Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28659
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉振宇
dc.contributor.authorWei-Kaung Wangen
dc.contributor.author王偉光zh_TW
dc.date.accessioned2021-06-13T00:16:04Z-
dc.date.available2007-07-30
dc.date.copyright2007-07-30
dc.date.issued2007
dc.date.submitted2007-07-25
dc.identifier.citation江銘緯,地下水污染傳輸延散係數之研究,碩士論文,國立成功大
學資源工程研究所,台南,2002。
李維華,廣義泰勒延散理論於地下水之應用,碩士論文,國立台灣
大學農業工程研究所,台北,1993。
陳瑞昇,徑向收斂流場追蹤劑試驗延散效應之解析,博士論文,國
立台灣大學農業工程研究所,台北,1997。
經濟部水利署水利規劃試驗所,地下水質量傳輸模式之發展與現地
試驗研究總成果報告,台北,2005,第3-50 - 3-80頁。
Bear, J., Dynamics of fluids in porous media, New York:
Elsevier, 1972.
Bear, J., Hydraulics of Groundwater, New York: McGraw-Hill
Inc, 1979.
Bear, J., On the tensor form of dispersion in porous
media, J. Geophy. Res., vol. 66, no. 4, 1961b, pp. 1185- 1197.
Bear, J., Some experiments in dispersion, J. Geophy. Res.,
vol. 66, no. 8, 1961a, pp. 3455-2467.
Benekos, I. D., O. A. Cirpka, and P. K. Kitanidis,
Experimental determination of transverse dispersivity in
a helix and a cochlea, Water Resour. Res., vol. 42,
no.7, 2006, doi:10.1029/2005WR004712.
Chen, J. S., C. S. Chen, H. S. Gau, and C. W. Liu, A two-
well method to evaluate transverse dispersivity for
tracer tests in a radially convergent flow field, J.
Hydrol., vol. 223, no. 3-4, 1999, pp. 175-197.
Chen, J. S., C. W. Liu, and C. P. Liang, Evaluation of
longitudinal and transverse dispersivities/distance
ratios for tracer test in a radially convergent flow
field with scale-dependent dispersion, Adv. Water
Resour., vol. 29, no. 6, 2006, pp. 887-898.
Chen, J. S., C. W. Liu, H. T. Hsu, and C. M. Liao, A
Laplace transform power series solution for solute
transport in a convergent flow field with scale-
dependent dispersion, Water Resour. Res., vol. 39, no.
8, 2003, doi:10.1029/2003WR002299.
Chu, M., P. K. Kitanidis, and P. L. McCarty, Modeling
microbial reactions subject to transverse mixing in
porous media: When can the rates of microbial reaction
be assumed to be instantaneous?, Water Resour. Res.,
vol. 41, no. 6, 2005, doi:10.1029/2004WR003495.
Cirpka, O. A., Å. Olsson, Q. Ju, M. A. Rahman, and P.
Grathwohl, Determination of transverse dispersion
coefficients from reactive plume lengths, Ground Water,
vol. 44, no. 2 , 2006, pp. 212-221.
Domenico, P. A., and F. W. Schwartz, Physical and Chemical
Hydrology, New York: John Wiley & Sons, 1990.
Eberhardt, C., and P. Grathwohl, Time scales of organic
contaminant dissolution from complex source zones: Coal
tar pools versus blobs, J. Contam. Hydrol., vol. 59, no.
2, 2002, pp. 45-66.
Fernández-Garcia, D., X. Sánchez-Vila, and T. H.
Illangasekare, Convergent- flow tracer tests in
heterogeneous media: Combined experimental- numerical
analysis for determination of equivalent transport
parameters, J. Contam. Hydrol., vol. 57, no. 1-2,
2004,pp. 129-145.
Fetter, C. W., Applied Hydrology, New York: C. E. Merrill,
1988.
Fiori, A., and G. Dagan, Concentration fluctuations in
aquifer transport: A rigorous first-order solution and
applications, J. Contam. Hydrol., vol. 45, no. 1, 2000,
pp. 139-163.
Freyberg, D. L., A natural gradient experiment on solute
transport in a sand aquifer: 2. Spatial moments and the
advection and dispersion of nonreactive tracers, Water
Resour. Res., vol. 22, no. 13, 1986, pp. 2031-2046.
Fried, J. J., Groundwater Pollution, Amsterdam: Elsevier
Scientific, 1975.
Gelhar, L. W., A. Mantoglou, C. Welty, and K. R. Rehfeldt,
A review of field-scale physical solute transport
processes in saturated and unsaturated porous media.
Palo Alto, California: Electric Power Research Institute
EPRI EA-4190 Project, 1985, pp. 2485-5.
Gelhar, L. W., C. Welty, and K. C. Rehfeldt, A critical
review of data on field-scale dispersion in aquifer,
Water Resour. Res., vol. 28, no. 7, 1992, pp. 1955-1974.
Guvanasen, V., and V. M. Guvanasen, An approximate semi-
analytical solution for tracer injection tests in a
confined aquifer with a radially convergent flow field
and finite volume of tracer and chase fluid, Water
Resour. Res., vol. 23, no. 8, 1987, pp. 1607-1619.
Ham, P. A. S., R. J. Schotting, H. Prommer, and G. B.
Davis, Effects of hydrodynamic dispersion on plume
lengths for instantaneous bimolecular reactions, Adv.
Water Resour., vol. 27, no. 8, 2004, pp. 803-813.
Hoopes, J. A., and D. R. F. Harleman, Dispersion in radial
flow from a recharge well, J. Geophy. Res., vol. 72, no.
14, 1967, pp. 3595-3607.
Hsieh, P. A., A new formula for the analytical solution of
the radial dispersion problem, Water Resour. Res., vol.
22, no. 11, 1986, pp. 1597-1605.
Kapoor, V., and L. W. Gelhar, Transport in three-
dimensionally heterogeneous aquifers: 1. Dynamics of
concentration fluctuations, Water Resour. Res., vol. 30,
no. 6, 1994, pp. 1775-1788.
Kapoor, V., and P. K. Kitanidis, Concentration
fluctuations and dilution in aquifers, Water Resour.
Res., vol. 34, no. 5, 1998, pp. 181-1193.
Kitanidis, P. K., The concept of the dilution index, Water
Resour. Res., vol. 30, no. 7, 1994, pp. 2011-2026.
LeBlanc, D. R., S. P. Garabedian, K. M. Hess, L. W.
Gelhar, R. D. Quadri, K. G. Stollenwerk, and W. W. Wood,
Large-scale natural gradient tracer test in sand and
gravel, Cape Cod, Massachusetts: 1. Experimental design
and observed tracer movement, Water Resour. Res., vol.
27, no. 5, 1991, pp. 895-910.
Liedl, R., A. J. Valocchi, P. Dietrich, and P. Grathwohl,
Finiteness of steady state plumes, Water Resour. Res.,
vol. 41, no.12, 2005, doi:10.1029/2005WR004000.
McKenna, S. A., L. C. Meigs, and R. Haggerty, Tracer tests
in a fractured dolomite: 3. Double-porosity, multiple-
rate mass transfer processes in convergent flow tracer
tests, Water Resour. Res., vol. 37, no. 5, 2001, pp.
1143-1154.
Moench, A. F., Convergent radial dispersion: A Laplace
transform solution for aquifer tracer testing, Water
Resour. Res., vol. 25, no. 3, 1989, pp. 439-447.
Neuman, S. P., and V. D. Federico, Multifaceted nature of
hydrogeologic scaling and its interpretation, Review of
Geophysics, vol. 41, no. 3, 2003, pp. 4-1 - 4-31.
Neuman, S. P., Universal scaling of hydraulic
conductivities and dispersivities in geologic media,
Water Resour. Res., vol. 26, no. 8, 1990, pp. 1749-1758.
Niemann, W. L., and C. W. Rovey, Comparison of hydraulic
conductivity values obtained from aquifer pumping tests
and conservative tracer test, Ground Water Monit.
Remediat., vol. 20, no. 3, 2000, pp. 122-128.
Novakowski, K. S., An evaluation of boundary conditions
for one- dimensional solute transport, 1, Mathematical
development, Water Resour. Res., vol. 28, no. 9, 1992a,
pp. 2399-3225.
Novakowski, K. S., An evaluation of boundary conditions
for one- dimensional solute transport, 2, Column
experiments, Water Resour. Res., vol. 28, no. 9, 1992b,
pp. 2411-2423.
Novakowski, K. S., The analysis of tracer test experiments
conducted in divergent radial flow fields, Water Resour.
Res., vol. 28, no. 12, 1992, pp. 3215-3225.
Ogata, A., Theory of dispersion in a granular medium,
Geological Survey Professional Paper, 1970, pp.411-I.
Pfannkuch, H. O., Contribution a l’ etude des
deplacements de fluiedes miscibles dans un milieu
poreux, Rev. Inst. Fr. Petrole, vol. 18, 1963, pp. 215-
270.
Pickens, J. F., and G. E. Grisak, Scale-dependent
dispersion in a stratified granular aquifer, Water
Resour. Res., vol. 17, no. 4, 1981, pp. 1191-1211.
Ptak, T., M. Piepenbrink, and E. Martac, Tracer tests for
the investigation of heterogeneous porous media and
stochastic modelling of flow and transport - a review of
some recent developments, J. Hydrol., vol. 294, no. 1-3,
2004, pp. 122-163.
Ptak, T., and G. Teutsch, Forced and natural gradient
tracer tests in a highly heterogeneous porous aquifer:
Instrumentation and measurements, J. Hydrol., vol. 159,
no. 1-4, pp. 79-104.
Raven, K.G., K. S. Novakowski, and P. A. Lapcevic,
Interpretation of field tracer tests of a single
fracture using a transient solute storage model, Water
Resour. Res., vol. 24, no. 12, 1988, pp. 2019-2032.
Robbins, G. A., Methods for determining transverse
dispersion coefficients of porous media in laboratory
column experiments, Water Resour. Res., vol. 25, no. 6,
1989, pp. 1249-1258.
Sauty, J. P., An analysis of hydrodispersive transfer in
aquifer, Water Resour. Res., vol. 16, no. 1, 1980, pp.
145-158.
Sauty, J. P., Contribution a l’identification des
parameters de dispersion dans les aquiferes par
interpretation des expériences de tracage, Ph.D.
dissertation, Univ. Sci. et Med. et Inst. Natl.Polytech.
de Grenoble, Grenoble, France, 1977.
Schulze-Makuch, D., Longitudinal dispersivity data and
implications for scaling behavior, Ground Water, vol.
43, no. 3, 2006, pp. 443-456.
Tiedeman, C. R., and P. A. Hsieh, Evaluation of
longitudinal dispersivity estimates from simulated
forced- and natural-gradient tracer tests in
heterogeneous aquifers, Water Resour. Res., vol. 40, no.
1, 2004, doi: 10. 1029/2003WR002401.
Yeh, T. C. J., J. Mas-Pla, T. M. Williams, and J. F.
McCarthy, Observation and three-dimensional simulation
of chloride plumes in a sandy aquifer under forced-
gradient conditions, Water Resour. Res., vol. 31, no. 9,
1995, pp. 2141-2157.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28659-
dc.description.abstract本研究採用二維徑向收斂流場之追蹤劑試驗傳輸數學模式,包括常數延散模式 (constant dispersivity model, CDM)及尺度延散模式 (scale-dependent dispersivity model, SDM),分析輔英科技大學、雲林科技大學及喬治城試驗場址之現地追蹤劑試驗之數據資料,藉由抽水井之突破曲線 (breakthrough curves)推求縱向延散係數 (longitudinal dispersivity, αL),並由觀測井之突破曲線求得橫向延散係數 (transverse dispersivity, αT),推算延散係數之尺度效應 (scale-dependent)及探討數學模式之適用性。由套配結果可得知縱向延散度符合 之關係式,且延散具有尺度相關性,因此模擬污染物傳輸時,將延散度視為常數並不恰當;橫向延散度套配採用各觀測井不同深度之濃度平均值進行套配,其均值之t-test檢定結果顯示在95 % 信賴區間,雲林科大注入井至4號井及喬治城注入井至21號至28號井其不同深度之濃度平均值與各井不同深度之濃度套配平均值無顯著差異 ( p-value > 0.05),故可將該等追蹤劑所流經之含水層視為均質。經數學模式應用於現地追蹤劑試驗之數據分析,可對試驗場址水文地質條件、追蹤劑移動方式及探討試驗場址之異質程度有進一步瞭解,因此可作為日後設計與分析均質含水層追蹤劑試驗之參考指引。zh_TW
dc.description.abstractThis study adopted a two-dimensional mathematical model, including constant dispersivity model (CDM) and scale-dependent dispersivity model (SDM), to describe solute transport in a radially convergent flow field. This model was to determine the longitudinal dispersivities, transverse dispersivities and scale-dependent dispersion effects, by fitting breakthrough curves of extraction well and observation well in a field tracer test. Data of three different field convergent radial tracer tests including Fooyin University, Yunlin Universuty of Science & Technology, and George Town field were used to explore the scale dependent effect on longitudinal dispersivities. The results of the longitudinal dispersivities estimated in this study agree with the relation of the product of the Peclet number and the dispersivity/distance ratio (Pe × eL=4). Dispersivity increases with solute transport distance, indicating that the longitudinal dispersivities treated as constants is not suitable in the modeling of solute transport in groundwater systems. The t-test is used to evaluate the means of the breakthrough curves of observation well #4 in Yunlin Universuty of Science & Technology field and observation well #21, 28 in George Town field. The results show that the transverse dispersivities calculated by averaged concentrations of breakthrough curves are similar to those calculated by concentrations of breakthrough curves with various depths under 95 % confidence interval ( p-value > 0.05). Hence, the formation of three tracer tests can be regarded as a homogeneous aquifer. Moreover, the SDM mathematical model is suitable for the analyses of field tracer tests of the homogeneous aquifer.en
dc.description.provenanceMade available in DSpace on 2021-06-13T00:16:04Z (GMT). No. of bitstreams: 1
ntu-96-R94622042-1.pdf: 3464123 bytes, checksum: 76577307386549eaf8dcc8ad39dfa324 (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents摘要 i
Abstractii
目錄 iii
表目錄v
圖目錄vi
符號說明ix
第一章 前言1
1.1研究動機1
1.2研究目的1
第二章 文獻回顧3
2.1地下水追蹤劑試驗3
2.1.1自然梯度追蹤劑試驗3
2.1.2強制梯度追蹤劑試驗3
2.2地下水延散度4
2.2.1縱向延散度4
2.2.2橫向延散度5
2.3延散之尺度效應6
第三章 研究方法8
3.1地下水溶質傳輸機制8
3.1.1移流8
3.1.2分子擴散8
3.1.3機械延散9
3.1.4地下水溶質傳輸方程式11
3.2 均質二維徑向收斂流場之追蹤劑試驗傳輸數學模式14
3.2.1常數延散模式16
3.2.2尺度延散模式16
第四章 案例研究
4.1案例研究-輔英科技大學場址21
4.1.1 試驗場址介紹21
4.1.2 儀器準備23
4.1.3追蹤劑之選擇25
4.1.4試驗過程26
4.1.5試驗數據分析28
4.1.6模式之應用 32
4.1.7討論34
4.2案例研究-雲林科技大學場址34
4.2.1 試驗場址介紹34
4.2.2 試驗過程35
4.2.3試驗數據分析36
4.2.4模式之應用 39
4.2.5討論43
4.3案例研究-喬治城試驗場址 44
4.3.1 試驗場址介紹45
4.3.2 試驗過程45
4.3.3 試驗數據分析46
4.3.4 模式之應用50
4.3.5 討論61
4.4綜合討論62
第五章 結論與建議66
5.1結論66
5.2建議66
參考文獻67
附錄A 輔英科大場址水井監測紀錄表71
附錄B 雲林科大場址套配圖75
附錄C 喬治城場址套配圖78
dc.language.isozh-TW
dc.subject均質含水層zh_TW
dc.subject追蹤劑試驗zh_TW
dc.subject尺度效應zh_TW
dc.subject縱向延散度zh_TW
dc.subject橫向延散度zh_TW
dc.subjecttracer testen
dc.subjecthomogeneous aquiferen
dc.subjecttransverse dispersivitiesen
dc.subjectlongitudinal dispersivitiesen
dc.subjectscale-dependent effecten
dc.title徑向收斂流場下延散效應之分析zh_TW
dc.titleAnalysis of Dispersion Effects in a Radially Convergent Flow Fielden
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳世裕,陳瑞昇,張誠信,高華聲
dc.subject.keyword追蹤劑試驗,尺度效應,縱向延散度,橫向延散度,均質含水層,zh_TW
dc.subject.keywordtracer test,scale-dependent effect,longitudinal dispersivities,transverse dispersivities,homogeneous aquifer,en
dc.relation.page70
dc.rights.note有償授權
dc.date.accepted2007-07-27
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物環境系統工程學研究所zh_TW
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
3.38 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved