請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28801完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 曾萬年(Wann-Nian Tzeng) | |
| dc.contributor.author | Ming-Yuan Tsai | en |
| dc.contributor.author | 蔡銘原 | zh_TW |
| dc.date.accessioned | 2021-06-13T00:23:26Z | - |
| dc.date.available | 2011-07-27 | |
| dc.date.copyright | 2007-07-27 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-07-25 | |
| dc.identifier.citation | Azuma, M., Toyama, R., Laver, E. and Dawid, I. B. (2006). Perturbation of rRNA synthesis in the bap28 mutation leads to apoptosis mediated by p53 in the zebrafish central nervous system. J Biol Chem 281, 13309-13316.
Benchimol, S. (2001). p53-dependent pathways of apoptosis. Cell Death Differ 8, 1049-1051. Berghmans, S., Murphey, R. D., Wienholds, E., Neuberg, D., Kutok, J. L., Fletcher, C. D., Morris, J. P., Liu, T. X., Schulte-Merker, S., Kanki, J. P. et al. (2005). tp53 mutant zebrafish develop malignant peripheral nerve sheath tumors. Proc Natl Acad Sci U S A 102, 407-412. Bieker, J. J. (2001). Kruppel-like factors: three fingers in many pies. J Biol Chem 276, 34355-34358. Biemar, F., Argenton, F., Schmidtke, R., Epperlein, S., Peers, B. and Driever, W. (2001). Pancreas development in zebrafish: early dispersed appearance of endocrine hormone expressing cells and their convergence to form the definitive islet. Dev Biol 230, 189-203. Bosse, T., Piaseckyj, C. M., Burghard, E., Fialkovich, J. J., Rajagopal, S., Pu, W. T. and Krasinski, S. D. (2006). Gata4 is essential for the maintenance of jejunal-ileal identities in the adult mouse small intestine. Mol Cell Biol 26, 9060-9070. Bourdon, J. C., Fernandes, K., Murray-Zmijewski, F., Liu, G., Diot, A., Xirodimas, D. P., Saville, M. K. and Lane, D. P. (2005). p53 isoforms can regulate p53 transcriptional activity. Genes Dev 19, 2122-2137. Bretaud, S., Allen, C., Ingham, P. W. and Bandmann, O. (2007). p53-dependent neuronal cell death in a DJ-1-deficient zebrafish model of Parkinson's disease. J Neurochem 100, 1626-1635. Brown, C. T., Xie, Y., Davidson, E. H. and Cameron, R. A. (2005). Paircomp, FamilyRelationsII and Cartwheel: tools for interspecific sequence comparison. BMC Bioinformatics 6, 70. Burch, J. B. (2005). Regulation of GATA gene expression during vertebrate development. Semin Cell Dev Biol 16, 71-81. Campbell, W. A., Yang, H., Zetterberg, H., Baulac, S., Sears, J. A., Liu, T., Wong, S. T., Zhong, T. P. and Xia, W. (2006). Zebrafish lacking Alzheimer presenilin enhancer 2 (Pen-2) demonstrate excessive p53-dependent apoptosis and neuronal loss. J Neurochem 96, 1423-1440. Chen, G. D., Chou, C. M., Hwang, S. P., Wang, F. F., Chen, Y. C., Hung, C. C., Chen, J. Y. and Huang, C. J. (2006). Requirement of nuclear localization and transcriptional activity of p53 for its targeting to the yolk syncytial layer (YSL) nuclei in zebrafish embryo and its use for apoptosis assay. Biochem Biophys Res Commun 344, 272-282. Chen, J., Ruan, H., Ng, S. M., Gao, C., Soo, H. M., Wu, W., Zhang, Z., Wen, Z., Lane, D. P. and Peng, J. (2005). Loss of function of def selectively up-regulates Delta113p53 expression to arrest expansion growth of digestive organs in zebrafish. Genes Dev 19, 2900-2911. Cheng, R., Ford, B. L., O'Neal, P. E., Mathews, C. Z., Bradford, C. S., Thongtan, T., Barnes, D. W., Hendricks, J. D. and Bailey, G. S. (1997). Zebrafish (Danio rerio) p53 tumor suppressor gene: cDNA sequence and expression during embryogenesis. Mol Mar Biol Biotechnol 6, 88-97. Chipuk, J. E., Kuwana, T., Bouchier-Hayes, L., Droin, N. M., Newmeyer, D. D., Schuler, M. and Green, D. R. (2004). Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science 303, 1010-1014. Dang, D. T., Pevsner, J. and Yang, V. W. (2000). The biology of the mammalian Kruppel-like family of transcription factors. Int J Biochem Cell Biol 32, 1103-1121. de Santa Barbara, P., van den Brink, G. R. and Roberts, D. J. (2003). Development and differentiation of the intestinal epithelium. Cell Mol Life Sci 60, 1322-1332. diIorio, P. J., Moss, J. B., Sbrogna, J. L., Karlstrom, R. O. and Moss, L. G. (2002). Sonic hedgehog is required early in pancreatic islet development. Dev Biol 244, 75-84. Dooley, K. and Zon, L. I. (2000). Zebrafish: a model system for the study of human disease. Curr Opin Genet Dev 10, 252-256. Duncan, S. A. (2000). Transcriptional regulation of liver development. Dev Dyn 219, 131-142. Dynan, W. S. and Tjian, R. (1983). The promoter-specific transcription factor Sp1 binds to upstream sequences in the SV40 early promoter. Cell 35, 79-87. Field, H. A., Dong, P. D., Beis, D. and Stainier, D. Y. (2003a). Formation of the digestive system in zebrafish. II. Pancreas morphogenesis. Dev Biol 261, 197-208. Field, H. A., Ober, E. A., Roeser, T. and Stainier, D. Y. (2003b). Formation of the digestive system in zebrafish. I. Liver morphogenesis. Dev Biol 253, 279-290. Gao, X., Sedgwick, T., Shi, Y. B. and Evans, T. (1998). Distinct functions are implicated for the GATA-4, -5, and -6 transcription factors in the regulation of intestine epithelial cell differentiation. Mol Cell Biol 18, 2901-2911. Gardiner, M. R., Daggett, D. F., Zon, L. I. and Perkins, A. C. (2005). Zebrafish KLF4 is essential for anterior mesendoderm/pre-polster differentiation and hatching. Dev Dyn 234, 992-996. Ghiselli, G. (2006). SMC3 knockdown triggers genomic instability and p53-dependent apoptosis in human and zebrafish cells. Mol Cancer 5, 52. Grapin-Botton, A. and Melton, D. A. (2000). Endoderm development: from patterning to organogenesis. Trends Genet 16, 124-130. Hermeking, H. and Benzinger, A. (2006). 14-3-3 proteins in cell cycle regulation. Semin Cancer Biol 16, 183-192. Hocker, M. and Wiedenmann, B. (1998). Molecular mechanisms of enteroendocrine differentiation. Ann N Y Acad Sci 859, 160-174. Holtzinger, A. and Evans, T. (2005). Gata4 regulates the formation of multiple organs. Development 132, 4005-4014. Huang, H., Liu, N. and Lin, S. (2001). Pdx-1 knockdown reduces insulin promoter activity in zebrafish. Genesis 30, 134-136. Ikegami, R., Hunter, P. and Yager, T. D. (1999). Developmental activation of the capability to undergo checkpoint-induced apoptosis in the early zebrafish embryo. Dev Biol 209, 409-433. Jung, J., Zheng, M., Goldfarb, M. and Zaret, K. S. (1999). Initiation of mammalian liver development from endoderm by fibroblast growth factors. Science 284, 1998-2003. Kaczynski, J., Cook, T. and Urrutia, R. (2003). Sp1- and Kruppel-like transcription factors. Genome Biol 4, 206. Kadonaga, J. T., Carner, K. R., Masiarz, F. R. and Tjian, R. (1987). Isolation of cDNA encoding transcription factor Sp1 and functional analysis of the DNA binding domain. Cell 51, 1079-1090. Kratz, E., Eimon, P. M., Mukhyala, K., Stern, H., Zha, J., Strasser, A., Hart, R. and Ashkenazi, A. (2006). Functional characterization of the Bcl-2 gene family in the zebrafish. Cell Death Differ 13, 1631-1640. Lakin, N. D. and Jackson, S. P. (1999). Regulation of p53 in response to DNA damage. Oncogene 18, 7644-7655. Langheinrich, U., Hennen, E., Stott, G. and Vacun, G. (2002). Zebrafish as a model organism for the identification and characterization of drugs and genes affecting p53 signaling. Curr Biol 12, 2023-2028. Lele, Z. and Krone, P. H. (1996). The zebrafish as a model system in developmental, toxicological and transgenic research. Biotechnol Adv 14, 57-72. Levine, A. J., Hu, W. and Feng, Z. (2006). The P53 pathway: what questions remain to be explored? Cell Death Differ 13, 1027-1036. Liu, T. X., Howlett, N. G., Deng, M., Langenau, D. M., Hsu, K., Rhodes, J., Kanki, J. P., D'Andrea, A. D. and Look, A. T. (2003). Knockdown of zebrafish Fancd2 causes developmental abnormalities via p53-dependent apoptosis. Dev Cell 5, 903-914. Lu, W. J. and Abrams, J. M. (2006). Lessons from p53 in non-mammalian models. Cell Death Differ 13, 909-912. Mills, A. A. (2005). p53: link to the past, bridge to the future. Genes Dev 19, 2091-9. Murphy, M. E., Leu, J. I. and George, D. L. (2004). p53 moves to mitochondria: a turn on the path to apoptosis. Cell Cycle 3, 836-839. Murray-Zmijewski, F., Lane, D. P. and Bourdon, J. C. (2006). p53/p63/p73 isoforms: an orchestra of isoforms to harmonise cell differentiation and response to stress. Cell Death Differ 13, 962-972. Ng, A. N., de Jong-Curtain, T. A., Mawdsley, D. J., White, S. J., Shin, J., Appel, B., Dong, P. D., Stainier, D. Y. and Heath, J. K. (2005). Formation of the digestive system in zebrafish: III. Intestinal epithelium morphogenesis. Dev Biol 286, 114-135. Nowak, M., Koster, C. and Hammerschmidt, M. (2005). Perp is required for tissue-specific cell survival during zebrafish development. Cell Death Differ 12, 52-64. Oates, A. C., Pratt, S. J., Vail, B., Yan, Y., Ho, R. K., Johnson, S. L., Postlethwait, J. H. and Zon, L. I. (2001). The zebrafish klf gene family. Blood 98, 1792-1801. Plaster, N., Sonntag, C., Busse, C. E. and Hammerschmidt, M. (2006). p53 deficiency rescues apoptosis and differentiation of multiple cell types in zebrafish flathead mutants deficient for zygotic DNA polymerase delta1. Cell Death Differ 13, 223-235. Poon, G. M., Brokx, R. D., Sung, M. and Gariepy, J. (2007). Tandem dimerization of the human p53 tetramerization domain stabilizes a primary dimer intermediate and dramatically enhances its oligomeric stability. J Mol Biol 365, 1217-1231. Porter, E. M., Bevins, C. L., Ghosh, D. and Ganz, T. (2002). The multifaceted Paneth cell. Cell Mol Life Sci 59, 156-170. Reiter, J. F., Alexander, J., Rodaway, A., Yelon, D., Patient, R., Holder, N. and Stainier, D. Y. (1999). Gata5 is required for the development of the heart and endoderm in zebrafish. Genes Dev 13, 2983-2995. Robu, M. E., Larson, J. D., Nasevicius, A., Beiraghi, S., Brenner, C., Farber, S. A. and Ekker, S. C. (2007). p53 activation by knockdown technologies. PLoS Genet 3, e78. Rossi, J. M., Dunn, N. R., Hogan, B. L. and Zaret, K. S. (2001). Distinct mesodermal signals, including BMPs from the septum transversum mesenchyme, are required in combination for hepatogenesis from the endoderm. Genes Dev 15, 1998-2009. Roy, S., Qiao, T., Wolff, C. and Ingham, P. W. (2001). Hedgehog signaling pathway is essential for pancreas specification in the zebrafish embryo. Curr Biol 11, 1358-1363. Rubinstein, M., Idelman, G., Plymate, S. R., Narla, G., Friedman, S. L. and Werner, H. (2004). Transcriptional activation of the insulin-like growth factor I receptor gene by the Kruppel-like factor 6 (KLF6) tumor suppressor protein: potential interactions between KLF6 and p53. Endocrinology 145, 3769-3777. Sancho, E., Batlle, E. and Clevers, H. (2004). Signaling pathways in intestinal development and cancer. Annu Rev Cell Dev Biol 20, 695-723. Schwartz, G. K. (2005). Development of cell cycle active drugs for the treatment of gastrointestinal cancers: a new approach to cancer therapy. J Clin Oncol 23, 4499-4508. Suzuki, T., Nishi, T., Nagino, T., Sasaki, K., Aizawa, K., Kada, N., Sawaki, D., Munemasa, Y., Matsumura, T., Muto, S. et al. (2007). Functional Interaction between the Transcription Factor Kruppel-like Factor 5 and Poly(ADP-ribose) Polymerase-1 in Cardiovascular Apoptosis. J Biol Chem 282, 9895-9901. Turner, J. and Crossley, M. (1999). Mammalian Kruppel-like transcription factors: more than just a pretty finger. Trends Biochem Sci 24, 236-240. van Vliet, J., Turner, J. and Crossley, M. (2000). Human Kruppel-like factor 8: a CACCC-box binding protein that associates with CtBP and represses transcription. Nucleic Acids Res 28, 1955-1962. Wallace, K. N., Akhter, S., Smith, E. M., Lorent, K. and Pack, M. (2005). Intestinal growth and differentiation in zebrafish. Mech Dev 122, 157-173. Wallace, K. N. and Pack, M. (2003). Unique and conserved aspects of gut development in zebrafish. Dev Biol 255, 12-29. Wallace, K. N., Yusuff, S., Sonntag, J. M., Chin, A. J. and Pack, M. (2001). Zebrafish hhex regulates liver development and digestive organ chirality. Genesis 30, 141-143. Wang, X. and Zhao, J. (2007). KLF8 transcription factor participates in oncogenic transformation. Oncogene 26, 456-461. Wei, H., Wang, X., Gan, B., Urvalek, A. M., Melkoumian, Z. K., Guan, J. L. and Zhao, J. (2006). Sumoylation delimits KLF8 transcriptional activity associated with the cell cycle regulation. J Biol Chem 281, 16664-16671. Wyttenbach, A. and Tolkovsky, A. M. (2006). The BH3-only protein Puma is both necessary and sufficient for neuronal apoptosis induced by DNA damage in sympathetic neurons. J Neurochem 96, 1213-1226. Yee, N. S., Lorent, K. and Pack, M. (2005). Exocrine pancreas development in zebrafish. Dev Biol 284, 84-101. Yee, N. S., Yusuff, S. and Pack, M. (2001). Zebrafish pdx1 morphant displays defects in pancreas development and digestive organ chirality, and potentially identifies a multipotent pancreas progenitor cell. Genesis 30, 137-140. Yu, J. and Zhang, L. (2005). The transcriptional targets of p53 in apoptosis control. Biochem Biophys Res Commun 331, 851-858. Zhang, W., Geiman, D. E., Shields, J. M., Dang, D. T., Mahatan, C. S., Kaestner, K. H., Biggs, J. R., Kraft, A. S. and Yang, V. W. (2000). The gut-enriched Kruppel-like factor (Kruppel-like factor 4) mediates the transactivating effect of p53 on the p21WAF1/Cip1 promoter. J Biol Chem 275, 18391-18398. Zhao, J., Bian, Z. C., Yee, K., Chen, B. P., Chien, S. and Guan, J. L. (2003). Identification of transcription factor KLF8 as a downstream target of focal adhesion kinase in its regulation of cyclin D1 and cell cycle progression. Mol Cell 11, 1503-1515. Zhao, R., Watt, A. J., Li, J., Luebke-Wheeler, J., Morrisey, E. E. and Duncan, S. A. (2005). GATA6 is essential for embryonic development of the liver but dispensable for early heart formation. Mol Cell Biol 25, 2622-2631. Zon, L. I. (1999). Zebrafish: a new model for human disease. Genome Res 9, 99-100. http://www.shigen.nig.ac.jp:6070/zf_info/zfbook/zfbk.html http://zfin.org/cgi-bin/webdriver?MIval=aa-newmrkrselect.apg 吳偉銘,2004。斑馬魚KLF8在早期內胚层及消化道發育之功能性研究。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28801 | - |
| dc.description.abstract | 本實驗室先前選殖到一斑馬魚KLF8基因,可轉譯出具有348個胺基酸的蛋白質,並與人類的KLF8有63%的胺基酸相似度(similarity)。斑馬魚KLF8蛋白質C端有3個krüppel -type zinc finger domain,而N端有一個repressor motif (PVALS/T)。當利用KLF8反意寡核酸抑制KLF8之功能,在morphant胚胎外觀上可觀察到在24 hpf時中後腦交界模糊,48 hpf時心臟looping不正常,72 hpf時圍心膜與腦室腫大、眼睛變小及尾巴彎曲,而在96 hpf morphant胚胎可由外觀看出前腸空腔較小之情況。另外,利用組織切片觀察消化道器官方面,則發現96 hpf morphant胚胎其外分泌胰臟細胞萎縮、肝藏發育不全和腸道上皮細胞缺乏極化(polarization)之情形。因此本論文的主要目的在研究斑馬魚KLF8 基因在消化道發育所扮演的功能。經DNA微矩陣試驗分析出,在morphant胚胎中p53和Cyclin G1相對72 hpf野生種表現量上升,繼而藉由cDNA末端快速擴增技術找出表現量上升的是為P53 isoform的△113p53。進一步由即時定量聚合酶連鎖反應指出,△113p53和Cyclin G1在72 hpf表現量分別上升7.76和2.88倍,而在30 hpf胚胎則為11.86倍和6.41倍,而p53其他下游基因如p21與Mdm2,以及促細胞凋亡基因Noxa和Puma表現量亦有上升情況。同時以全覆式原位雜合反應分析亦顯示出p53在30 hpf、48 hpf及72 hpf morphant胚胎中,大量分佈於眼、腦、脊椎和前腸之中。而在96 hpf不論是morphant或野生種之胚胎p53皆無太多表現。利用acridine orange染色觀察到25 hpf morphant胚胎的眼、腦與脊椎部位有大量細胞凋亡情況。為了探討KLF8是否經由p53而影響消化道之發育,我們利用注射p53裁切或p53起始反意寡核酸於KLF8 morphant胚胎中來拯救不同消化器官之發育。在同時注射KLF8-MO1和p53裁切反意寡核酸到胚胎中,與單獨注射KLF8-MO1之胚胎相比較,觀察到有16%之34 hpf morphant胚胎表現FoxA3之肝及胰芽生缺陷可以被拯救,而有34%之72 hpf morphant胚胎其IFABP在腸道之表現區域有增加之情形。相反地,一同注射p53起始反意寡核酸並無任何拯救morphant中肝胰芽生缺失及IFABP表現區域之效果,其中單獨注射p53裁切或p53起始反意寡核酸則不影響IFABP之表現區域。因此由上述實驗結果顯示抑制斑馬魚KLF8之表現會促使△113p53上升,進而促進前腸細胞凋亡而影響肝、胰芽之budding及後續腸道的形態形成。 | zh_TW |
| dc.description.abstract | Previously we have isolated a KLF8 cDNA from zebrafish and it encodes 348 amino acids long polypeptide which sharing high (63%) amino acid sequence similarity with human KLF8. There are three tandem krüppel-type Cys2His2 zinc-finger motifs at the carboxyl terminus and a repressor motif (PVALS/T) located at the N-terminus of zebrafish KLF8. To explore the function of KLF8 on zebrafish development, we used KLF8 specific antisense morpholino oligomer (MO) to knock down the expression of KLF8. We observed defect in midbrain/hindbrain boundary formation in 24 hours post fertilization (hpf) morphant embryos. We also detected abnormal heart looping morphology with swollen pericardiac chamber, brain edema, small eyes, and malformed tail in 48hpf and 72hpf morphant embryos, respectively. In 96hpf morphant embryos,.we also found defects including lack of folds in intestinal epithelium and small intestinal lumen In addition, paraffin sectioning on 96hpf morphant embryos showed hypoplastic development of liver and exocrine pancreas, as well as the presence of cuboidal intestinal epithelium lacking of polarization. Therefore, the main goal of this thesis is to investigate function of KLF8 in zebrafish gut development. Results from DNA microarray revealed that up-regulation of p53 and Cyclin G1 expression in 72hpf morphant embryos. We also confirmed that △113p53 was the P53 isoform showing up-regulated expression in 72 hpf morphant embryos by Rapid amplification of cDNA ends. Real time Q-PCR was conducted to confirm some up-regulated genes in morphant embryos. Expression of △113p53 and Cyclin G1 were increased 7.76 and 2.88 fold respectively in 72hpf morphant embryos, but they were respectively increased 11.86 and 6.41 fold in 30hpf morphant embryos. Some p53 downstream genes including p21, Mdm2, Noxa and Puma were also up-regulated. Whole-mount in situ hybridization indicated p53 gene was abundantly expressed in the eyes, brain, spinal cord and gut in morphant embryos during 30 to 72 h of development. However no significant difference in p53 expression was detected between wild type and KLF8 morphant embryos at 96 hpf. We used acridine orange staining and found a significantly increased apoptosis in the eyes, brain and spinal cord in 25hpf morphant embryos. To explore how KLF8 affects p53 to regulate development of the digestive system, we co-injected KLF8-MO1 either with p53 splicing MO or with p53 ATG MO into 1-2 cells and examining their effects on foxa3 expressions in the liver and pancreas buds at 34hpf and on IFABP expression domain in the intestinal bulb at 72 hpf injected embryos. Approximately 16% 34hpf morphant embryos showing defects in liver and pancreas budding can be rescued by co-injection with p53 splicing MO but not with p53 ATG MO. However, approximately 34% 72hpf morphant embryos that have been co-injected with p53 splicing MO showing increased IFABP expression domain in the intestinal bulb regions while no improvement of IFABP expression domain can be detected when co-injecting with p53 ATG MO. Whereas both foxa3 and IFABP expression domains in embryos that either have been injected with p53 splicing MO or p53 ATG MO alone were the same as wild type 34hpf and 72 hpf embryos. Overall, these results suggest that up-regulation of △113p53 caused by loss of KLF8 function may promote apoptosis in the fore gut and affect liver and pancreas budding as well as subsequent intestinal morphogenesis. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T00:23:26Z (GMT). No. of bitstreams: 1 ntu-96-R94b45005-1.pdf: 6285261 bytes, checksum: bcf8fd53740aeabc344f8eb7270cf86d (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | 謝辭 ................................................. i
中文摘要................................................ii 英文摘要............................................... iv 目錄 ................................................ vii 前言 ................................................ 1 實驗方法 A、斑馬魚飼養與受精胚胎收集 (Westerfield, 2000) ........ 14 B、反轉錄聚合酶連鎖反應 (Reverse Transcription-Polymerase Chain Reaction, T-PCR) ................................15 C、聚合酶連鎖反應 (Polymerase Chain Reaction, PCR) ......15 D、DNA 洋菜膠電泳 .......................................16 E、DNA分子之萃取及純化 (DNA Extraction and Purification) 16 F、DNA 接合反應 (Ligation) ............................. 17 G、勝任細胞 (competent cell) 之製備與質體轉型 (Transformation).........................................17 H、菌落聚合酶連鎖反應 (Colony Polymerase Chain Reaction) ..............................................18 I、微量質體DNA之萃取 (Miniprep) .........................18 J、全覆式原位雜交反應 (Whole-mount in situ hybridization) ..........................................19 K、萃取全量(total)RNA .................................22 L、DNA Microarray .......................................24 M、即時定量反轉錄聚合脢連鎖反應 (real-time quantitative reverse transcription polymerase chain reaction;簡稱Q-PCR).................................................... 27 N、cDNA末端快速擴增技術 (Rapid Amplification of cDNA Ends) ...................................................28 O、南方氏墨點法 (Southern Blotting) .....................29 P、吖啶橙(acridine orange,AO)染色 ....................31 結果 一、觀察注射KLF8反意寡核酸 (antisense morpholino oligomers,MO)之斑馬魚胚胎 ............................. 32 二、DNA微矩陣試驗 (DNA microarray) ......................32 三、經由RACE確認p53之isoform ........................... 33 四、確認抑制KLF8蛋白質形成所影響之基因及促進細胞凋亡的現象.......................................................33 五、利用p53-裁切MO抑制所有p53 isoform之表現來拯救因缺乏 KLF8蛋白質而導致消化道相關基因表現變化...................35 討論 ....................................................37 參考文獻 ............................................... 42 圖表.....................................................53 附錄.....................................................63 | |
| dc.language.iso | zh-TW | |
| dc.subject | KLF8 | zh_TW |
| dc.subject | p53 | zh_TW |
| dc.subject | 細胞凋亡 | zh_TW |
| dc.subject | 斑馬魚 | zh_TW |
| dc.subject | 消化器官 | zh_TW |
| dc.subject | p53 | en |
| dc.subject | apoptosis | en |
| dc.subject | Digestive Organ | en |
| dc.subject | KLF8 | en |
| dc.subject | zebrafish | en |
| dc.title | 斑馬魚KLF8於消化器官發育功能性之研究 | zh_TW |
| dc.title | Functional Analyses of Zebrafish KLF8 on Digestive Organ Development | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 黃聲蘋(Sheng-Ping L. Hwang) | |
| dc.contributor.oralexamcommittee | 黃銓珍(Chang-Jen Huang),胡清華(CHIN-HWA HU) | |
| dc.subject.keyword | 斑馬魚,KLF8,消化器官,細胞凋亡,p53, | zh_TW |
| dc.subject.keyword | zebrafish,KLF8,Digestive Organ,apoptosis,p53, | en |
| dc.relation.page | 52 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-07-27 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 漁業科學研究所 | zh_TW |
| 顯示於系所單位: | 漁業科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 6.14 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
