Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農藝學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28867
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝兆樞(Jaw-Shu Hsieh)
dc.contributor.authorYuan-Ching Tsaien
dc.contributor.author蔡元卿zh_TW
dc.date.accessioned2021-06-13T00:26:52Z-
dc.date.available2007-07-30
dc.date.copyright2007-07-30
dc.date.issued2007
dc.date.submitted2007-07-26
dc.identifier.citationArumuganathan, K., and E. D. Earle. 1991. Estimation of nuclear DNA content of plants by flow cytometry. Plant Mol. Biol. Report. 9: 229-233.
Badley, R. A., D. Atkinson, H. Hanser, C. Odani, J. P. Green, and J. M. Stubbs. 1975. The structure, physical and chemical properties of the soybean protein glycinin. Biochim. Biophys. Acta. 412: 214-228.
Baker, D. M., and H. C. Minor. 1987. Frequency and comparative anatomy of the extended endothelium among soybean plant introductions and weathering resistant genotypes. Crop Sci. 27: 1301-1303.
Bennetzen, J. L. 2002. Mechanisms and rates of genome expansion and contraction in flowering plants. Genetica 115: 29-36.
Bentham, G. 1865. On the genera Sweetia, Sprengel, and Glycine, Linn., simultaneously published under the name of Leptolobium. J. Linn. Soc. Bot. 8: 259-267.
Brown, A. H. D., J. E. Grant, J. J. Brudon, and J. P. Grace. 1984. Wild perennial Glycine species as genetic resources for soybean improvement. Soybean Genet. Newsl. 11: 17-19.
Brown, A. H. D., J. J. Burdon, and J. P. Grace. 1990. Genetic structure of Glycine canescens, a perennial relative of soybean. Theor. Appl. Genet. 79: 729-736.
Brown, A. H. D., J. L. Doyle, J. P. Grace, and J. J. Doyle. 2002. Molecular phylogenetic relationships within and among diploid races of Glycine tomentella (Leguminosae). Aust. Syst. Bot. 15: 37-47.
Calero, E., S. H. West, and K. Hinson. 1981. Water absorption of soybean seeds and associated causal factors. Crop Sci. 21: 926-933.
Carlson, J. B. 1973. Morphology. In: Soybeans: Improvement, production, and uses. Ed. B. E. Caldwell. American Society of Agronomy, Madison, WI. pp.11-22, and 81-87.
Chen, J. J. 2005. Study on phylogenetic and molecular relationship in the genus Glycine, using group 4 Lea gene family. Master thesis. Graduate institute of Agronomy, National Taiwan University.
Chung, C. I. 2000. Study on phylogenetic and molecular relationships between Glycine dolichocarpa and other species in the genus Glycine, using LEA GmPM1/9 as a marker. Master thesis. Graduate institute of Agronomy, National Taiwan University.
Corner, E. J. H. 1951. The leguminous seed. Phytomorphology 1: 117-150.
Devos, K. M., J. K. Brown, and J. L. Bennetzen. 2002. Genome size reduction through illegitimate recombination coubteracts genome expansion in Arabidopsis. Genome Res. 12: 1075-1079.
Dolezel, J., and J. Bartos. 2005. Plant DNA flow cytometry and estimaton of nuclear genome size. Anal. Bot. 95: 99-110.
Doyle, J. J., and A. H. D. Brown. 1989. 5S nuclear ribosomal gene variance in the Glycine tomentella polyploid complex (Leguminosae). Syst. Bot. 14: 398-407.
Doyle, J. J., and R. N. Beachy. 1985. Ribosomal gene variation in the soybean (Glycine) and its wild relatives. Theor. Appl. Genet. 70: 369-376
Doyle, J. J., J. L. Doyle, and A. H. D. Brown. 1990a. A chloroplast-DNA phylogeny of the wild perennial relatives of soybean (Glycine subgenus Glycine): congruence with morphological and crossing groups. Evolution 44: 371-389.
Doyle, J. J., J. L. Doyle, and A. H. D. Brown. 1990b. Analysis of a polyploid complex in Glycine with chloroplast and nuclear DNA. Aust. Syst. Bot. 3: 125-136.
Doyle, J. J., J. L. Doyle, and A. H. D. Brown. 1990c. Chloroplast DNA phylogenetic affinities of newly described species in Glycine (Leguminosae: Phaseoleae). Syst. Bot. 15: 466-471.
Doyle, J. J., J. L. Doyle, A. H. D. Brown, and J. P. Grace. 1990d. Multiple origins of polyploids in the Glycine tabacina complex inferred from chloroplast DNA polymorphism. Proc. Natl. Acad. Sci. USA 87: 714-717.
Doyle, J. J., J. L. Doyle, J. P. Grace, and A. H. D. Brown. 1990e. Reproductively isolated polyploid races of Glycine tabacina (Leguminosae) had different chloroplast genome doners. Syst. Bot. 15: 173-181.
Doyle, J. J., J. L. Doyle, and A. H. D. Brown. 1999a. Incongruence in the diploid B-genome species complex of Glycine (Leguminosae) revisited: histone H3-D alleles versus chloroplast haplotypes. Mol. Biol. Evol. 16: 354-362.
Doyle, J. J., J. L. Doyle, and A. H. D. Brown. 1999b. Origins, colonization, and lineage recombination in a widespread perennial soybean polyploid complex. Proc. Natl. Acad. Sci. USA 96: 10741-10745.
Doyle, J. J., J. L. Doyle, A. H. D. Brown, and B. E. Pfeil. 2000. Confirmation of shared and divergent genomes in the Glycine tabacina polyploid complex (Leguminosae) using histone H3-D sequence. Syst. Bot. 25: 437-448.
Doyle, J. J., J. L. Doyle, A. H. D. Brown., and R. G. Palmer. 2002. Genomes, multiple origins, and lineage recombination in the Glycine tomentella (Leguminosae) polyploid complex: histone H3-D gene sequences. Evolution 56: 1388-1402.
Doyle, J. J., J. L. Doyle, J. T. Rauscher, and A. H. D. Brown. 2003. Diploid and polyploidy reticulate evolution throughout the history of the perennial soybeans (Glycine subgenus Glycine). New Phytologist 161: 121-132.
Doyle, J. J., J. L. Doyle, J. T. Rauscher, and A. H. D. Brown. 2004. Evolution of the perenial soybean polyploid complex (Glycine subgenus Glycine): a study of contrasts. Biol. J. Linnean Society 82: 583-597.
Doyle, M. J., and A. H. D. Brown. 1985. Numerical analysis of isozyme variation in Glycine tomentella. Biochem. Syst. Ecol. 13: 413-419.
Doyle, M. J., J. E. Grant, and A. H. D. Brown. 1986. Reproductive isolation between isozyme group of Glycine tomentella (Leguminosae), and spontaneous doubling in their hybrids. Aust. J. Bot. 34: 523-535.
Duncan, D. B. 1955. Multiple range and multiple F tests. Biometrics. 11: 1-42.
Dzikowski, B. 1937. Study of the soya bean Glycine hispida (Moench) Maxim. II. Anatomy. Pamietnik Panstwowego Instytutu Naukowego Gpspodarstwa Wiejskeigo w Pulawach. Tom XVI. zeszyt 2. Rosprawa Nr. 258, Str 229-265.
Fehr, W. R., and C. E. Caviness. 1977. Stages of soybean development. Iowa Agric. Home. Exp. Stn. Spec. Rep. 80. Ames.
Forbes, F. B., and W. B. Hemsley. 1887. Glycine. In Enumeration of all the plants known from China proper, Formosa, Hainan, the Corea, the Luchu Archipelago, and the Island of Hongkong, together with their distribution and synonymy. J. Linn. Soc. Bot. 23: 188-189.
Frank, A. C., H. Amiri, and S. G. E. Andersson. 2002. Genome deterioration: loss of repeated sequences and accumulation of junk DNA. Gnentica 115: 1-12.
Galau, G. A., D. W. Hughes, and L. Dure III. 1986. Abscisic acid induction of cloned cotton late embryogenesis-abundant (Lea) mRNA. Plant Mol. Biol. 7: 155-170.
Grant, J. E., A. H. D. Brown, and J. P. Grace. 1984. Cytological and isozyme diversity in Glycine tomentella Hayata (Leguminosae). Aust. J. Bot. 32: 665-677.
Hahalis, D., M. P. Cochrane, and M. L. Smith. 1996. Water penetration sites in the testa of soybeans (Glycine max L. Merril) during seed imbibition. Sci. Legumes 3: 218-226.
Hammatt, N., N. W. Blackhall, and M. R. Davey. 1991. Variation in the DNA content of Glycine species. J. Exp. Bot. 42: 659-665.
Hermann, F. J. 1962. A revision of the genus Glycine and its immediate allies. U.S.D.A. Techn. Bull. 1268: 1-79.
Hill, H. J., and S. H. West. 1982. Fungal penetration of soybean seed through pores. Crop Sci. 22: 602-605.
Hill, J. E., and R. W. Breidenbach. 1974. Proteins of soybean seed. II. Accumulation of the major protein components during seed development and maturation. Plant Physiol. 53: 747-751.
Hitchcock, A. S., and M. L. Green. 1947. Species lectotypicae generum Linnaei. Brittonia 6: 114-118.
Hosokawa, T. 1932. Notulae Leguminosarum ex Asiae Orientale II. J. Soc. Trop. Agric. 4: 308-316.
Hsieh, J. S., K. L. Hsieh, Y. C. Tsai, and Y. I. Hsing. 2001. Each species of Glycine collected in Taiwan has a unique seed protein pattern. Euphytica 118: 67-73.
Hsing, Y. I. C., and S. J. Wu. 1992. Cloning and characterization of cDNA clones encoding soybean seed maturation polypeptides. Bot. Bull. Acad. Sin. 33:191-199.
Hsing, Y. I. C., C. H. Tsou, T. F. Hsu, Z. Y. Chen, K. L. Hsieh, J. S. Hsieh, and T. Y. Chow. 1998. Tissue- and stage- specific expression of a soybean (Glycine max L.) seed- maturation, biotinylated protein. Plant Mol. Biol. 29: 1-10.
Hsing, Y. I. C., J. S. Hsieh, C. I. Peng, C. H. Chou, and T. Y. Chiang. 2001. Systematic status of the Glycine tomentella and G. tabacina species complexes (Fabaceae) based on ITS sequences of Nuclear ribosomal DNA. J. Plant Res. 114: 435-442.
Hsing, Y. I. C., K. L. Hsieh, Y. C. Huang, and J. S. Hsieh. 1995a Premature drying and germination in wild soybean seeds. Taiwania 40: 73-81.
Hsing, Y. I. C., K. L. Hsieh, Y. C. Huang, and J. S. Hsieh. 1995b. The relationships of cultivated soybeans and their wild relatives collected from Taiwan:revealed by seed proteins. Bot. Bull. Acad. Sin. 36: 65-72.
Hsing , Y. I. C., Z. Y. Chen, M. D. Shih, J. S. Hsieh, and T. Y. Chow. 1995c. Unusual sequence of group 3 LEA mRNA inducible by maturation or drying in soybean seeds. Plant Mol. Biol. 29: 863-868.
Hsing, Y. I., R. W. Rinne, A. G. Hepburn, and R. E. Zielinski. 1990. Expression of maturation-specific genes in soybean seeds. Crop Sci. 30: 1343-1350.
Huang, T. C. 1993. Flora of Taiwan. Vol. 3. pp 290-294.
Hymotwiz, T., R. J. Singh, and R. P. Larkin. 1990. Long-distance dispersal : the cause for the allopolyploid Glycine tabacina (Labill.) Benth. and Glycine tomentella Hayata in the west-central Pacific. Micronesica 23: 5-13.
Hymowitz, T. 1989. Exploration for wild perennial Glycine species on Taiwan. Soybean Genet. Newsl. 16: 92-93.
Hymowitz, T. 1998. Plant exploration trip to Taiwan and the islet of Kinmen (Quemoy). Soybean Genet. Newsl. 25: 127.
Hymowitz, T., and C. A. Newell. 1980. Taxonomy, speciation, domestication, dessemination, germplasm resources, and variation in the genus Glycine. Advances in Legume Research. pp.251-264.
Hymowitz, T., and C. A. Newell. 1981. Taxonomy of the genus Glycine, domestication and uses of soybean. Econ. Bot. 35: 272-288.
Hymowitz, T., and R. J. Singh. 1987. Taxonomy and speciation. In: Soybeans, Improvement, Production and Uses. 2nd ed. Eds. J. R. Wilcox. American Society of Agronomy Monograph 16, Madison, Wisconsin, pp.23-48.
Johnson, B. L. 1972. Seed protein profiles and the origin of the hexaploid wheats. Amer. J. Bot. 59: 952-960.
Johnson, B. L., and O. Hall. 1965. Analysis of phylogenetic affinities in the Triticinae by protein electrophoresis. Amer. J. Bot. 52: 506-513.
Joly, S., J. T. Rauscher, S. L. Sherman-Broyles, A. H. D. Brown, and J. J. Doyle. 2004. Evolutionary dynamics and preferential expression of homeologous 18S-5.8S-26S nuclear ribosomal genes in natural and artificial Glycine allopolyploids. Mol. Biol. Evol. 21: 1409-1421.
Kashkush, K., M. Feldman, and A. A. Levy. 2002. Gene lose, silencing and activation in a newly synthesized wheat allotetraploid. Genetics 160: 1651-1659.
Kashkush, K., M. Feldman, and A. A. Levy. 2003. Transcriptional activation of retrotransposons alters the expression of adjacent genes in wheat. Nature Genetics 33: 102-106.
Kerby, K., and J. Kuspira. 1986. The phylogeny of the polyploidy wheats Triticum aestivum (bread wheat) and Triticum turgidum (macaroni wheat). Genome 29: 722–737.
Kihara, H. 1919. Uber cytolosgische Studien bei einigen Getreidearten. I. Spezies-Bastarde des Weizens und Weizenmggen-Bastarde. Bot. Mag. (Tokyo') 33: 17-38.
Kihara, H. 1924. Cytologische und genetische Studien b'ei wichtigen Getreidearten mit besonderer Riicksicht auf das Verhalten der Chromasomen und die Sterilitiit in den Bastarden. Ma . Cdl. Sci., Kyoto Imp. Univ., Ser. B. Vol. 1.
Klose, J. 1975. Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues. Humangenetik 26: 231-243.
Kollipara, K. P., R. J. Singh, and T. Hymowitz. 1993. Genomic diversity in aneudiploid (2n = 38) and diploid (2n = 40) Glycine tomentella revealed by cytogenetic and biochemical methods. Genome 36: 391-396.
Kollipara, K. P., R. J. Singh, and T. Hymowitz. 1994. Genomic diversity and multiple origins of tetraploid (2n = 78, 80) Glycine tomentella. Genome 37: 448-459.
Kollipara, K. P., R. J. Singh, and T. Hymowitz. 1995. Genomic relationships in the genus Glycine (Fabaceae: Phaseoleae): Use of a monoclonal antibody to soybean Bowman-Birk inhibitor as a genome marker. Am. J. Bot. 82: 1104-1111.
Kollipara, K. P., R. J. Singh, and T. Hymowitz. 1997. Phylogenetic and genomic relationships in the genus Glycine Willd. Based on sequences from the ITS region of nuclear rDNA. Genome 40: 57-68.
Konieczny, A., and F. M. Ausubel. 1993. A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. Plant J. 4: 403-410.
Kurata, N., and T. Omura. 1978. Karyotype analysis in rice. I. A new method for identifying all chromosome pairs. Jpn. J. Genet. 53: 251-255.
Lackey, L. A. 1977. Neontonia, a new generic name to include Glycine wightii (Arnott) Verdcourt (Leguminosae, Paplionoideae). Phytologia. 37: 209-212.
Ladizinsky, G., and T. Hymowitz. 1979. Seed protein electrophoresis in taxonomic and evolutionary studies. Theor. Appl. Genet. 54: 145-151.
Ladizinsky, G., C. A. Newell, and T. Hymowitz. 1979. Wild crosses in soybeans: prospects and limitations. Euphytica 28: 421-423.
Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685.
Leitch, I. J., and M. D. Bennett. 1997. Polyploidy in angiosperm. Trend. Plant Sci. 2: 470-476.
Lilienfeld, F. A. 1951. Genome analysis in Triticum and Aegilops X. Concluding review. Cytologia 16: 101-123.
Lin, J. B., and M. S. Yeh. 1996. Development of embryo and endosperm derived from selfing and interspecific hybridization between Glycine max and G. tomentella. J. Agri. Asso. China 173: 17-27.
Lin, S. M., C. A. Chen, and K. Y. Lue. 2002. Molecular phylogeny and biogeography of the grass lizards genus Takydromus (Reptilia: Lacertidae) of East Asia. Mol. Phylo. Evol. 22: 276-288.
Lin, T. K., S. T. Wu, T. K. Hu, and F. S. Thseng. 2001. Analysis of genetic distance among four Glycine species collected from Taiwan: revealed by DNA Polymorphisms. J. Agri. Forest. 50: 55-65.
Linnaeus, C. 1737. Genera Plantrum. 1st ed. Conrad Wishoff, Leiden, The Netherlands.
Linnaeus, C. 1753. Species Plantarum, Vol. 2. Lars Salvius, Stockholm.
Ma, F., C. A. Peterson, and M. Gijzen. 2004a. Reassessment of the pits and antipits in soybean seeds. Can. J. Bot. 82: 654-662.
Ma, F., E. Cholewa, T. Mohamed, C. A. Peterson, and M. Gijzen. 2004b. Cracks in the palisade cuticle of soybean seed coats correlate with their permeability to water. Anal. Bot. 94: 213-228.
Marques, K., B. Sarazin, L. Chane-Favre, M.Zivy, and H. Thiellement. 2001. Comparative proteomics to establish genetic relationships in the Brassicaceae family. Proteomics 1: 1457-1462.
McFadden, E. S., and E. R. Sears. 1946. The origin of Triticum spelta and its free-threshing hexaploid relatives. J. Hered. 37: 81-89.
Miksche, J. P. 1961. Developmental vegetative morphology of Glycine max. Agron. J. 53: 121-128.
Murphy, P. A., and A. P. Resurreccion. 1984. Varietal and environmental differences in soybean glycinin and β-conglycinin content. J. Agric. Food. Chem. 32: 911-915.
Murray, D. R. 1987. Nutritive role of seedcoats in the developing legume seeds. Amer. J. Bot. 74: 1122-1137.
Neff, M. M., J. D. Neff, J. Chory, and A. E. Pepper. 1998. dCAPS, a simple technique for the genetic analysis of single nucleotide polymorphisms: experimental applications in Arabidopsis thaliana genetics. Plant J. 14: 387-392.
Newell, C. A., and T. Hymowitz. 1975. Glycine canescens F. J. Herm. A wild relative of the soybean. Crop Sci. 15: 879-881.
Newell, C. A., and T. Hymowitz. 1978. Seed coat variation in Glycine Willd. subgenus Glycine (Leguminosae) by SEM. Brittonia 30: 76-88.
Newell, C. A., and T. Hymowitz. 1980. A taxonomic revision in the genus Glycine subgenus Glycine (Leguminosae). Brittonia 32: 63-69.
Newell, C. A., and T. Hymowitz. 1982. Successful wide hybridization between the soybean and a wild perennial relative, G. tomentella Hayata. Crop Sci. 22: 1062-1065.
Newell, C. A., and T. Hymowitz. 1983. Hybridization in the genus Glycine subgenus Glycine Willd. ( Leguminosae, Papilionideae). Amer. J. Bot. 70: 334-348.
Newell, C. A., X. Delannay, and M. E. Edge. 1987. Interspecific hybrids between the soybean and wild perennial relatives. J. Hered. 78: 301-306.
O’Farrell, P. H. 1975. High resolution two-dimensional gel electrophoresis of proteins. J. Biol. Chem. 250: 4007-4021.
Ohashi, H., Y. Tateishi, T. Nemoto, and H. Hoshi. 1991. Taxonomic studies on the Leguminosae of Taiwan IV. Sci. Rep. Tohoku Univ. 4 th ser (Biol.) 40: 1-37.
Orel, N., and H. Puchta. 2003. Differences in the processing of DNA ends in Arabidopsis thaliana and tobacco: possible implications for genome evolution. Plant Mol. Biol. 51: 523-531.
Pfeil, B. E., and L. A. Craven. 2002. New taxa in Glycine (Fabaceae: Phaseolae) from north-western Australia. Aust. Syst. Bot. 15: 565-573.
Pfeil, B. E., L. A. Craven, A. H. D. Brown, B. G. Murray, and J. J. Doyle. 2006. Three new species of northern Australian Glycine (Fabaceae, Phaseolae), G. gracei, G. montis-douglas and G. syndetika. Aust. Syst. Bot. 19: 245-258.
Pfeil, B. E., M. D. Tindale, and L. A. Craven. 2001. A review of the Glycine clandestina species complex (Fabaceae: Phaseolae) reveals two new species. Aust. Syst. Bot. 14:891-900.
Price, H. J., G. Hodnett, and J. S. Johnston. 2000. Sunflower (Helianthus annuns) leaves contain compounds that reduce nuclear propidium iodide fluorescence. Anal. Bot. 86: 929-934.
Pritchard. A. J., and J. G. Wutoh. 1964. Chromosome numbers in the Glycine L. Nature 202: 322.
Rauscher, J. T., J. J. Doyle, and A. H. D. Brown. 2002. Internal transcribed spacer repeat-specific primers and the analysis of hybridization in the Glycine tomentella (Leguminosae) polyploid complex. Mol. Ecol. 11: 2691-2702.
Rauscher, J. T., J. J. Doyle, and A. H. D. Brown. 2004. Multiple origins and nrDNA internal transcribed spacer homeologue evolution in the Glycine tomentella (Leguminosae) allopolyploid complex. Genetics 166: 987-998.
Riblett, A. L., T. J. Herald, K. A. Schmidt, and K. A. Tilley. 2001. Characterization of β-conglycinin and glycinin soy protein fractions from four selected soybean genotypes. J. Agric. Food Chem. 49: 4983-4989.
Riley, R., G. Kimber, and V. Chapman. 1961. Origin of genetic control of diploid-like behavior of polyploid wheat. J. Hered. 52: 22–25.
Rosenberg, L. A., and R. W. Rinne. 1988. Protein synthesis during natural and precocious soybean seed (Glycine max (L.) Merr.) maturation. Plant Physiol. 87: 474-478.
Rosenberg, O. 1909. Cytologische und morphologische Studien. an. Drosera longifolia x D. rotundifolia. K Sven Vetenskap-. sakad Handl 43: 1-64.
Saio, K., M. Kamiya, and T. Watanabe. 1969. Food processing characteristics of soybean 11S and 7S proteins. Agric. Biol. Chem. 33: 1301-1308.
Saio, K., K. Arai, and T. Watanabe. 1973. Fine structure of soybean seed coat and its changes on cooking. Cereal Sci. Today 18: 197-201, 205.
Sen, N. K., and R. V. Vidyabhusan. 1960. Tetraploid soybean. Euphytica 9: 317-322.
Shih, M. D., S. C. Lin, J. S. Hsieh, C. H. Tsou, T. Y. Chow, T. P. Lin, and Y. I. C. Hsing. 2004. Gene cloning and characterization of a soybean (Glycine max L.) LEA protein, GmPM16. Plant Mol. Biol. 56: 689-703.
Singh, B. B., B. D. Singh, and S. C. Gupta. 1974. PI 171.443 and G. formosana-resistant lines for yellow mosaic of soybean. Soybean Genet. Newsl. 1: 17-18.
Singh, R. J., and T. Hymowitz. 1985a. An intersubgeneric hybrid between Glycine tomentella Hayata and the soybean, G. max (L.) Merr. Euphytica 34: 187-192.
Singh, R. J., and T. Hymowitz. 1985b. Intra-and interspecific hybridization in the genus Glycine, subgenus Glycine Willd.: Chromosome pairing and genome relationship. Zpflanzenzucht. 95: 289-310.
Singh, R. J., and T. Hymowitz. 1985c. The genomic relationships among six wild perennial species of the genus Glycine subgenus Glycine Willd. Theor. Appl. Genet. 71: 221-230.
Singh, R. J., and T. Hymowitz. 1988. The genomic relationship between Glycine max (L.) Merr. and G. soja Sieb. and Zucc. as revealed by pachytene chromosome analysis. Theor. Appl. Genet. 76: 705-711.
Singh, R. J., K. P. Kollipara, and T. Hymowitz. 1987a. Intersungeneric hybridization of soybean with a wild perennial species, Glycine clandestina Wendl. Theor. Appl. Genet. 74: 391-396.
Singh, R. J., K. P. Kollipara, and T. Hymowitz. 1987b. Polyploid complexes of Glycine tabacina (Labill.) Benth. and G. tomentella Hayata revealed by cytogenetic analysis. Genome 29: 490-497.
Singh, R. J., K. P. Kollipara, and T. Hymowitz. 1988. Further data on the genomic relationships among wild perennial species (2n = 40) of the genus Glycine Willd. Genome 30: 166-176.
Singh, R. J., K. P. Kollipara, and T. Hymowitz. 1989. Ancestors of 80- and 78-chromosome Glycine tomentella Hayata (Leguminosae). Genome 32: 796-801.
Singh, R. J., K. P. Kollipara, and T. Hymowitz. 1992. Genomic relationships among diploid wild perennial species of the genus Glycine Willd. subgenus Glycine revealed by crossability, meiotic chromosome pairing and seed protein electrophoresis. Theor. Appl. Genet. 85: 276-282.
Singh, R. J., K. P. Kollipara, and T. Hymowitz. 1998. The genomes of Glycine canescens F. J. Herm., and G. tomentella Hayata of Western Australia and their phylogenetic relationships in the genus Glycine Willd. Genome 41: 669-679.
Singh, R. J., R. L. Nelson, and G. Chung. 2007. Soybean (Glycine max (L.) Merr.). In: Genetic resources, chromosome engineering, and crop improvement Vol 4. Oilseed crops. Ed: R. J. Singh. CRC Press. pp13-50.
Soltis, D. E., and P. S. Soltis. 1999. Polyploidy: Recurrent formation and genome evolution. Trends Ecol. Evol. 14: 348-352.
Soltis, D. E., P. S. Soltis, and J. A. Tate. 2003. Advances in the study of polyploidy since Plant speciation. New Phytolo. 161: 173-191.
Song, K., P. Lu, K. Tang, and T. C. Osborn. 1995. Rapid genome change in synthetic polyploids of Brassica and its implications for polyploid evolution. Proc. Natl. Acad. Sci. USA 92: 7719-7723.
Staswick, P. E., P. Brove, and N. C. Nielsen. 1983. Glycinin composition of several wild soybean species. Plant Physiol. 72: 1114-1118.
Straub, S. C. K., B.E. Pfeil, and J. J. Doyle. 2006. Testing the polyploidy past of soybean using a low-copy nuclear gene—is Glycine (Fabaceae: Papilionoideae) an auto- or allopolyploid? Mol. Phylo. Evol. 39:580-584.
Tang, W. T., and C. H. Chen. 1959. Preliminary studies on the hybridization of cultivated and wild beans (Glycine max and G. formosana). Jour. Agr. Asso. China. New Ser. 28: 17-23.
Tang, W. T., and C.C. Lin. 1962. Studies on the characterisitics of some Glycine spp. found in Taiwan. Bot. Bull. Acad. Sin. 4: 103-110.
Tateishi, Y., and H. Ohashi. 1992. Taxonomic studies on Glycine of Taiwan. J. Jap. Bot. 67: 127-147.
Thiellement, H., N. Bahrman, C. Damerval, C. Plomion, M. Rossignol, V. Santoni, D. de Vienne, and M. Zivy. 1999. Proteomics for genetical and physiological studies in plants. Electrophoresis 20: 2013-20.
Thorne, J. H. 1981. Morphology and ultrastructure of maternal seed tissues of soybean in relation to the import of photosynthate. Plant Physiol. 67: 1016-1025.
Thseng, F. S., S. J. Tsai, J. Abe, and S. T. Wu. 1999. Glycine formosana Hosokawa in Taiwan: pod morphology, allozyme, and DNA polymorphism. Bot. Bull. Acad. Sin. 40: 251-257.
Tindale, M. D. 1984. Two new eastern Australian species of Glycine Willd. (Fabaceae). Brunonia 7: 207-213.
Tindale, M. D. 1986a. A new north Queensland species of Glycine Willd. (Fabaceae). Brunonia 9: 99-103.
Tindale, M. D. 1986b. Taxonomic notes on three Australian and Norfolk Island species of Glycine Willd. (Fabaceae: Phaseolae) including the choice of a neotype for G. clandestine Wendl. Brunonia 9: 179-191.
Tindale, M. D., and L. A. Craven. 1988. Three new species of Glycine (Fabaceae: Phaseolae) from north-western Australia, with notes on amphicarpy in the genus. Aust. Syst. Bot. 1: 399-410.
Tindale, M. D., and L. A. Craven. 1993. Glycine pindanica (Fabaceae, Phaseolae), a new species from west Kimberley, western Australia. Aust. Syst. Bot. 6: 371-376.
Towbin, H., T. Staehlin, and J. Gordon. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA. 76:4350-4354.
Tsai, Y. C., T. H. Hsieh, Y. L. Chen, Y. C. Peng, Y. I. C. Hsing, and J. S. Hsieh. 2006. Using seed protein electrophoresis profile and western blotting to analyze the classification of Glycine species. Crop Environ. Bioinform. 3: 159-176.
Tsai, Y. C., Y. I. C. Hsing, C. I. Chung, and J. S. Hsieh. 2001b. Wild soybean and its relatives collected in Taiwan. Chinese Agron. J. 11: 217-230.
Tsai, Y. C., Y. I. Hsing, and J. S. Hsieh. 2001a. The response of Taiwanese soybean to stress. Chinese Agron. J. 11: 69-81.
Verdcourt, B. 1966. A proposal concerning Glycine L. Taxon 15: 34-36.
Wallis, T. E. 1913. The structure of the soya bean. Pharm. J. 37: 120-123.
Wendel, J. F. 2000. Genome evolution in polyploids. Plant Mol. Biol. 42: 225-249.
Werker, E. 1997. Seed Anatomy. (Encyclopedia of plant anatomy) Gebruder Borntraeger, Berlin, Stuttgart.
Williams, L. F. 1950. Structure and genetic characteristics of soybean. In: Soybeans and soybean products: Volume 1. Ed. K. S. Markley. New York: Interscience Publishers, pp. 111-134.
Wolf, W. J., G. E. Babcock, and A. K. Smith. 1961. Ultracentrifugal differences in soybean protein composition. Nature 191: 1395-1396.
Wolf, W. J., and F. L. Baker. 1972. Scanning electron microscopy of soybeans. Cereal Sci. Today 17: 124-126, 127-130, 147.
Wolf, W. J., and F. L. Baker. 1980. Scanning electron microscopy of soybeans and soybean protein products. Scan. Elect. Microscopy 1980III: 621-634.
Wolf, W. J., F. L. Baker, and R. L. Bernard. 1981. Soybean seed-coat structural features: pits, deposits and cracks. Scan. Elect. Microscopy 1981III: 531-544.
Yaklich, R. W., E. L. Vigil, and W. P. Wergin. 1984. Scanning electron microscopy of soybean seed coat. Scan. Elect. Microscopy 1984II: 991-1000.
Yaklich, R. W., E. L. Vigil, and W. P. Wergin. 1987. Changes in structure of pit and antipit in soybean seeds and seedling development. J. Seed Technol. 11: 151-157.
Yaklich, R. W., E. L. Vigil, and W. P. Wergin. 1989. The pit and antipit in the genus Glycine. Crop Sci. 29: 1304-1309.
Yaklich, R. W., E. L. Vigil, E. F. Erbe, and W. P. Wergin. 1992. The fine structure of aleurone cells in the soybean seed coat. Protoplasma 167: 108-119.
Yaklich, R. W., W. P. Wergin, and E. F. Erbe. 1996. Observation of unique structures between the endosperm and embryo in seeds of Glycine max. Seed Sci. Res. 6: 183-189.
Yaklich, R. W., W. P. Wergin, and E. L. Vigil. 1986. Special secretory cells in the soybean seed coat. Protoplasma 134: 78-87.
Yeh, M. S. 1987. Studies on external morphology and variation of surface structure in seed of Glycine, Leguminosae. J Agriculture and Forestry 36: 1-14.
中國科學技術協會。1993。中國科學技術專家傳略 (農學編作物卷1) pp96-102.
曾富生、蔡憲宗、吳詩都。1996。臺灣野生大豆族群之變異研究IV. 澎湖群島野生種大豆G. tabacina (Labill.) Benth.之種內變異研究:葉、莢果形態及DNA形態多樣性。中華農學會報 178: 52-61。
曾富生、蔡憲宗、吳詩都。1997。臺灣野生大豆族群之變異研究V. G. tomentella Hayata及G. dolichocarpa Tateishi et Ohashi之變異研究:葉、莢果形態及DNA多形性。中華農藝 第七卷: 107-114.
游添榮、曾富生。1997。臺灣野生種大豆族群之變異研究II. 澎湖群島野生大豆G. tabacina (Labill.) Benth.族群之植物特性及同功酶之種內變異。農林學報 46: 111-127。
游添榮、葉茂生。1989。大豆屬開花、授粉習性之探討。農林學報 38(1):49-60。
游添榮。1991。臺灣野生種大豆Glycine formosana、G. tabacina及G. tomentella之種內變異。博士論文。中興大學農藝學研究所。
葉茂生、蔡清榮。1995。大豆屬種間雜交胚發育的研究。中華農學會報 新 170:34-45。
葉茂生、鄭隨和。1991。臺灣豆類植物資源彩色圖鑑。行政院農業委員會 補助印刷。台中。
葉茂生、盧英權。1986a。Glycine亞屬野生大豆生育性狀與染色體數目之變異。農林學報 35:59-80。
葉茂生、盧英權。1986b。野生大豆 Glycine soja 之農藝性狀系統間的變異。農藝彙報 9:29-40。
葉茂生。1987。大豆屬種子外部形態與種皮表面構造之比較研究。農林學報 36(1):1-14。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28867-
dc.description.abstract本研究主要目的在於探討臺灣地區大豆屬物種的親緣關係,先從種實、蛋白譜型與基因組特性進行六個大豆屬物種的一般性的調查,包括利用掃描式電子顯微鏡觀察大豆屬物種種皮表面的細微構造,找出不同物種特有的構造以助大豆屬物種的分類研究。在細微構造上,栽培種的種皮表面有小孔洞和附著物,而其他物種則有由附著物所形成的網狀構造- 粉霜,不同物種粉霜的孔穴大小存在顯著差異。
本研究利用掃描式電子顯微鏡觀察大豆屬物種子葉表面的特殊構造- 紋孔。栽培種大豆紋孔出現的時間點約在開花後10-15天。紋孔區塊內細胞外觀呈現多裂狀,經共軛焦顯微鏡檢視,發現此處細胞的細胞壁分化出二級結構,為典型傳輸細胞的特徵,可能有助於種子發育時的養分傳送。大豆屬物種種子大小不一,特別是栽培種種子與其他野生種相差極大,但每一物種紋孔區塊面積相差不大。前人研究認為紋孔是大豆屬物種特有的構造,但本研究的結果發現至少在蝶形花亞科的12個族內21個屬的物種演化出紋孔這個構造。
本研究以酵素火燄法來製備大豆物種根尖染色體,配合Giemsa染色進行顯微鏡觀察,顯示在臺灣所採集的大豆屬物種有兩種染色體數目,一年生的Glycine soja體染色體2n = 40,而多年生的G. tabacina、G. tomentella (長莢型與短莢型) 體染色體均為2n = 80。本研究也用細胞流測儀檢視臺灣搜集系的倍數性,所得的結果和染色體計數的結果相符。而四倍體物種的DNA含量與可能的兩個二倍體親本DNA含量加總相當。
多種大豆屬物種的種子全蛋白以SDS-PAGE與西方式墨點轉漬法進行分析,結果指出每一個物種均有獨特的電泳圖譜,可以做為物種鑑識之用。所使用的免疫分析的九個種子蛋白中,GmPM1、GmPM2、GmPM8三個種子成熟蛋白譜型在不同物種間差異明顯,G. tomentella物種複合群搜集系依據這三個種子蛋白譜型進行的分群與前人利用同功酶群的方法所推論出的結果一致。因此,長莢型G. tomentella屬於G. tomentella的T2 race,而短莢型的G. tomentella屬於T4 race。
本研究進行不同組合的人工雜交試驗來找出T2 race的基因組組成。雜交試驗 (正反交) 指出G. dolichocarpa與G. tomentella T2 race之間沒有生殖隔離現象存在,這項證據也說明G. tomentella T2 race就是G. dolichocarpa。在可能的二倍體親本雜交的組合中,本研究只在DD x D3D3的組合得到一個發育不良的豆莢,說明D與D3 基因組有較相近的親緣關係。同時也說明G. dolichocarpa可能具有DDD3D3基因組組成。本研究也利用膠內雜交蛋白電泳方法進一步加以證實。
zh_TW
dc.description.abstractThe main purpose of this research is to study the phylogenetic relationship of Glycine species collected in Taiwan. The morphology and fine structures of seed coat of Glycine species accessions were analyzed by scanning electron microscopy (SEM). The seed coat surface of the cultivar (Shishi) contained pores and deposits. The bloom resulting from the attachment of endocarp was present in all of the species examined except G. max. In addition, the cavity sizes of the bloom were significantly different among these accessions. These characters, including seed weight, seed length, seed coat proportion and cavity density, might be helpful in Glycine species taxonomy.
A special structure (pit) on cotyledon surface of Glycine species was also analysed by SEM. Pit appeared on developing G. max seed about 15 DAP. These cells are multilobed, i.e. the signature of transfer cells, that might transfer nutrition from mother tissue to embryo. The size of pit area does not correlate with seed size since the pit sizes of each accession are almost the same while the seed sizes among them are totally different. The pit structure is not unique to Glycine species, it is also present on 21 genera among 12 tribes of Papilionoideae.
The flame dry method was used to prepare the somatic chromosome for checking the chromosome numbers of all Taiwanese Glycine accessions, the annual accessions were diploid and the perennial ones were all tetrapolid. The ploidy levels and the DNA contents of Glycine species were also determined by flow cytometry. The polyploid species contained amounts approximately the sums of the respective proposed parental diploid species.
The seed protein from many Glycine species were analyzed by sodium dodecyl sulfate-gel electrophoresis (SDS-PAGE) and Western blot against soybean seed maturation protein and seed storage protein antibodies. Each species yields a unique electrophoretic pattern that varied in the total number of bands and their relative mobilities. Three genes, GmPM1, GmPM2 and Gm PM8 are more varied during the evolution of genus Glycine species, so their protein profiles can be used as a tool to identity Glycine species. In this study, using seed protein to group of G. tomentella species complex provided the same arrangement when compared to using isozyme described before. Hence, the long-pod G. tomentella, that is G. dolichocarpa, belongs to G. tomentella T2 race, and the short-pod one belongs to T4 race.
There was no reproductive isolation between G. dolichocarpa and T2 race, and for taxonomy status, T2 race is G. dolichocarpa. Crossing between the respective parental diploid species was also applied to comfirm the genome composition of G. tomentella T2 race. Furthermore, in gel hybridization of seed protein was used to examine the events.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T00:26:52Z (GMT). No. of bitstreams: 1
ntu-96-D88621104-1.pdf: 4288984 bytes, checksum: d1fec85f8688986e4ba0b4b3e853323f (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents口試委員會審定書 ------------------------------------------------------------------------ I
誌謝 ------------------------------------------------------------------------------------------ II
中文摘要 ------------------------------------------------------------------------------------ i
英文摘要 ------------------------------------------------------------------------------------ iii
目錄 ------------------------------------------------------------------------------------------ v
圖目錄 --------------------------------------------------------------------------------------- vi
表目錄 --------------------------------------------------------------------------------------- vii
縮寫表 --------------------------------------------------------------------------------------- viii
序論 ------------------------------------------------------------------------------------------ 1
第一章 前人研究 ------------------------------------------------------------------------- 3
第二章 利用掃描式電子顯微鏡進行大豆屬物種種皮變異之研究 ------------- 27
第三章 利用掃描式電子顯微鏡檢視豆科植物子葉表面特殊構造 ------------- 46
第四章 大豆屬物種倍數性分析 ------------------------------------------------------- 64
第五章 利用種子蛋白電泳圖譜進行大豆屬物種分群之研究 ------------------- 81
第六章 利用雜交方式和in gel hybridization驗證多倍體基因組組成 ---------112
第七章 綜合討論 -------------------------------------------------------------------------130
參考文獻 ----------------------------------------------------------------------------------- 134
附錄一、大豆屬物種在幾個主要種原庫以及本實驗室的保存概況 ----------- 147
附錄二、二倍體與四倍體大豆屬物種的分佈 -------------------------------------- 150
附錄三、野外採集記錄 ----------------------------------------------------------------- 152
附錄四、物種複合群親緣網絡 -------------------------------------------------------- 156
附錄五、大豆屬物種學名字彙含義 -------------------------------------------------- 157
附錄六、中研院植物細胞生物核心實驗室之脫水固定及包埋實驗步驟 ----- 159
dc.language.isozh-TW
dc.title臺灣地區大豆屬物種之親緣關係研究
I. 六個大豆屬物種之種實、蛋白譜型與基因組特性的調查
II. G. tomentella物種複合群的基因組組成及分類地位
zh_TW
dc.titleStudy on Phylogenetic Relationship of Glycine Species Collected in Taiwan
I. Analysis of Seed Morphology, Protein Profiles and Ploidy Levels among Six Glycine Species
II. The Genome Composition and Classification Status of Glycine tomentella Species Complex
en
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree博士
dc.contributor.oralexamcommittee邢禹依(Yue-Ie Hsing),鍾美珠(Mei-Chu Chung),陳凱儀(Kai-Yi Chen),張松彬(Song-Bin Chang)
dc.subject.keyword大豆屬物種,掃描式電子顯微鏡,種皮,紋孔,多倍體,物種複合群,酵素火焰乾燥法,染色體基數,細胞流測,聚丙烯醯膠片電泳,大豆種子成熟蛋白,西方式墨點轉漬法,人工雜交,膠內雜交,zh_TW
dc.subject.keywordGlycine species,scanning electron microscopy,seed coat,pit,polyploidy,species complex,flame dry,basic chromosome number,flow cytometry,polyacrylamide gel electrophoresis,soybean seed maturation protein,Western blot,artificial cross,in gel hybridization,en
dc.relation.page159
dc.rights.note有償授權
dc.date.accepted2007-07-26
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農藝學研究所zh_TW
顯示於系所單位:農藝學系

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  目前未授權公開取用
4.19 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved