Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 動物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28717
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor潘建源
dc.contributor.authorLi-Long Luen
dc.contributor.author陸立融zh_TW
dc.date.accessioned2021-06-13T00:19:09Z-
dc.date.available2009-07-24
dc.date.copyright2007-07-31
dc.date.issued2007
dc.date.submitted2007-07-27
dc.identifier.citationAbbott N.J., L. Ronnback and E. Hansson, 2006, Astrocyte-endothelial interactions at the blood–brain barrier, Nat Rev Neurosci., 7 (1), 41–53.
Adrienne E. Dubin, Tristram Bahnson, Joshua A. Weiner, Nobuyuki Fukushima, and Jerold Chun, 1999, Lysophosphatidic acid stimulates neurotransmitter-like conductance changes that precede GABA and L-glutamate in early, presumptive cortical neuroblasts, J. Neurosci., 19, 1371 - 1381.
Baier, C.J., F. J. Barrantes, 2007, Sphingolipids are necessary for nicotinic acetylcholine receptor export in the early secretory pathway, Journal of Neurochemistry, 101(4), 1072–1084
Barrantes, F.J., 2004, Structural basis for lipid modulation of nicotinic acetylcholine receptor function, Brain Research Reviews, 47(1-3), 71-95
Boarder M. R., Marriott D. and Adams M. , 1987 Stimulus secretion coupling in cultured chromaffin cells. Dependency on external sodium and on dihydropyridine-sensitive calcium channels. Biochem. Pharmacol. 36, 163–167.
Douglas W. W. and Poisner A. M. , 1962, On the mode of action of acetylcholine in evoking adrenal medullary secretion: increased uptake of calcium during the secretory response. J. Physiol. 162, 385–392.
Douglas W. W. and Rubin R. P. , 1961, The role of calcium in thesecretory response of the adrenal medulla to acetylcholine. J. Physiol. 159, 40–57.
22
Eichholtz, T., Jalink, K., Fahrenfort, I., Moolenaar, W.H., 1993, The bioactive phospholipid lysophosphatidic acid is released from activated platelets, Biochemical Journal, 291(3), 677-680
Fang X., M. Schummer and M. Mao et al., 2002, Lysophosphatidic acid is a bioactive mediator in ovarian cancer, Biochim. Biophys. Acta, 1(582), 257–264.
Gardell, S. E., Dubin, A. E., Chun, J. , 2006 Emerging medicinal roles for lysophospholipid signaling. Trends in Molecular Medicine, 12(2), 65-75
Hanks, J.H. and Wallace, R.E. , 1949, Relation of Oxygen and Temperature in the Preservation of Tissues by Refrigeration. Proc. Soc. Exp. Biol. Med., 71:196.
Hla T. , 2001, Sphingosine 1-phosphate receptors, Prostaglandins and Other Lipid Mediators, 64, 135–142
Holdsworth, G. et al., 2005, Analysis of endogenous S1P and LPA receptor expression in CHO-K1 cells, Gene, 350, 59–63
Igarashi, Y. and Yatomi, Y. , 1998, Sphingosine 1-phosphate is a blood constituent released from activated platelets, possible playing a variety of physiological and pathophysiological roles. Acta Biochim Pol , 45, 299–309.
Ignatov A., J. Lintzel, I. Hermans-Borgmeyer, H.J. Kreienkamp, P. Joost, S. Thomsen, A. Methner and H.C. Schaller , 2003, Role of the G-protein-coupled receptor GPR12 as high-affinity receptor for sphingosylphosphorylcholine and its expression and function in brain development, J.
23
Neurosci. 23, 907–914
Ishii, I., N. Fukushima, X. Ye, and J. Chun, 2004, LYSOPHOSPHOLIPID RECEPTORS: Signaling and Biology, Annual Review of Biochemistry, 73, 321-354
Jolly P.S., H.M. Rosenfeldt, S. Milstien and S. Spiegel, 2002, The roles of sphingosine-1-phosphate in asthma, Mol Immunol, 38: 16–18, 1239–1245
Kandel, E.R., Schwartz, J.H., Jessell, T. M. , 2000, Principle of Neural Science, 4th ed.. Mc. GrawHill Press
Kellner R.R., Baier C.J., Willig K.I., Hell S.W., Barrantes F.J., 2007, Nanoscale organization of nicotinic acetylcholine receptors revealed by stimulated emission depletion microscopy, Neuroscience, 144, 1, 135-143
Kristufek D, Stocker E, Boehm S, Huck S. , 1999, Somatic and prejunctional nicotinic receptors in cultured rat sympathetic neurones show different agonist profiles, J. Physiol. (Lond) 516:739–756
Meyer D. Zu Heringdorf and K.H. Jakobs, 2007, Lysophospholipid receptors: signalling, pharmacology and regulation by lysophospholipid metabolism, Biochimica et Biophysica Acta (BBA)-Biomembranes, 1768, 4, 923-940
Pan, C. Y., Adonis Z. W., Chen Y. T. 2007, Lysophospholipids regulate excitability and exocytosis in cultured bovine chromaffin cells, J. Neurochem. (In press)
Pan, C. Y., Lee, H. Y., Chen, C. L. 2006, Lysophospholipids elevate [Ca2+]i and trigger
24
exocytosis in bovine chromaffin cells, Neuropharm. 51, 1, 18-26
Prieschl, E.E., Csonga, R., Novotny, V. and Baumruker, T. , 1999, The balance between sphingosine and sphingosine 1-phosphate is decisive for mast cell activation after Fcε receptor I triggering. J Exp Med 190, 1–8
Sergey, F. and Arleen R. , 2001, Protocols for Neural Cell Culture, Humana Press Inc., 245-264
Smyth J. T., W.I. Dehaven, B.F. Jones, J.C. Mercer, M. Trebak, G. Vazquez and J.W. Putney Jr, 2006, Emerging perspectives in store-operated Ca(2+) entry: roles of Orai, Stim and TRP, Biochim. Biophys. Acta, 1763, 1147–1160
Steiner, M. R., Holtsberg, F. W., Keller, J. N., Mattson, M. P., Steiner, S. M. , 2000, Lysophosphatidic acid induction of neuronal apoptosis and necrosis. Annals of the New York Academy of Sciences, 905, 132-141.
Thenod, F. and Jones, S. W., 1992, Cadmium block of calcium current in frog sympathetic neurons, Biophys J. 63, 1, 162-8.
Tomquist, K., Saarinen, P., Vainio, M. and Ahlstrom, M., 1997, Sphingosine 1-phosphate mobilises sequestered calcium, activates calcium entry and stimulates DNA synthesis in thyroid FRTL-5 cells. Endocrinology 138, 4049—4057
Yatomi, Y., Ruan, F.Q., Hakomori, S.I. and Igarashi, Y., 1995, Sphingosine 1-phosphate: a platelet-activating sphingolipid released from agonist-stimulated human platelets. Blood 86,193-202
Zhang, Y.H., Vasko M.R., Nicol G.D. , 2006, Intracellular sphingosine 1-phosphate mediates the increased excitability produced by nerve growth factor in rat sensory neurons, J Physiol. 15: 575, 101-13
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28717-
dc.description.abstract溶血磷脂質(lysophospholipids)主要包含sphingosine-1-phosphate (S1P)和lysophosphatidic acid (LPA),是在發炎與凝血反應中會大量產生的物質,主要由血液中的巨噬細胞與血小板產生。過去已經證實溶血磷脂質能調控細胞膜上離子通道活性。在這篇研究中,我們探討溶血磷脂質如何調控牛腎上腺嗜鉻細胞上乙醯膽鹼所造成的細胞內鈣離子濃度變化。結果顯示S1P前處理會降低嗜鉻細胞中由乙醯膽鹼造成的鈣離子反應;而LPA前處理亦會抑制乙醯膽鹼造成的內鈣濃度上升,且所需時間較短。乙醯膽鹼受器可分為兩大類:對muscarine反應的G蛋白耦合性受體和對nicotine反應的非專一性離子通道。細胞經溶血磷脂質處理後,會抑制nicotine刺激所引升的胞內鈣離子濃度反應,但對muscarine刺激所引升的胞內鈣離子濃度反應,則較無影響。以高鉀離子濃度的緩衝液刺激細胞,以檢驗電壓驅動式離子通道是否涉入溶血磷脂質引起的胞內鈣離子濃度反應時,結果顯示LPA會促進胞內鈣離子上升反應。從以上結果,我們發現S1P和LPA對乙醯膽鹼所造成的細胞內鈣離子反應有重要影響,表示S1P和LPA能調控腎上腺嗜鉻細胞的乙烯膽鹼受器活性。分析細胞內鈣離子濃度上升的原因,我們發現動作電位受溶血磷脂質作用而提前產生並且加速進行去極化與再極化;同時,動作電位受溶血磷脂質調控而降低振幅。這表示溶血磷脂質加速嗜鉻細胞的分泌速度並且減少分泌量來因應發炎或是受傷時的凝血反應。並且,LPA能在鈣離子通道受鎘離子阻斷時,大幅抑制動作電位振幅;但S1P無此現象。鈉離子通道電流決定動作電位去極化的過程。但溶血磷脂質不能影響鈉離子通道的電導、不活化現象以及回復現象。然而,以二次指數曲線密合鈉離子通道的回復曲線時,我們發現LPA處理過後的細胞有明顯不同的第二決定因子;這表示有一群鈉離子通道的回復現象受到LPA調控。只有進一步探討溶血磷脂質對鈣離子通道和鉀離子通道的調控才能使細胞調控乙烯膽鹼反應的過程更為明朗。zh_TW
dc.description.abstractLysophospholipids (LPLs), the chemicals secreted during inflammation affect ion channel activities. This study showed that sphingosine-1-phosphate (S1P) and lysophosphatidic acid (LPA), two important LPLs, modulated acetylcholine (ACh)-related responses in bovine chromaffin cells. S1P reduced ACh-induced intracellular calcium concentration ([Ca2+]i) responses. LPA had a similar effect as S1P pretreatment in inhibiting ACh-induced [Ca2+]i responses but with a faster timer course. ACh receptors (AChRs) could be classified into nicotinic- and muscarinic- types; the activation of both types increased the [Ca2+]i through different pathways. Chromaffin cells pretreated with LPLs showed that the [Ca2+]i responses were inhibited when cells were stimulated by 1,1-Dimethyl-4-phenylpiperazinium iodide, a stable nicotinic receptor agonist, but not muscarine. In the other hand, LPA enhanced high [K+]-induced [Ca2+]i responses, and this revealed some voltage-gated ion channels were affected. These suggested that LPLs played important roles in modulating chromaffin AChRs activities. To analyze the causes of escalation of intracellular calcium concentration, we found LPLs accelerated the depolarization and repolarization, and LPLs lowered the amplitude of action potential. This suggested LPLs accelerated and attenuated secretion to respond to inflammation and blood clotting. In addition, LPA pretreatment could make amplitude of action potential smaller when calcium channels were blocked while S1P pretreatment did not make the same reduction. Sodium current determined the depolarization of action potential, and LPLs did not change its conductance, inactivation and recovery. However, sodium currents recovery of LPA pretreatment showed a different second decisive factor with second-order exponential fitting. This means that a group of sodium channels was modulated by LPA. Only studying the calcium channels and potassium channels could further make clear the modulation of ACh responses.en
dc.description.provenanceMade available in DSpace on 2021-06-13T00:19:09Z (GMT). No. of bitstreams: 1
ntu-96-R94b41015-1.pdf: 933403 bytes, checksum: 858d9d5414242d4162b612f1a813095e (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents口試委員會審定書…………………………………………………ii
致謝………………………………………………………iii
中文摘要 ……………………………………………………………………… 1
Abstract ….………………………………………………………………………. 2
Introduction ……………………………………………………………………… 3
Inflammation and lysophospholipids (LPLs) ……………………………………… 3
Sphingosine-1-phosphate (S1P) ………………………………………………… 3
Lysophosphatidic acid (LPA) …………………………………………………… 4
Bovine Chromaffin cells………………………………………………………… 4
Acetylcholine receptors (AChRs) ………………………………………………… 5
Evidences which proved LPLs can change the neuronal biophysical status…………… 5
Aim of this study……………………………………………………………… 6
Materials and Methods ………………………………………………………… 7
Drugs ………………………………………………………………………. 7
Solutions …………………………………………………………………… 7
Electrophysiology …………………………………………………………… 8
Fura-2 ratiometric [Ca2+]i imaging……………………………………………… 8
Statistical analysis …………………………………………………………… 9
Results ………………………………………………………………………… 10
S1P reduces ACh-induced [Ca2+]i responses ……………………………………… 10
LPA has fast and long-term effects on chromaffin ACh-induced [Ca2+]i responses…… 10
In ACh-induced [Ca2+]i responses, n-type AChRs play an significant role…………… 10
The effects of LPLs on chromaffin cells are not mainly due to m-type pathway………… 11
LPA enhances high [K+]-induced [Ca2+]i responses, and this suggest some voltage-gated channels were affected………………………………………………………… 12
LPLs can alter the depolarization and repolarization of AP………………………… 13
v
LPLs cannot change the activation, inactivation and recovery rate of VGSC………… 14
Discussion …………………………………………………………………… 16
References …………………………………………………………………….… 21
Scheme…………………………………………………………………………… 26
Figures ………………………………………………………………………… 27
Table …………………………………………………………………………… 39
Appendix ……………………………………………………………………… 40
dc.language.isoen
dc.title溶血磷脂質對牛腎上腺嗜鉻細胞乙醯膽鹼反應的影響zh_TW
dc.titleEffects of Lysophospholipids on Modulating the Acetylcholine-Evoked Responses in Bovine Chromaffin Cellsen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee嚴震東,林崇智,朱柏如
dc.subject.keyword溶血磷脂質,水解磷酸脂,乙醯膽鹼受器,嗜鉻細胞,腎上腺髓質,鈣&#63978,子影像,膜片箝,zh_TW
dc.subject.keywordlysophospholipids,acetylcholine receptors,chromaffin cells,adrenal medulla,calcium imaging,patch clamp,en
dc.relation.page44
dc.rights.note有償授權
dc.date.accepted2007-07-27
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept動物學研究研究所zh_TW
顯示於系所單位:動物學研究所

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  目前未授權公開取用
911.53 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved