probe for NA labeling………………………………... 7
1.1.4 Aim and experimental approaches …………………………… 10
1.2 Materials and Methods 12
1.2.1 Materials …………………………………………………... 12
1.2.2 NA probe labeling ……………………………….................. 13
1.2.3 Western blot analysis ………………………………………... 13
1.2.4 NA activity assay …………………………………………… 14
1.2.5 Virus particle ELISA assay …………………………………... 14
1.2.6 Purification of RNA from influenza virus and RT-PCR amplification .......................................................................... 15
1.2.7 Agarose gel electrophoresis ………………………………….. 16
1.3 Results 17
1.3.1 NA labeling by probe 6 ………………………….................... 17
1.3.2 Effect of probe 6 inhibition ………………………………….. 18
1.3.3 Virus captured by immobilized probe 6 ……………….............. 21
1.3.4 Detection of influenza virus after probe capturing experiment …… 23
1.3.5 Typing and subtyping of influenza virus after probe capturing ….... 25
1.4 Discussion 27
1.4.1 Labeling and inactivation of NA by probe 6……………............. 27
1.4.2 Capturing influenza virus by immobilized probe 6 ……………... 28
1.5 Conclusion 32

Chapter 2 Development of an Activity Probe and Inhibitors for Steroid Sulfatase
2.1 Introduction 33
2.1.1 Reversible sulfation pathway and steroid sulfatase (STS) ……….. 33
2.1.2 Steroid sulfatase (STS) in health and disease …………………... 39
2.1.3 Activity probes and inhibitors for STS ………………………... 42
2.1.4 Aim and experimental approaches …………………………… 46
2.2 Materials and Methods 47
2.2.1 Materials …………………………………………………... 47
2.2.2 Cell culture and transfection …………………………………. 48
2.2.3 Cell fractionation …………………………………………… 49
2.2.4 STS activity assay …………………………………………. 49
2.2.5 STS probe labeling ………………………………………….. 50
2.2.6 Western blot ………………………………………………... 50
2.2.7 Dot blot ……………………………………………………. 51
2.2.8 Cell viability assay ………………………………………….. 51
2.3 Results 52
2.3.1 Human STS Transfection ……………………………………. 52
2.3.2 Labeling of STS by probe 11 ………………………………… 53
2.3.3 Dot blot analysis of probe 11 in labeling reaction ……………… 55
2.3.4 Labeling of STS by activity probe 12 …………………………. 57
2.3.5 Inactivation by STS inhibitors …………………....................... 59
2.3.6 Cytotoxicity studyof compound 19 ………………………….... 61
2.4 Discussion 63
2.4.1 Effect of STS labeling by activity probes 11 and 12 …………….. 63
2.4.2 Inactivation by STS inhibitors………………………………… 65
2.5 Conclusion 67

References 68
Curriculum Vitae 77
dc.language.isoen
dc.subject活性探針zh_TW
dc.subject抑制劑zh_TW
dc.subject固醇硫酸&#37238zh_TW
dc.subject生物素zh_TW
dc.subject唾液酸zh_TW
dc.subject唾液酸&#37238zh_TW
dc.subject流行性感冒病毒zh_TW
dc.subjectactivity probeen
dc.subjectinfluenza virusen
dc.subjectinhibitoren
dc.subjectsteroid sulfataseen
dc.subjectbiotinen
dc.subjectsialic aciden
dc.subjectneuraminidaseen
dc.subjectquinone methideen
dc.title唾液酸酶及固醇硫酸酶活性探針在生物醫學上的應用zh_TW
dc.titleBiomedical Application of Activity Probe for Neuraminidase and Steroid Sulfataseen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree博士
dc.contributor.oralexamcommittee羅禮強,林俊宏,梁博煌,李文山
dc.subject.keyword流行性感冒病毒,活性探針,唾液酸&#37238,唾液酸,生物素,固醇硫酸&#37238,抑制劑,zh_TW
dc.subject.keywordinfluenza virus,activity probe,quinone methide,neuraminidase,sialic acid,biotin,steroid sulfatase,inhibitor,en
dc.relation.page78
dc.rights.note有償授權
dc.date.accepted2007-07-26
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科學研究所zh_TW
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
1.37 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved