請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28719完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蘇國棟(Guo-Dung Su) | |
| dc.contributor.author | Jen-Liang Wang | en |
| dc.contributor.author | 王仁良 | zh_TW |
| dc.date.accessioned | 2021-06-13T00:19:15Z | - |
| dc.date.available | 2012-07-30 | |
| dc.date.copyright | 2007-07-30 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-07-25 | |
| dc.identifier.citation | 1. Neukermans, A. and R. Ramaswami, MEMS technology for optical networking applications. IEEE Communications Magazine, 2001. 39(1): p. 62-69.
2. Kim, C.-H. and Y.-K. Kim, MEMS variable optical attenuator using a translation motion of 45° tilted vertical mirror. Journal of Micromechanics and Microengineering, 2005. 15(8): p. 1466-1475. 3. Ghalichechian, N., Optical MEMS. 2003. 4. Lin, L.Y., et al., Optical MEMS and its future trends. Journal of Lightwave Technology, 2003. 21(3): p. 582-583. 5. Marxer, C., P. Griss, and N.F. de Rooij, Variable optical attenuator based on silicon micromechanics. IEEE Photonics Technology Letters, 1999. 11(2): p. 233-235. 6. Hornbeck, L.J., Digital light processing update-status and future applications. Proceedings of SPIE - The International Society for Optical Engineering, 1999. 3634: p. 158-170. 7. Hornbeck, L.J. and T. Instruments, Digital Light Processing™: A New MEMS-Based Display Technology. 1999: p. 23. 8. Douglass, M.R., DMD reliability: A MEMS success story. Proceedings of SPIE - The International Society for Optical Engineering, 2003. 4980: p. 1-11. 9. Séchaud, M., Wave-front compensation devices. Adaptive Optics in Astronomy, 1999. 10. Shamir, J., D.G. Crowe, and J.W. Beletic, Improved compensation of atmospheric turbulence effects by multiple adaptive mirror systems. Applied Optics, 1993. 32(24): p. 4618-4628. 11. Vorontsov, M.A., A.V. Kudryashov, and V.I. Shmal'gauzen, EFFECT OF THE DYNAMIC CHARACTERISTICS OF ADAPTIVE MIRRORS ON THE EFFICIENCY OF COMPENSATION FOR ATMOSPHERIC DISTORTIONS. Soviet Physics Journal (English Translation of Izvestiia Vysshykh Uchebnykh Zavedenii, Fizika), 1987. 30(8): p. 650-655. 12. Kudryashov, A.V., et al., Low cost adaptive optical devices for multipurpose applications. Proceedings of SPIE - The International Society for Optical Engineering, 1999. 3688: p. 469-475. 13. Adaptive Optics. [cited; Available from: http://www.mso.anu.edu.au/rnao/images/retina.jpg. 14. Stepper motor. [cited; Available from: http://en.wikipedia.org/wiki/Stepper_motor. 15. Voice coil. [cited; Available from: http://en.wikipedia.org/wiki/Voice_coil. 16. Henderson, D.A., Simple Ceramic Motor Inspiring Smaller Products. Actuator 2006, 10th International Conference on New Actuators, 14-16 June 2006, Bremen, Germany (Late Submission), 2006. 17. Kuiper, S. and B.H.W. Hendriks, Variable-focus liquid lens for miniature cameras. Applied Physics Letters, 2004. 85(7): p. 1128-1130. 18. Kuiper, S., et al. Variable-focus liquid lens for portable applications. in Current Developments in Lens Design and Optical Engineering V. 2004. Denver, CO, USA: SPIE. 19. Hendriks, B.H.W., et al. Variable liquid lenses for electronic products. in ICO20: Optical Design and Fabrication. 2006: SPIE. 20. Smith, W.J., Stops and Apertures, in Modern Optical Engineering. 1990, McGraw-Hill Inc. 21. ZEMAX. [cited; Available from: http://www.zemax.com/. 22. Chung, H.W., Optical Design for Two Million Pixels Mobile Phone Camera. 2006, National Chung Hsing University. 23. Fischer, B.T.-G.R.E., Optical System Design. 2000: McGRAW-HILL INTERNATIONAL EDITIONS. 24. Fischer, B.T.-G.R.E., Computer Performance Evaluation, in Optical System Design. 2000, McGRAW-HILL INTERNATIONAL EDITIONS. 25. Fischer, B.T.-G.R.E., Spherical and Aspheric Surfaces, in Optical System Design. 2000, McGRAW-HILL INTERNATIONAL EDITIONS. 26. Smith, W.J., Automatic Lens Design: Managing the Lens Design Program, in Modern Lens Design. 2005, McGraw-Hill Inc. 27. Fischer, B.T.-G.R.E., Design forms, in Optical System Design. 2000, McGRAW-HILL INTERNATIONAL EDITIONS. 28. SILVERTOOT, G.W.A.E.W., Optically Compensated Zoom Lens. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1964, July 27. 55(4): p. 347~352. 29. BERGSTEIN, L., Three-Component Optically Compensated Varifocal System*. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1961, Mar 16. 52(4): p. 363~376. 30. BERGSTEIN, L., Two-Component Optically Compensated Varifocal System. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1961, July 5. 52(4): p. 353~363. 31. Kuiper, S., et al. Zoom camera based on liquid lenses. in MOEMS and Miniaturized Systems VI. 2007. San Jose, CA, USA: SPIE. 32. Kuiper, S., et al. Zoom camera based on variable-focus liquid lenses. 2005. Oulu, Finland: Institute of Electrical and Electronics Engineers Computer Society, Piscataway, NJ 08855-1331, United States. 33. Chang, J., et al. All-reflective zoom systems for infrared optics. in International Optical Design Conference 2006. 2007. Bellingham, Wa, USA: SPIE. 34. Huang, K.-L. and J. Maxwell. Application of catadioptric mirrors in zoom optical systems. in Design and Engineering of Optical Systems. 1996. Glasgow, United Kingdom: SPIE. 35. Kinoshita, H., et al., A thin camera with a zoom function using reflective optics. Sensors and Actuators, A: Physical, 2006. 128(1): p. 191-196. 36. Smith, W.J., Zoom Lenses, in Modern lens design. 2005. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28719 | - |
| dc.description.abstract | Mobiles are playing an important role in communication for daily life and become necessaries for people. Along with the progress of the digital cameras in recent years, it is feasible to combine mobiles and cameras for new products. Because of consumers’ raising the requirement of the revolution for mobile camera, the function of the digit camera can be replaced in the near future. Mobile camera with only auto-focusing function is not filling consumers’ need anymore. With the size of mobile devices getting smaller and smaller, the displacement-to-thickness ratio is getting larger that makes mechanical motor system difficult to package inside a mobile devices. We propose a design using deformable mirror rather than actuator. Using deformable mirror achieves long light path in thin products because of folded light-path design. In the thesis, we build up two systems for concept proof of auto-focusing and zooming using deformable mirror. We also design a prototype for real lens module that is feasible for commercial use. Furthermore, deformable mirrors have the advantages of low color dispersion, but typically the optical power range of commercially available devices is relatively small. We also present an organic deformable mirror that can operate over a larger power range of 30-diopter, which are two orders of magnitude higher than silicon/silicon nitride device, can integrate into optical lens module. Therefore, deformable mirror is well suited for compact imaging system. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T00:19:15Z (GMT). No. of bitstreams: 1 ntu-96-R94941025-1.pdf: 11155447 bytes, checksum: f68171a181dc422dc4b55680ad16a10a (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | Chapter 1 : Introduction………………………………………………………………..…...1
Chapter 2 : MEMS and deformable mirrors……………………………………………......3 2.1: Optical MEMS……………………………………………………………........3 2.2: Review of deformable mirror……………………………………………….....7 2.3: Properties of deformable mirror…………………………………………….....8 2.3.1: Device design and Fabrication…………………………………………....8 2.3.2: Surface property………………………………………………………....11 2.3.3: Optical property……………………………………………………….....12 Chapter 3 : Deformable mirror and AF module……………………………………….......16 3.1: Review of traditional AF module………………………………………….....16 3.2: Method for non-movable AF module………………………………………...17 3.2.1: Refractive type variable focal lens……………………………………….17 3.2.2: Reflective type deformable mirror………………………………….…....19 Chapter 4 : Experimental results of AF module……………………………………….......20 4.1: Optical system for demo………………………………………………….…..20 4.2: Simulation for AF module………………………………………………….....22 4.3: Experiment setup……………………………………………………………...31 4.4: Performance and conclusion……………………………………………….....33 4.5: Optical system for prototype……………………………………………….....34 Chapter 5 : Future direction about Zoom module………………………………………....47 5.1: Review of traditional zoom system……………………………………….......47 5.2: Principle of zoom system………………………………………………….......49 Chapter 6 : Conclusion………………………………………………………………….....53 6.1: Summary……………………………………………………………………....53 6.2: Future work…………………………………………………………………....55 Reference………………………………………………………………………………......56 | |
| dc.language.iso | en | |
| dc.subject | 簡潔成像 | zh_TW |
| dc.subject | 鏡子 | zh_TW |
| dc.subject | 可形變 | zh_TW |
| dc.subject | 自動對焦 | zh_TW |
| dc.subject | 系統 | zh_TW |
| dc.subject | 變焦 | zh_TW |
| dc.subject | autofocusing | en |
| dc.subject | mirror | en |
| dc.subject | deformable | en |
| dc.subject | imaging system | en |
| dc.subject | compact | en |
| dc.subject | zoom | en |
| dc.title | 可形變鏡子應用於簡潔成像系統之自動對焦與變焦 | zh_TW |
| dc.title | Compact Imaging System with Deformable Mirror – Auto-Focusing & Zoom | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蔡睿哲(Jui-che Tsai),林晃巖(Hoang Yan Lin) | |
| dc.subject.keyword | 可形變,鏡子,簡潔成像,系統,自動對焦,變焦, | zh_TW |
| dc.subject.keyword | deformable,mirror,compact,imaging system,autofocusing,zoom, | en |
| dc.relation.page | 60 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-07-27 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 10.89 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
