Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 獸醫專業學院
  4. 獸醫學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28778
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor朱瑞民
dc.contributor.authorLi-Ti Changen
dc.contributor.author張莉玓zh_TW
dc.date.accessioned2021-06-13T00:22:17Z-
dc.date.available2007-07-30
dc.date.copyright2007-07-30
dc.date.issued2007
dc.date.submitted2007-07-25
dc.identifier.citation1. Bronson, R. T. Variation in age at death of dogs of different sexes and breeds. Am J Vet Res, 43: 2057-2059, 1982.
2. Gobar, G. M., Case, J. T., and Kass, P. H. Program for surveillance of causes of death of dogs, using the Internet to survey small animal veterinarians. J Am Vet Med Assoc, 213: 251-256, 1998.
3. Vail, D. M. and MacEwen, E. G. Spontaneously occurring tumors of companion animals as models for human cancer. Cancer Invest, 18: 781-792, 2000.
4. Ahern, T. E., Bird, R. C., Bird, A. E., and Wolfe, L. G. Expression of the oncogene c-erbB-2 in canine mammary cancers and tumor-derived cell lines. Am J Vet Res, 57: 693-696, 1996.
5. MacEwen, E. G., Harvey, H. J., Patnaik, A. K., Mooney, S., Hayes, A., Kurzman, I., and Hardy, W. D., Jr. Evaluation of effects of levamisole and surgery on canine mammary cancer. J Biol Response Mod, 4: 418-426, 1985.
6. Hansen, K. and Khanna, C. Spontaneous and genetically engineered animal models; use in preclinical cancer drug development. Eur J Cancer, 40: 858-880, 2004.
7. Proschowsky, H. F., Rugbjerg, H., and Ersboll, A. K. Morbidity of purebred dogs in Denmark. Prev Vet Med, 58: 53-62, 2003.
8. Proschowsky, H. F., Rugbjerg, H., and Ersboll, A. K. Mortality of purebred and mixed-breed dogs in Denmark. Prev Vet Med, 58: 63-74, 2003.
9. Moore, P. F. Systemic histiocytosis of Bernese mountain dogs. Vet Pathol, 21: 554-563, 1984.
10. Egenvall, A., Bonnett, B. N., Ohagen, P., Olson, P., Hedhammar, A., and von Euler, H. Incidence of and survival after mammary tumors in a population of over 80,0http://etds.lib.ntu.edu.tw/etdsystem/review/rv_modify?etdun=U0001-240720071321440000 insured female dogs in Sweden from 1995 to 2002. Prev Vet Med, 69: 109-127, 2005.
11. Schneider, R. Comparison of age, sex, and incidence rates in human and canine breast cancer. Cancer, 26: 419-426, 1970.
12. Mottolese, M., Morelli, L., Agrimi, U., Benevolo, M., Sciarretta, F., Antonucci, G., and Natali, P. G. Spontaneous canine mammary tumors. A model for monoclonal antibody diagnosis and treatment of human breast cancer. Lab Invest, 71: 182-187, 1994.
13. MacEwen, E. G. Spontaneous tumors in dogs and cats: models for the study of cancer biology and treatment. Cancer Metastasis Rev, 9: 125-136, 1990.
14. Morgan, R. V. Handbook of small animal practice, 3rd edition, p. 615–625. Philadelphia: Saunders, 1997.
15. Meuten, D. J. Tumors in domestic animals, 4th edition, p. 575–606. Ames, Iowa: Iowa State Press, 2002.
16. Perez Alenza, M. D., Pena, L., del Castillo, N., and Nieto, A. I. Factors influencing the incidence and prognosis of canine mammary tumours. J Small Anim Pract, 41: 287-291, 2000.
17. Gilbertson, S. R., Kurzman, I. D., Zachrau, R. E., Hurvitz, A. I., and Black, M. M. Canine mammary epithelial neoplasms: biologic implications of morphologic characteristics assessed in 232 dogs. Vet Pathol, 20: 127-142, 1983.
18. Gartner, F., Geraldes, M., Cassali, G., Rema, A., and Schmitt, F. DNA measurement and immunohistochemical characterization of epithelial and mesenchymal cells in canine mixed mammary tumours: putative evidence for a common histogenesis. Vet J, 158: 39-47, 1999.
19. Benjamin, S. A., Lee, A. C., and Saunders, W. J. Classification and behavior of canine mammary epithelial neoplasms based on life-span observations in beagles. Vet Pathol, 36: 423-436, 1999.
20. Moulton, J. E., Rosenblatt, L. S., and Goldman, M. Mammary tumors in a colony of beagle dogs. Vet Pathol, 23: 741-749, 1986.
21. Allred, D. C., Mohsin, S. K., and Fuqua, S. A. Histological and biological evolution of human premalignant breast disease. Endocr Relat Cancer, 8: 47-61, 2001.
22. Bostock, D. E. The prognosis following the surgical excision of canine mammary neoplasms. Eur J Cancer, 11: 389-396, 1975.
23. Perez Alenza, M. D., Tabanera, E., and Pena, L. Inflammatory mammary carcinoma in dogs: 33 cases (1995-1999). J Am Vet Med Assoc, 219: 1110-1114, 2001.
24. Schneider, R., Dorn, C. R., and Taylor, D. O. Factors influencing canine mammary cancer development and postsurgical survival. J Natl Cancer Inst, 43: 1249-1261, 1969.
25. Kurzman, I. D. and Gilbertson, S. R. Prognostic factors in canine mammary tumors. Semin Vet Med Surg (Small Anim), 1: 25-32, 1986.
26. Misdorp, W. and Hart, A. A. Prognostic factors in canine mammary cancer. J Natl Cancer Inst, 56: 779-786, 1976.
27. Hellmen, E., Bergstrom, R., Holmberg, L., Spangberg, I. B., Hansson, K., and Lindgren, A. Prognostic factors in canine mammary tumors: a multivariate study of 202 consecutive cases. Vet Pathol, 30: 20-27, 1993.
28. Yamagami, T., Kobayashi, T., Takahashi, K., and Sugiyama, M. Influence of ovariectomy at the time of mastectomy on the prognosis for canine malignant mammary tumours. J Small Anim Pract, 37: 462-464, 1996.
29. Philibert, J. C., Snyder, P. W., Glickman, N., Glickman, L. T., Knapp, D. W., and Waters, D. J. Influence of host factors on survival in dogs with malignant mammary gland tumors. J Vet Intern Med, 17: 102-106, 2003.
30. Itoh, T., Uchida, K., Ishikawa, K., Kushima, K., Kushima, E., Tamada, H., Moritake, T., Nakao, H., and Shii, H. Clinicopathological survey of 101 canine mammary gland tumors: differences between small-breed dogs and others. J Vet Med Sci, 67: 345-347, 2005.
31. Karayannopoulou, M., Kaldrymidou, E., Constantinidis, T. C., and Dessiris, A. Histological grading and prognosis in dogs with mammary carcinomas: application of a human grading method. J Comp Pathol, 133: 246-252, 2005.
32. Misdorp, W., Cotchin, E., Hampe, J. F., Jabara, A. G., and von Sandersleben, J. Canine malignant mammary tumours. I. Sarcomas. Vet Pathol, 8: 99-117, 1971.
33. Stockhaus, C., Kohn, B., Rudolph, R., Brunnberg, L., and Giger, U. Correlation of haemostatic abnormalities with tumour stage and characteristics in dogs with mammary carcinoma. J Small Anim Pract, 40: 326-331, 1999.
34. Yamagami, T., Kobayashi, T., Takahashi, K., and Sugiyama, M. Prognosis for canine malignant mammary tumors based on TNM and histologic classification. J Vet Med Sci, 58: 1079-1083, 1996.
35. Bostock, D. E. Canine and feline mammary neoplasms. Br Vet J, 142: 506-515, 1986.
36. Martin, P. M., Cotard, M., Mialot, J. P., Andre, F., and Raynaud, J. P. Animal models for hormone-dependent human breast cancer. Relationship between steroid receptor profiles in canine and feline mammary tumors and survival rate. Cancer Chemother Pharmacol, 12: 13-17, 1984.
37. Rutteman, G. R. and Misdorp, W. Hormonal background of canine and feline mammary tumours. J Reprod Fertil Suppl, 47: 483-487, 1993.
38. de Las Mulas, J. M., Millan, Y., and Dios, R. A prospective analysis of immunohistochemically determined estrogen receptor alpha and progesterone receptor expression and host and tumor factors as predictors of disease-free period in mammary tumors of the dog. Vet Pathol, 42: 200-212, 2005.
39. Krook, L. A statistical investigation of carcinoma in the dog. Acta Pathol Microbiol Scand, 35: 407-422, 1954.
40. Craig, L. E. Cause of death in dogs according to breed: a necropsy survey of five breeds. J Am Anim Hosp Assoc, 37: 438-443, 2001.
41. Bostock, D. E., Moriarty, J., and Crocker, J. Correlation between histologic diagnosis mean nucleolar organizer region count and prognosis in canine mammary tumors. Vet Pathol, 29: 381-385, 1992.
42. Natali, P. G., Nicotra, M. R., Bigotti, A., Venturo, I., Marcenaro, L., Giacomini, P., and Russo, C. Selective changes in expression of HLA class I polymorphic determinants in human solid tumors. Proc Natl Acad Sci U S A, 86: 6719-6723, 1989.
43. Hanisch, U. K., Lyons, S. A., Prinz, M., Nolte, C., Weber, J. R., Kettenmann, H., and Kirchhoff, F. Mouse brain microglia express interleukin-15 and its multimeric receptor complex functionally coupled to Janus kinase activity. J Biol Chem, 272: 28853-28860, 1997.
44. Gattoni-Celli, S., Kirsch, K., Timpane, R., and Isselbacher, K. J. Beta 2-microglobulin gene is mutated in a human colon cancer cell line (HCT) deficient in the expression of HLA class I antigens on the cell surface. Cancer Res, 52: 1201-1204, 1992.
45. Blanchet, O., Bourge, J. F., Zinszner, H., Tatari, Z., Degos, L., and Paul, P. DNA binding of regulatory factors interacting with MHC-class-I gene enhancer correlates with MHC-class-I transcriptional level in class-I-defective cell lines. Int J Cancer Suppl, 6: 138-145, 1991.
46. Restifo, N. P., Esquivel, F., Kawakami, Y., Yewdell, J. W., Mule, J. J., Rosenberg, S. A., and Bennink, J. R. Identification of human cancers deficient in antigen processing. J Exp Med, 177: 265-272, 1993.
47. Browning, M. J., Krausa, P., Rowan, A., Bicknell, D. C., Bodmer, J. G., and Bodmer, W. F. Tissue typing the HLA-A locus from genomic DNA by sequence-specific PCR: comparison of HLA genotype and surface expression on colorectal tumor cell lines. Proc Natl Acad Sci U S A, 90: 2842-2845, 1993.
48. Hakem, R., Le Bouteiller, P., Jezo-Bremond, A., Harper, K., Campese, D., and Lemonnier, F. A. Differential regulation of HLA-A3 and HLA-B7 MHC class I genes by IFN is due to two nucleotide differences in their IFN response sequences. J Immunol, 147: 2384-2390, 1991.
49. Luboldt, H. J., Kubens, B. S., Rubben, H., and Grosse-Wilde, H. Selective loss of human leukocyte antigen class I allele expression in advanced renal cell carcinoma. Cancer Res, 56: 826-830, 1996.
50. Maeurer, M. J., Gollin, S. M., Storkus, W. J., Swaney, W., Karbach, J., Martin, D., Castelli, C., Salter, R., Knuth, A., and Lotze, M. T. Tumor escape from immune recognition: loss of HLA-A2 melanoma cell surface expression is associated with a complex rearrangement of the short arm of chromosome 6. Clin Cancer Res, 2: 641-652, 1996.
51. Blades, R. A., Keating, P. J., McWilliam, L. J., George, N. J., and Stern, P. L. Loss of HLA class I expression in prostate cancer: implications for immunotherapy. Urology, 46: 681-686; discussion 686-687, 1995.
52. Cordon-Cardo, C., Fuks, Z., Drobnjak, M., Moreno, C., Eisenbach, L., and Feldman, M. Expression of HLA-A,B,C antigens on primary and metastatic tumor cell populations of human carcinomas. Cancer Res, 51: 6372-6380, 1991.
53. Gimeno, I. M., Witter, R. L., Hunt, H. D., Lee, L. F., Reddy, S. M., and Neumann, U. Marek's disease virus infection in the brain: virus replication, cellular infiltration, and major histocompatibility complex antigen expression. Vet Pathol, 38: 491-503, 2001.
54. Yang, T. J., Chandler, J. P., and Dunne-Anway, S. Growth stage dependent expression of MHC antigens on the canine transmissible venereal sarcoma. Br J Cancer, 55: 131-134, 1987.
55. Hsiao, Y. W., Liao, K. W., Hung, S. W., and Chu, R. M. Effect of tumor infiltrating lymphocytes on the expression of MHC molecules in canine transmissible venereal tumor cells. Vet Immunol Immunopathol, 87: 19-27, 2002.
56. Marincola, F. M., Shamamian, P., Alexander, R. B., Gnarra, J. R., Turetskaya, R. L., Nedospasov, S. A., Simonis, T. B., Taubenberger, J. K., Yannelli, J., Mixon, A., and et al. Loss of HLA haplotype and B locus down-regulation in melanoma cell lines. J Immunol, 153: 1225-1237, 1994.
57. Underwood, J. C. Lymphoreticular infiltration in human tumours: prognostic and biological implications: a review. Br J Cancer, 30: 538-548, 1974.
58. Arteaga, C. L., Hurd, S. D., Winnier, A. R., Johnson, M. D., Fendly, B. M., and Forbes, J. T. Anti-transforming growth factor (TGF)-beta antibodies inhibit breast cancer cell tumorigenicity and increase mouse spleen natural killer cell activity. Implications for a possible role of tumor cell/host TGF-beta interactions in human breast cancer progression. J Clin Invest, 92: 2569-2576, 1993.
59. Georgiannos, S. N., Renaut, A., Goode, A. W., and Sheaff, M. The immunophenotype and activation status of the lymphocytic infiltrate in human breast cancers, the role of the major histocompatibility complex in cell-mediated immune mechanisms, and their association with prognostic indicators. Surgery, 134: 827-834, 2003.
60. Hadden, J. W. The immunology and immunotherapy of breast cancer: an update. Int J Immunopharmacol, 21: 79-101, 1999.
61. Ridolfi, R. L., Rosen, P. P., Port, A., Kinne, D., and Mike, V. Medullary carcinoma of the breast: a clinicopathologic study with 10 year follow-up. Cancer, 40: 1365-1385, 1977.
62. Kotlan, B., Simsa, P., Foldi, J., Fridman, W. H., Glassy, M., McKnight, M., and Teillaud, J. L. Immunoglobulin repertoire of B lymphocytes infiltrating breast medullary carcinoma. Hum Antibodies, 12: 113-121, 2003.
63. Rabinowich, H., Sedlmayr, P., Herberman, R. B., and Whiteside, T. L. Response of human NK cells to IL-6 alterations of the cell surface phenotype, adhesion to fibronectin and laminin, and tumor necrosis factor-alpha/beta secretion. J Immunol, 150: 4844-4855, 1993.
64. Whiteside, T. L., Miescher, S., Hurlimann, J., Moretta, L., and von Fliedner, V. Clonal analysis and in situ characterization of lymphocytes infiltrating human breast carcinomas. Cancer Immunol Immunother, 23: 169-178, 1986.
65. Harada, A., Sekido, N., Akahoshi, T., Wada, T., Mukaida, N., and Matsushima, K. Essential involvement of interleukin-8 (IL-8) in acute inflammation. J Leukoc Biol, 56: 559-564, 1994.
66. Schroder, J. M. and Christophers, E. Identification of C5ades arg and an anionic neutrophil-activating peptide (ANAP) in psoriatic scales. J Invest Dermatol, 87: 53-58, 1986.
67. Brennan, F. M., Zachariae, C. O., Chantry, D., Larsen, C. G., Turner, M., Maini, R. N., Matsushima, K., and Feldmann, M. Detection of interleukin 8 biological activity in synovial fluids from patients with rheumatoid arthritis and production of interleukin 8 mRNA by isolated synovial cells. Eur J Immunol, 20: 2141-2144, 1990.
68. Symons, J. A., Wong, W. L., Palladino, M. A., and Duff, G. W. Interleukin 8 in rheumatoid and osteoarthritis. Scand J Rheumatol, 21: 92-94, 1992.
69. Terkeltaub, R., Zachariae, C., Santoro, D., Martin, J., Peveri, P., and Matsushima, K. Monocyte-derived neutrophil chemotactic factor/interleukin-8 is a potential mediator of crystal-induced inflammation. Arthritis Rheum, 34: 894-903, 1991.
70. Carre, P. C., Mortenson, R. L., King, T. E., Jr., Noble, P. W., Sable, C. L., and Riches, D. W. Increased expression of the interleukin-8 gene by alveolar macrophages in idiopathic pulmonary fibrosis. A potential mechanism for the recruitment and activation of neutrophils in lung fibrosis. J Clin Invest, 88: 1802-1810, 1991.
71. Broaddus, V. C., Hebert, C. A., Vitangcol, R. V., Hoeffel, J. M., Bernstein, M. S., and Boylan, A. M. Interleukin-8 is a major neutrophil chemotactic factor in pleural liquid of patients with empyema. Am Rev Respir Dis, 146: 825-830, 1992.
72. Kononen, J., Bubendorf, L., Kallioniemi, A., Barlund, M., Schraml, P., Leighton, S., Torhorst, J., Mihatsch, M. J., Sauter, G., and Kallioniemi, O. P. Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nat Med, 4: 844-847, 1998.
73. Sonoda, Y., Mukaida, N., Wang, J. B., Shimada-Hiratsuka, M., Naito, M., Kasahara, T., Harada, A., Inoue, M., and Matsushima, K. Physiologic regulation of postovulatory neutrophil migration into vagina in mice by a C-X-C chemokine(s). J Immunol, 160: 6159-6165, 1998.
74. Laterveer, L., Lindley, I. J., Hamilton, M. S., Willemze, R., and Fibbe, W. E. Interleukin-8 induces rapid mobilization of hematopoietic stem cells with radioprotective capacity and long-term myelolymphoid repopulating ability. Blood, 85: 2269-2275, 1995.
75. Singh, R. K. and Varney, M. L. IL-8 expression in malignant melanoma: implications in growth and metastasis. Histol Histopathol, 15: 843-849, 2000.
76. Itoh, Y., Joh, T., Tanida, S., Sasaki, M., Kataoka, H., Itoh, K., Oshima, T., Ogasawara, N., Togawa, S., Wada, T., Kubota, H., Mori, Y., Ohara, H., Nomura, T., Higashiyama, S., and Itoh, M. IL-8 promotes cell proliferation and migration through metalloproteinase-cleavage proHB-EGF in human colon carcinoma cells. Cytokine, 29: 275-282, 2005.
77. Sawai, H., Funahashi, H., Okada, Y., Matsuo, Y., Sakamoto, M., Yamamoto, M., Takeyama, H., and Manabe, T. Interleukin-1alpha enhances IL-8 secretion through p38 mitogen-activated protein kinase and reactive oxygen species signaling in human pancreatic cancer cells. Med Sci Monit, 11: BR343-350, 2005.
78. Kudo, C., Araki, A., Matsushima, K., and Sendo, F. Inhibition of IL-8-induced W3/25+ (CD4+) T lymphocyte recruitment into subcutaneous tissues of rats by selective depletion of in vivo neutrophils with a monoclonal antibody. J Immunol, 147: 2196-2201, 1991.
79. Trinchieri, G. Interleukin-12: a proinflammatory cytokine with immunoregulatory functions that bridge innate resistance and antigen-specific adaptive immunity. Annu Rev Immunol, 13: 251-276, 1995.
80. Trinchieri, G. and Scott, P. Interleukin-12: a proinflammatory cytokine with immunoregulatory functions. Res Immunol, 146: 423-431, 1995.
81. Dranoff, G., Jaffee, E., Lazenby, A., Golumbek, P., Levitsky, H., Brose, K., Jackson, V., Hamada, H., Pardoll, D., and Mulligan, R. C. Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc Natl Acad Sci U S A, 90: 3539-3543, 1993.
82. Cella, M., Scheidegger, D., Palmer-Lehmann, K., Lane, P., Lanzavecchia, A., and Alber, G. Ligation of CD40 on dendritic cells triggers production of high levels of interleukin-12 and enhances T cell stimulatory capacity: T-T help via APC activation. J Exp Med, 184: 747-752, 1996.
83. Koch, F., Stanzl, U., Jennewein, P., Janke, K., Heufler, C., Kampgen, E., Romani, N., and Schuler, G. High level IL-12 production by murine dendritic cells: upregulation via MHC class II and CD40 molecules and downregulation by IL-4 and IL-10. J Exp Med, 184: 741-746, 1996.
84. Heufler, C., Koch, F., Stanzl, U., Topar, G., Wysocka, M., Trinchieri, G., Enk, A., Steinman, R. M., Romani, N., and Schuler, G. Interleukin-12 is produced by dendritic cells and mediates T helper 1 development as well as interferon-gamma production by T helper 1 cells. Eur J Immunol, 26: 659-668, 1996.
85. Wills-Karp, M., Luyimbazi, J., Xu, X., Schofield, B., Neben, T. Y., Karp, C. L., and Donaldson, D. D. Interleukin-13: central mediator of allergic asthma. Science, 282: 2258-2261, 1998.
86. Trinchieri, G. The two faces of interleukin 12: a pro-inflammatory cytokine and a key immunoregulatory molecule produced by antigen-presenting cells. Ciba Found Symp, 195: 203-214; discussion 214-220, 1995.
87. Aste-Amezaga, M., D'Andrea, A., Kubin, M., and Trinchieri, G. Cooperation of natural killer cell stimulatory factor/interleukin-12 with other stimuli in the induction of cytokines and cytotoxic cell-associated molecules in human T and NK cells. Cell Immunol, 156: 480-492, 1994.
88. Ozmen, L., Pericin, M., Hakimi, J., Chizzonite, R. A., Wysocka, M., Trinchieri, G., Gately, M., and Garotta, G. Interleukin 12, interferon gamma, and tumor necrosis factor alpha are the key cytokines of the generalized Shwartzman reaction. J Exp Med, 180: 907-915, 1994.
89. dos Santos, L. R., Barrouin-Melo, S. M., Chang, Y. F., Olsen, J., McDonough, S. P., Quimby, F., dos Santos, W. L., Pontes-de-Carvalho, L. C., and Oliveira, G. G. Recombinant single-chain canine interleukin 12 induces interferon gamma mRNA expression in peripheral blood mononuclear cells of dogs with visceral leishmaniasis. Vet Immunol Immunopathol, 98: 43-48, 2004.
90. Houghton, A. N., Thomson, T. M., Gross, D., Oettgen, H. F., and Old, L. J. Surface antigens of melanoma and melanocytes. Specificity of induction of Ia antigens by human gamma-interferon. J Exp Med, 160: 255-269, 1984.
91. Sgadari, C., Angiolillo, A. L., and Tosato, G. Inhibition of angiogenesis by interleukin-12 is mediated by the interferon-inducible protein 10. Blood, 87: 3877-3882, 1996.
92. Gerber, S. A., Moran, J. P., Frelinger, J. G., Frelinger, J. A., Fenton, B. M., and Lord, E. M. Mechanism of IL-12 mediated alterations in tumour blood vessel morphology: analysis using whole-tissue mounts. Br J Cancer, 88: 1453-1461, 2003.
93. Yao, L., Sgadari, C., Furuke, K., Bloom, E. T., Teruya-Feldstein, J., and Tosato, G. Contribution of natural killer cells to inhibition of angiogenesis by interleukin-12. Blood, 93: 1612-1621, 1999.
94. Kobayashi, M., Fitz, L., Ryan, M., Hewick, R. M., Clark, S. C., Chan, S., Loudon, R., Sherman, F., Perussia, B., and Trinchieri, G. Identification and purification of natural killer cell stimulatory factor (NKSF), a cytokine with multiple biologic effects on human lymphocytes. J Exp Med, 170: 827-845, 1989.
95. Naume, B., Gately, M., and Espevik, T. A comparative study of IL-12 (cytotoxic lymphocyte maturation factor)-, IL-2-, and IL-7-induced effects on immunomagnetically purified CD56+ NK cells. J Immunol, 148: 2429-2436, 1992.
96. Naume, B., Johnsen, A. C., Espevik, T., and Sundan, A. Gene expression and secretion of cytokines and cytokine receptors from highly purified CD56+ natural killer cells stimulated with interleukin-2, interleukin-7 and interleukin-12. Eur J Immunol, 23: 1831-1838, 1993.
97. Li, L., Young, D., Wolf, S. F., and Choi, Y. S. Interleukin-12 stimulates B cell growth by inducing IFN-gamma. Cell Immunol, 168: 133-140, 1996.
98. Jones, B. M. Effect of 12 neutralizing anti-cytokine antibodies on in vitro activation of B-cells. Interleukin-12 is required by B1a but not B2 cells. Scand J Immunol, 43: 64-72, 1996.
99. Dubois, B., Barthelemy, C., Durand, I., Liu, Y. J., Caux, C., and Briere, F. Toward a role of dendritic cells in the germinal center reaction: triggering of B cell proliferation and isotype switching. J Immunol, 162: 3428-3436, 1999.
100. Dubois, B., Massacrier, C., Vanbervliet, B., Fayette, J., Briere, F., Banchereau, J., and Caux, C. Critical role of IL-12 in dendritic cell-induced differentiation of naive B lymphocytes. J Immunol, 161: 2223-2231, 1998.
101. Goodenow, R. S., Vogel, J. M., and Linsk, R. L. Histocompatibility antigens on murine tumors. Science, 230: 777-783, 1985.
102. Morris, S. C., Madden, K. B., Adamovicz, J. J., Gause, W. C., Hubbard, B. R., Gately, M. K., and Finkelman, F. D. Effects of IL-12 on in vivo cytokine gene expression and Ig isotype selection. J Immunol, 152: 1047-1056, 1994.
103. Kiniwa, M., Gately, M., Gubler, U., Chizzonite, R., Fargeas, C., and Delespesse, G. Recombinant interleukin-12 suppresses the synthesis of immunoglobulin E by interleukin-4 stimulated human lymphocytes. J Clin Invest, 90: 262-266, 1992.
104. Metzger, D. W., Vogel, L. A., Van Cleave, V. H., Lester, T. L., and Buchanan, J. M. The effects of IL12 on B-cell subset function. Res Immunol, 146: 499-505, 1995.
105. Nishimura, N., Nishioka, Y., Shinohara, T., and Sone, S. Enhanced efficiency by centrifugal manipulation of adenovirus-mediated interleukin 12 gene transduction into human monocyte-derived dendritic cells. Hum Gene Ther, 12: 333-346, 2001.
106. Tuting, T., Wilson, C. C., Martin, D. M., Kasamon, Y. L., Rowles, J., Ma, D. I., Slingluff, C. L., Jr., Wagner, S. N., van der Bruggen, P., Baar, J., Lotze, M. T., and Storkus, W. J. Autologous human monocyte-derived dendritic cells genetically modified to express melanoma antigens elicit primary cytotoxic T cell responses in vitro: enhancement by cotransfection of genes encoding the Th1-biasing cytokines IL-12 and IFN-alpha. J Immunol, 160: 1139-1147, 1998.
107. Nishioka, Y., Hirao, M., Robbins, P. D., Lotze, M. T., and Tahara, H. Induction of systemic and therapeutic antitumor immunity using intratumoral injection of dendritic cells genetically modified to express interleukin 12. Cancer Res, 59: 4035-4041, 1999.
108. Seder, R. A., Germain, R. N., Linsley, P. S., and Paul, W. E. CD28-mediated costimulation of interleukin 2 (IL-2) production plays a critical role in T cell priming for IL-4 and interferon gamma production. J Exp Med, 179: 299-304, 1994.
109. Wu, C. Y., Demeure, C., Kiniwa, M., Gately, M., and Delespesse, G. IL-12 induces the production of IFN-gamma by neonatal human CD4 T cells. J Immunol, 151: 1938-1949, 1993.
110. Manetti, R., Parronchi, P., Giudizi, M. G., Piccinni, M. P., Maggi, E., Trinchieri, G., and Romagnani, S. Natural killer cell stimulatory factor (interleukin 12 [IL-12]) induces T helper type 1 (Th1)-specific immune responses and inhibits the development of IL-4-producing Th cells. J Exp Med, 177: 1199-1204, 1993.
111. Garrido, F., Ruiz-Cabello, F., Cabrera, T., Perez-Villar, J. J., Lopez-Botet, M., Duggan-Keen, M., and Stern, P. L. Implications for immunosurveillance of altered HLA class I phenotypes in human tumours. Immunol Today, 18: 89-95, 1997.
112. Gately, M. K., Desai, B. B., Wolitzky, A. G., Quinn, P. M., Dwyer, C. M., Podlaski, F. J., Familletti, P. C., Sinigaglia, F., Chizonnite, R., Gubler, U., and et al. Regulation of human lymphocyte proliferation by a heterodimeric cytokine, IL-12 (cytotoxic lymphocyte maturation factor). J Immunol, 147: 874-882, 1991.
113. Tsai, J. F., Jeng, J. E., Chuang, L. Y., Yang, M. L., Ho, M. S., Chang, W. Y., Hsieh, M. Y., Lin, Z. Y., and Tsai, J. H. Elevated urinary transforming growth factor-beta1 level as a tumour marker and predictor of poor survival in cirrhotic hepatocellular carcinoma. Br J Cancer, 76: 244-250, 1997.
114. Trembleau, S., Penna, G., Bosi, E., Mortara, A., Gately, M. K., and Adorini, L. Interleukin 12 administration induces T helper type 1 cells and accelerates autoimmune diabetes in NOD mice. J Exp Med, 181: 817-821, 1995.
115. Coughlin, C. M., Salhany, K. E., Wysocka, M., Aruga, E., Kurzawa, H., Chang, A. E., Hunter, C. A., Fox, J. C., Trinchieri, G., and Lee, W. M. Interleukin-12 and interleukin-18 synergistically induce murine tumor regression which involves inhibition of angiogenesis. J Clin Invest, 101: 1441-1452, 1998.
116. Cousens, L. P., Orange, J. S., and Biron, C. A. Endogenous IL-2 contributes to T cell expansion and IFN-gamma production during lymphocytic choriomeningitis virus infection. J Immunol, 155: 5690-5699, 1995.
117. Leonard, J. P., Waldburger, K. E., and Goldman, S. J. Prevention of experimental autoimmune encephalomyelitis by antibodies against interleukin 12. J Exp Med, 181: 381-386, 1995.
118. Neurath, M. F., Fuss, I., Kelsall, B. L., Stuber, E., and Strober, W. Antibodies to interleukin 12 abrogate established experimental colitis in mice. J Exp Med, 182: 1281-1290, 1995.
119. Williamson, E., Garside, P., Bradley, J. A., and Mowat, A. M. IL-12 is a central mediator of acute graft-versus-host disease in mice. J Immunol, 157: 689-699, 1996.
120. Malfait, A. M., Butler, D. M., Presky, D. H., Maini, R. N., Brennan, F. M., and Feldmann, M. Blockade of IL-12 during the induction of collagen-induced arthritis (CIA) markedly attenuates the severity of the arthritis. Clin Exp Immunol, 111: 377-383, 1998.
121. Kitching, A. R., Tipping, P. G., and Holdsworth, S. R. IL-12 directs severe renal injury, crescent formation and Th1 responses in murine glomerulonephritis. Eur J Immunol, 29: 1-10, 1999.
122. Clerici, M., Lucey, D. R., Berzofsky, J. A., Pinto, L. A., Wynn, T. A., Blatt, S. P., Dolan, M. J., Hendrix, C. W., Wolf, S. F., and Shearer, G. M. Restoration of HIV-specific cell-mediated immune responses by interleukin-12 in vitro. Science, 262: 1721-1724, 1993.
123. Burton, J. D., Bamford, R. N., Peters, C., Grant, A. J., Kurys, G., Goldman, C. K., Brennan, J., Roessler, E., and Waldmann, T. A. A lymphokine, provisionally designated interleukin T and produced by a human adult T-cell leukemia line, stimulates T-cell proliferation and the induction of lymphokine-activated killer cells. Proc Natl Acad Sci U S A, 91: 4935-4939, 1994.
124. Groh, V., Rhinehart, R., Secrist, H., Bauer, S., Grabstein, K. H., and Spies, T. Broad tumor-associated expression and recognition by tumor-derived gamma delta T cells of MICA and MICB. Proc Natl Acad Sci U S A, 96: 6879-6884, 1999.
125. Edelbaum, D., Mohamadzadeh, M., Bergstresser, P. R., Sugamura, K., and Takashima, A. Interleukin (IL)-15 promotes the growth of murine epidermal gamma delta T cells by a mechanism involving the beta- and gamma c-chains of the IL-2 receptor. J Invest Dermatol, 105: 837-843, 1995.
126. Zhang, L., Conejo-Garcia, J. R., Katsaros, D., Gimotty, P. A., Massobrio, M., Regnani, G., Makrigiannakis, A., Gray, H., Schlienger, K., Liebman, M. N., Rubin, S. C., and Coukos, G. Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med, 348: 203-213, 2003.
127. Armitage, R. J., Macduff, B. M., Eisenman, J., Paxton, R., and Grabstein, K. H. IL-15 has stimulatory activity for the induction of B cell proliferation and differentiation. J Immunol, 154: 483-490, 1995.
128. Carson, W. E., Giri, J. G., Lindemann, M. J., Linett, M. L., Ahdieh, M., Paxton, R., Anderson, D., Eisenmann, J., Grabstein, K., and Caligiuri, M. A. Interleukin (IL) 15 is a novel cytokine that activates human natural killer cells via components of the IL-2 receptor. J Exp Med, 180: 1395-1403, 1994.
129. Mrozek, E., Anderson, P., and Caligiuri, M. A. Role of interleukin-15 in the development of human CD56+ natural killer cells from CD34+ hematopoietic progenitor cells. Blood, 87: 2632-2640, 1996.
130. Suzuki, H., Duncan, G. S., Takimoto, H., and Mak, T. W. Abnormal development of intestinal intraepithelial lymphocytes and peripheral natural killer cells in mice lacking the IL-2 receptor beta chain. J Exp Med, 185: 499-505, 1997.
131. Mingari, M. C., Vitale, C., Cantoni, C., Bellomo, R., Ponte, M., Schiavetti, F., Bertone, S., Moretta, A., and Moretta, L. Interleukin-15-induced maturation of human natural killer cells from early thymic precursors: selective expression of CD94/NKG2-A as the only HLA class I-specific inhibitory receptor. Eur J Immunol, 27: 1374-1380, 1997.
132. Ogasawara, K., Hida, S., Azimi, N., Tagaya, Y., Sato, T., Yokochi-Fukuda, T., Waldmann, T. A., Taniguchi, T., and Taki, S. Requirement for IRF-1 in the microenvironment supporting development of natural killer cells. Nature, 391: 700-703, 1998.
133. Liang, C. T., Chueh, L. L., Pang, V. F., Zhuo, Y. X., Liang, S. C., Yu, C. K., Chiang, H., Lee, C. C., and Liu, C. H. A non-biotin polymerized horseradish-peroxidase method for the immunohistochemical diagnosis of canine distemper. J Comp Pathol, 136: 57-64, 2007.
134. Tagaya, Y., Burton, J. D., Miyamoto, Y., and Waldmann, T. A. Identification of a novel receptor/signal transduction pathway for IL-15/T in mast cells. Embo J, 15: 4928-4939, 1996.
135. Quinn, L. S., Haugk, K. L., and Damon, S. E. Interleukin-15 stimulates C2 skeletal myoblast differentiation. Biochem Biophys Res Commun, 239: 6-10, 1997.
136. Bamford, R. N., Battiata, A. P., and Waldmann, T. A. IL-15: the role of translational regulation in their expression. J Leukoc Biol, 59: 476-480, 1996.
137. Grabstein, K. H., Eisenman, J., Shanebeck, K., Rauch, C., Srinivasan, S., Fung, V., Beers, C., Richardson, J., Schoenborn, M. A., Ahdieh, M., and et al. Cloning of a T cell growth factor that interacts with the beta chain of the interleukin-2 receptor. Science, 264: 965-968, 1994.
138. Giri, J. G., Ahdieh, M., Eisenman, J., Shanebeck, K., Grabstein, K., Kumaki, S., Namen, A., Park, L. S., Cosman, D., and Anderson, D. Utilization of the beta and gamma chains of the IL-2 receptor by the novel cytokine IL-15. Embo J, 13: 2822-2830, 1994.
139. Munger, W., DeJoy, S. Q., Jeyaseelan, R., Sr., Torley, L. W., Grabstein, K. H., Eisenmann, J., Paxton, R., Cox, T., Wick, M. M., and Kerwar, S. S. Studies evaluating the antitumor activity and toxicity of interleukin-15, a new T cell growth factor: comparison with interleukin-2. Cell Immunol, 165: 289-293, 1995.
140. Gamero, A. M., Ussery, D., Reintgen, D. S., Puleo, C. A., and Djeu, J. Y. Interleukin 15 induction of lymphokine-activated killer cell function against autologous tumor cell
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28778-
dc.description.abstract犬自然發生腫瘤之主要組織相容複合物(Major histocompatibility complex, MHC)及細胞激素模版(profile)的詳盡資料非常有限,然而,此資料對於基因治療之應用相當重要。本研究乃自台北的動物醫院蒐集62隻患有腫瘤的犬隻。將腫瘤塊研磨至單一細胞懸浮液(single cell suspension),使用流式細胞儀分析下述各項資料:1)腫瘤細胞之MHC I, II含量,2)腫瘤浸潤淋巴球(Tumor infiltrating lymphocyte, TIL)之CD3, 4, 8, 21,及3)週邊血液淋巴球(Peripheral blood lymphocyte, PBL)之MHC I, II,及CD3, 4, 8, 21。並使用Real-time RT PCR偵測IL-2, IL-6, IL-8, IL-10, IL-12, IL-13, IL-15, TNF-α, TGF-β, IFN-γ之mRNA含量。將上述資料配合病歷及動物之預後,使用Biomarker Patterns Software分析,得到MHC I 表現量72.58%之數值,若低於此數值以乳房腫瘤(Mammary gland tumor, MGT)居多,若高於此數值則以其他腫瘤為主。MGT中,MHC I表現低於72.58%者超過91%(33/36)。3個良性MGT中,2個(67%)MHC I表現量低;而33個惡性MGT中,高達31個(94%)MHC I低表現。進一步比較,健康乳腺細胞(Healthy mammary gland, HMG)與腫瘤細胞細胞激素之表現,發現MGT之IL-8顯著較高 (p<0.05)。將MGT依組織病理學細分為良性、惡性,並將惡性MGT細分為simple、complex、tubulopapillary惡性上皮性腫瘤。雖然IL-8在MGT表現量顯著高於HMG,但惡性MGT中只有simple carcinoma之IL-8有此顯著性差異,其他類別之MGT無此現象。使用免疫組織化學染色後發現,IL-8表現似乎與血管新生成正相關。除此之外,同樣與HMG比較,良性MGT之IL-10、IL-12表現顯著較低(p<0.05),IL-15則極顯著較低(p<0.01)。進一步將惡性腫瘤細分後,僅tubulopapillary carcinoma之IL-12顯著低於HMG。另外,比較惡性及良性MGT時發現,惡性MGT之IL-8及IL-13表現顯著較良性MGT為高。其次,MGT病畜之PBL似乎含有較健康犬隻高比例的非T非B細胞。如將細胞表面分子配合預後資料,得到下述預後較佳的profile且具有統計學上顯著性差異(p<0.01),包括腫瘤細胞低MHC II,TIL之高CD4、CD21,及PBL之高MHC II、非CD4,8,21及低CD21。
由以上之結果可見,本實驗所調查的自然發生腫瘤中,MGT有較高比例MHC I表現量較低,而MHC I 低表現可能和腫瘤惡性有關。自PBL及腫瘤細胞之細胞表面分子與細胞激素基因profile得到的結果,可能有助於了解腫瘤的致病機制、導致病畜預後及日後犬腫瘤免疫治療之應用。
關鍵字:自然發生腫瘤、主要組織相容複合物、腫瘤浸潤淋巴球、週邊血液淋巴球、細胞激素。
zh_TW
dc.description.abstractThere is lack of detailed MHC (Major histocompatibility complex) and cytokine profile data available in canine spontaneous tumors. However, this data is essential in a gene therapy application. 62 cancer dog patients were mostly collected from animal hospital in Taipei. Single cell suspensions were prepared. The flow cytometry was used to analyze the MHC I, II of tumor cells, subpopulations of TIL (Tumor infiltrating lymphocyte), PBL (Peripheral blood lymphocyte) including MHC I, II, and CD3, 4, 8, 21. In addition, tumor cells cytokines, such as IL-2, IL-6, IL-8, IL-10, IL-12, IL-13, IL-15, TNF-α, TGF-β, IFN-γ were studied by real-time RT PCR. These data were compared with the case history and their prognosis by Biomarker Patterns Software and we found that the cutoff value of MHC I expression in MGT (Mammary gland tumor) and non-MGT was 72.58%. Lower than 72.58% was MGT, and higher would be non-MGT. The results from 36 MGT and 15 non-MGT were collected. For MGT, 33 of 36 cases (91%) the MHC I were low in density (lower than 72.58%). 2 of 3 (67%) benign tumor and 31/33 (94%) malignant tumors expressed low MHC I in density. Therefore, among most spontaneous tumors, MGT tent to expresses low MHC I and low MHC I expression may have correlation with tumor malignancy. Data below are cytokine mRNA from MGT, benign MGT, and tubulopapillary carcinoma in malignant MGT compared with healthy mammary gland (HMG). IL-8 in MGT was significantly higher, while IL-10, IL-12, IL-15 in benign MGT and IL-12 in tubulopapillary carcinoma are significantly lower than HMG. Moreover, malignant MGT express significantly higher IL-8 and IL-13 mRNA level than benign MGT. Although IL-8 is significantly higher in MGT than HMG, only malignant MGT and especially simple carcinoma is significantly higher than mammary gland. Other subtypes of MGT has no significance compared to HMG. IL-8 may have positive correlation with angiogenesis. In addition, MGT tended to have more non-T, non-B cells than healthy dogs in the PBL. In cell surface marker, low MHC II in tumor cell, high CD4 and CD21 in TIL, high MHC II, non-CD4,8,21 and low CD21 in PBL has statistically significance in prognosis.
From data above, MGT tend to express lower percentage of MHC I among spontaneous tumors collected in this study. In addition, low MHC I may be correlated with tumor malignancy. In addition, cell surface marker and mRNA expression profile in PBL and tumor cell may help us understand tumorigenesis mechanism, and the correlations with prognosis, which is useful for the study of canine cancer immunotherapy.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T00:22:17Z (GMT). No. of bitstreams: 1
ntu-96-R94629007-1.pdf: 4965090 bytes, checksum: 1da142491bf77bf239c3ad7a22f56b27 (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents口試委員會審定書……………………………………………………..………… i
誌謝……………………………………………………………………..…………. ii
中文摘要………………………………………………………….……………… i ii
英文摘要…………………………………………………………….……………. v
目錄…………………………………………………………… vii
圖目錄……………………………………………………………xi
表目錄……………………………………………………………xii
縮寫符號……………………………………………………………xiii
第一章 序言…………………………………………………………….……….. 1
第二章 文獻探討……………………………………………….……………….. 2
第一節犬隻癌症發生率……………………………………………………… 2
第二節犬乳房腫瘤簡介………………………………………………..…… 4
一、概論………………………………………………………………… 4
二、腫瘤來源…………………………………………………………… 4
三、腫瘤特性…………………………………………………………… 5
四、乳房腫瘤分類……………………………………………………… 5
五、預後及死亡率……………………………………………………… 6
第三節主要組織相容複合物抗原在腫瘤細胞扮演的角色……………… 11
第四節腫瘤浸潤淋巴球在宿主扮演的角色……………………………… 13
第五節細胞激素…………………………………………………………… 14
一、IL-8………………………………………………….…………… 14
二、IL-12……………………………………………….……………… 15
三、IL-15………………………………………………….…………… 16
四、IL-13……………………………………………………….……… 18
五、IL-6………………………………………………………..……… 18
六、TGF-β…………………………………………………….………… 19
七、IFN- ……………………………………………………….……… 20
八、IL-2……………………………………………………………… 21
九、IL-10……………………………………………………………… 22
十、TNF-α…………………………………………………………… 23
第六節 犬傳染性花柳性腫瘤之免疫反應…………………………...…… 24
第七節 研究目的…………………………………………………….…..… 27
第三章 實驗策略與內容………………………………………………….…… 28
第四章 材料與方法……………………………………………………….…… 29
第一節 犬腫瘤、循環中淋巴球及腫瘤浸潤淋巴球之取得……….…… 29
一、蒐集腫瘤、取得臨床病歷並製作細胞切片…………….……… 29
二、腫瘤細胞與腫瘤浸潤淋巴球的純化與收集…………….……… 29
三、腫瘤細胞與腫瘤浸潤淋巴球的純化與收集…………….……… 29
1. 健康乳房組織………………………………………………..… 30
2. 健康血液樣本………………………………………………..… 30
四、週邊血液淋巴單核球…………………………………………… 30
五、犬乳房腫瘤細胞株……………………………………………… 30
第二節 犬細胞表面抗原分析…………………………………….……… 31
第三節 犬腫瘤細胞細胞激素mRNA定量………………………………. 32
一、細胞中RNA的純化………………………………………….… 32
二、反轉錄聚合酶連鎖反應………………………………………… 32
三、Real-time RT PCR……………………………………..………… 32
第四節 組織微陣列……………………………………………….……… 36
第五節 細胞免疫化學染色……………………………………….……… 36
第六節 相關因子與預後之分析…………………………………….…… 37
第七節 Biomarker分析…………………………………………………… 37
第八節 統計分析………………………………………………….……… 37
第五章 結果…………………………………………………………….……… 38
第一節 病歷總表…………………………………………..…….……… 38
第二節 所收集資料的分析方式及原理闡述………………..…….…… 41
第三節 依Biomarker之研究,分析各因子與MGT之關係….……… 43
第四節 比較病畜腫瘤細胞及其TIL和PBL的表型及各腫瘤細胞激素
之不同……………………………………………….……… 45
一、比較MGT與其他腫瘤之不同………………………………… 45
1. 腫瘤細胞、PBL及TIL的表型…………………….…….…… 45
2. 細胞激素…………………….…………………. …………...… 47
二、比較健康犬隻與病畜之乳房細胞(腫瘤細胞)及PBL之不同….. 47
1. 腫瘤細胞、健康乳腺細胞、CMT-1、PBL的表型…………… 47
2. 細胞激素…………………………………………………..…… 47
三、良性及惡性MGT之比較………………………………….…… 50
1. 腫瘤細胞、PBL及TIL的表型…………………………..…… 50
2. 細胞激素……………………. ………………………………… 50
四、Simple、complex、tubulopapillary惡性上皮性腫瘤比較……. 53
1. 腫瘤細胞、PBL及TIL的表型…………………………….…… 53
2. 細胞激素…………………………………………………….…… 53
五、細胞激素表現模版(Profile)之其他分析…………………..…… 57
六、IL-8 和血管生成的關係………………………………………… 57
七、預後較佳的profile………………………………………….…… 60
八、含TIL之腫瘤組織塊之細胞激素基因表現概述…………..…… 62
第六章 討論………………………………………………………………...…… 65
參考文獻…………………………………………………………………….…… 71
dc.language.isozh-TW
dc.subject預後zh_TW
dc.subject自然發生腫瘤zh_TW
dc.subject主要組織相容複合物zh_TW
dc.subject腫瘤浸潤淋巴球zh_TW
dc.subject週邊血液淋巴球zh_TW
dc.subject細胞激素zh_TW
dc.subject概述zh_TW
dc.subject血管新生zh_TW
dc.subjectspontaneous tumoren
dc.subjectprognosisen
dc.subjectangiogenesisen
dc.subjectmajor histocompatibility complex (MHC)en
dc.subjectcytokineen
dc.subjectprofileen
dc.subjectperipheral blood lymphocytes (PBL)en
dc.subjecttumor infiltrating lymphocyte (TIL)en
dc.title犬自然發生腫瘤主要組織相容複合物
及細胞激素表現概述之特徵
zh_TW
dc.titleThe characteristics of MHC expression
and cytokine profile of spontaneous canine tumors
en
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林中天,季匡華,詹東榮
dc.subject.keyword自然發生腫瘤,主要組織相容複合物,腫瘤浸潤淋巴球,週邊血液淋巴球,細胞激素,概述,血管新生,預後,zh_TW
dc.subject.keywordspontaneous tumor,major histocompatibility complex (MHC),tumor infiltrating lymphocyte (TIL),peripheral blood lymphocytes (PBL),cytokine,profile,angiogenesis,prognosis,en
dc.relation.page90
dc.rights.note有償授權
dc.date.accepted2007-07-27
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept獸醫學研究所zh_TW
顯示於系所單位:獸醫學系

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
4.85 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved