請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28641完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 曾宇鳳 | |
| dc.contributor.author | Fang-Yu Lin | en |
| dc.contributor.author | 林芳宇 | zh_TW |
| dc.date.accessioned | 2021-06-13T00:15:21Z | - |
| dc.date.available | 2021-06-02 | |
| dc.date.copyright | 2011-08-08 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-05 | |
| dc.identifier.citation | REFERENCE
1. Brown, N.; Lewis, R. A., Exploiting QSAR Methods in Lead Optimization. Curr. Opin. Drug Discov. Dev. 2006, 9, 419-424. 2. Zhang, Q.; Muegge, I., Scaffold Hopping through Virtual Screening Using 2D and 3D Similarity Descriptors: Ranking, Voting, and Consensus Scoring. J. Med. Chem. 2006, 49, 1536-1548. 3. Senger, S., Using Tversky Similarity Searches for Core Hopping: Finding the Needles in the Haystack. J. Chem. Inf. Model. 2009, 49, 1514-1524. 4. Bohm, H.-J.; Flohr, A.; Stahl, M., Scaffold Hopping. Drug Discov. Today 2004, 1, 217-224. 5. Nilakantan, R.; Bauman, N.; Venkataraghavan, R., New Method for Rapid Characterization of Molecular Shapes: Applications in Drug Design. J. Chem. Inf. Comput. Sci. 1993, 33, 79-85. 6. Langer, T.; Krovat, E. M., Chemical Feature-Based Pharmacophores and Virtual Library Screening for Discovery of New Leads. Curr. Opin. Drug Discov. Dev. 2003, 6, 370-376. 7. Sykes, M. J.; Sorich, M. J.; Miners, J. O., Molecular Modeling Approaches for the Prediction of the Nonspecific Binding of Drugs to Hepatic Microsomes. J. Chem. Inf. Model. 2006, 46, 2661-2673. 8. Vogt, M.; Stumpfe, D.; Geppert, H.; Bajorath, J. r., Scaffold Hopping Using Two-Dimensional Fingerprints: True Potential, Black Magic, or a Hopeless Endeavor? Guidelines for Virtual Screening. J. Med. Chem. 2010, 53, 5707-5715. 9. Kirchmair, J.; Distinto, S.; Markt, P.; Schuster, D.; Spitzer, G. M.; Liedl, K. R.; Wolber, G., How To Optimize Shape-Based Virtual Screening: Choosing the Right Query and Including Chemical Information. J. Chem. Inf. Model. 2009, 49, 678-692. 10. Fitzgerald, S. H.; Sabat, M.; Geysen, H. M., Diversity Space and Its Application to Library Selection and Design. J. Chem. Inf. Model. 2006, 46, 1588-1597. 11. Hajduk, P. J.; Greer, J., A Decade of Fragment-Based Drug Design: Strategic Advances and Lessons Learned. Nat. Rev. Drug Discov. 2007, 6, 211-219. 12. Ertl, P., Cheminformatics Analysis of Organic Substituents: Identification of the Most Common Substituents, Calculation of Substituent Properties, and Automatic Identification of Drug-like Bioisosteric Groups. J. Chem. Inf. Comput. Sci. 2002, 43, 374-380. 13. Lewell, X. Q.; Jones, A. C.; Bruce, C. L.; Harper, G.; Jones, M. M.; McLay, I. M.; Bradshaw, J., Drug Rings Database with Web Interface. A Tool for Identifying Alternative Chemical Rings in Lead Discovery Programs. J. Med. Chem. 2003, 46, 3257-3274. 14. Weininger, D., SMILES, A Chemical Language and Information System. 1. Introduction to Methodology and Encoding Rules. J. Chem. Inf. Comput. Sci. 1988, 28, 31-36. 15. Lewell, X. Q.; Judd, D. B.; Watson, S. P.; Hann, M. M., RECAP – Retrosynthetic Combinatorial Analysis Procedure: A Powerful New Technique for Identifying Privileged Molecular Fragments with Useful Applications in Combinatorial Chemistry. J. Chem. Inf. Comput. Sci. 1998, 38, 511-522. 16. Fechner, U.; Schneider, G., Flux (2): Comparison of Molecular Mutation and Crossover Operators for Ligand-Based de Novo Design. J. Chem. Inf. Model. 2007, 47, 656-667. 17. Grant, M. A., Protein Structure Prediction in Structure-Based Ligand Design and Virtual Screening. Comb. Chem. High T. Scr. 2009, 12, 940-960. 18. Bergmann, R.; Linusson, A.; Zamora, I., SHOP: Scaffold HOPping by GRID-Based Similarity Searches. J. Med. Chem. 2007, 50, 2708-2717. 19. Goodford, P. J., A Computational Procedure for Determining Energetically Favorable Binding Sites on Biologically Important Macromolecules. J. Med. Chem. 1985, 28, 849-857. 20. Dey, F.; Caflisch, A., Fragment-Based de Novo Ligand Design by Multiobjective Evolutionary Optimization. J. Chem. Inf. Model., 2008, 48, 679-690. 21. Ihlenfeldt, W.-D.; Gasteiger, J., Computer-Assisted Planning of Organic Syntheses: The Second Generation of Programs. Angew. Chem. Int. Ed. Engl. 1996, 34, 2613-2633. 22. Hendrickson, J. B.; Toczko, A. G., Synthesis design logic and the SYNGEN (synthesis generation) program. Pure Appl. Chem. 1988, 60, 1563-1572. 23. Socorro, I. M.; Goodman, J. M., The ROBIA Program for Predicting Organic Reactivity. J. Chem. Inf. Model. 2006, 46, 606-614. 24. Corey, E. J.; Howe, W. J.; Orf, H. W.; Pensak, D. A.; Petersson, G., General Methods of Synthetic Analysis. Strategic Bond Disconnections for Bridged Polycyclic Structures. J. Am. Chem. Soc. 1975, 97, 6116-6124. 25. Corey, E. J.; Jorgensen, W. L., Computer-Assisted Synthetic Analysis. Synthetic Strategies Based on Appendages and The Use of Reconnective Transforms. J. Am. Chem. Soc. 1976, 98, 189-203. 26. Barone, R.; Chanon, M., Search for strategies by computer: the CONAN approach. Application to steroid and taxane frameworks. Tetrahedron 2005, 61, 8916-8923. 27. Hendrickson, J. B.; Grier, D. L.; Toczko, A. G., A logic-based program for synthesis design. J. Am. Chem. Soc. 1985, 107, 5228-5238. 28. Law, J.; Zsoldos, Z.; Simon, A.; Reid, D.; Liu, Y.; Khew, S. Y.; Johnson, A. P.; Major, S.; Wade, R. A.; Ando, H. Y., Route Designer: A Retrosynthetic Analysis Tool Utilizing Automated Retrosynthetic Rule Generation. J. Chem. Inf. Model. 2009, 49, 593-602. 29. Lin, F.-Y.; Tseng, Y. J., LeadOp: Structure-based fragment hopping for lead optimization using pre-docked fragment database. J. Chem. Inf. Model. 2011 [Just Accepted], DOI: 10.1021/ci200136j. Published online: June, 1, 2011 30. Wishart, D. S.; Knox, C.; Guo, A. C.; Cheng, D.; Shrivastava, S.; Tzur, D.; Gautam, B.; Hassanali, M., DrugBank: a Knowledgebase for Drugs, Drug Actions and Drug Targets. Nucleic Acids Res. 2008, 36, D901-D906. 31. Orita, M.; Ohno, K.; Niimi, T., Two 'Golden Ratio' indices in fragment-based drug discovery. Drug Discovery Today 2009, 14, 321-328. 32. Hopkins, A. L.; Groom, C. R.; Alex, A., Ligand Efficiency: A Useful Metric for Lead Selection. Drug Discov. Today 2004, 9, 430-431. 33. Alex, A. A.; Flocco, M. M., Fragment-Based Drug Discovery: What Has It Achieved so Fair? Curr. Top. Med. Chem. 2007, 7, 1544-1567. 34. Congreve, M.; Chessari, G.; Tisi, D.; Woodhead, A. J., Recent Developments in Fragment-Based Drug Discovery. J. Med. Chem. 2008, 51, 3661-3680. 35. Ciulli, A.; Williams, G.; Smith, A. G.; Blundell, T. L.; Abell, C., Probing Hot Spots at Protein-Ligand Binding Sites: A Fragment-Based Approach Using Biophysical Methods. J. Med. Chem. 2006, 49, 4992-5000. 36. Saxty, G.; Woodhead, S. J.; Berdini, V.; Davies, T. G.; Verdonk, M. L.; Wyatt, P. G.; Boyle, R. G.; Barford, D.; Downham, R.; Garrett, M. D.; Carr, R. A., Identification of Inhibitors of Protein Kinase B Using Fragment-Based Lead Discovery. J. Med. Chem. 2007, 50, 2293-2296. 37. Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J., Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings. Adv. Drug Deliv. Rev. 1997, 23, 3-25. 38. Smith, A. L.; DeMorin, F. F.; Paras, N. A.; Huang, Q.; Petkus, J. K.; Doherty, E. M.; Nixey, T.; Kim, J. L.; Whittington, D. A.; Epstein, L. F.; Lee, M. R.; Rose, M. J.; Babij, C.; Fernando, M.; Hess, K.; Le, Q.; Beltran, P.; Carnahan, J., Selective Inhibitors of the Mutant B-Raf Pathway: Discovery of a Potent and Orally Bioavailable Aminoisoquinoline. J. Med. Chem. 2009, 52, 6189-6192. 39. Ducharme, Y.; Blouin, M.; Brideau, C.; Chateauneuf, A.; Gareau, Y.; Grimm, E. L.; Juteau, H.; Laliberte, S.; MacKay, B.; Masse, F.; Ouellet, M.; Salem, M.; Styhler, A.; Friesen, R. W., The Discovery of Setileuton, a Potent and Selective 5-Lipoxygenase Inhibitor. ACS Med. Chem. Lett. 2010, 1, 170-174. 40. Hodous, B. L.; Geuns-Meyer, S. D.; Hughes, P. E.; Albrecht, B. K.; Bellon, S.; Bready, J.; Caenepeel, S.; Cee, V. J.; Chaffee, S. C.; Coxon, A.; Emery, M.; Fretland, J.; Gallant, P.; Gu, Y.; Hoffman, D.; Johnson, R. E.; Kendall, R.; Kim, J. L.; Long, A. M.; Morrison, M.; Olivieri, P. R.; Patel, V. F.; Polverino, A.; Rose, P.; Tempest, P.; Wang, L.; Whittington, D. A.; Zhao, H., Evolution of a Highly Selective and Potent 2-(Pyridin-2-yl)-1,3,5-triazine Tie-2 Kinase Inhibitor. J. Med. Chem. 2007, 50, 611-626. 41. Pipaon, C.; Gutierrez, P.; Montero, J. C.; Lorenzo, M.; Eguiraun, A.; De la Fuente, J. A.; Pandiella, A.; Leon, J.; Ortiz, J. M., Mitogen-Activated Protein Kinase Routes as Targets in the Action of Diaza-Anthracene Compounds with a Potent Growth-Inhibitory Effect on Cancer Cells. Mol. Cancer Ther. 2002, 1, 811-819. 42. Wellbrock, C.; Karasarides, M.; Marais, R., The RAF Proteins Take Centre Stage. Nat. Rev. Mol. Cell Bio. 2004, 5, 875-885. 43. Davies, H.; Bignell, G. R.; Cox, C.; Stephens, P.; Edkins, S.; Clegg, S.; Teague, J.; Woffendin, H.; Garnett, M. J.; Bottomley, W.; Davis, N.; Dicks, N.; Ewing, R.; Floyd, Y.; Gray, K.; Hall, S.; Hawes, R.; Hughes, J.; Kosmidou, V.; Menzies, A.; Mould, C.; Parker, A.; Stevens, C.; Watt, S.; Hooper, S.; Wilson, R.; Jayatilake, H.; Gusterson, B. A.; Cooper, C.; Shipley, J.; Hargrave, D.; Pritchard-Jones, K.; Maitland, N.; Chenevix-Trench, G.; Riggins, G. J.; Bigner, D. D.; Palmieri, G.; Cossu, A.; Flanagan, A.; Nicholson, A.; Ho, J. W. C.; Leung, S. Y.; Yuen, S. T.; Weber, B. L.; Siegler, H. F.; Darrow, T. L.; Paterson, H.; Marais, R.; Marshall, C. J.; Wooster, R.; Stratton, M. R.; Futreal, P. A., Mutations of the BRAF Gene in Human Cancer. Nature 2002, 417, 949-954. 44. Flaherty, K. T.; Puzanov, I.; Kim, K. B.; Ribas, A.; McArthur, G. A.; Sosman, J. A.; O'Dwyer, P. J.; Lee, R. J.; Grippo, J. F.; Nolop, K.; Chapman, P. B., Inhibition of Mutated, Activated BRAF in Metastatic Melanoma. N. Engl. J. Med. 2010, 363, 809-819. 45. Garnett, M. J.; Marais, R., Guilty as Charged: B-RAF Is a Human Oncogene. Cancer Cell 2004, 6, 313-319. 46. Tsai, J.; Lee, J. T.; Wang, W.; Zhang, J.; Cho, H.; Mamo, S.; Bremer, R.; Gillette, S.; Kong, J.; Haass, N. K.; Sproesser, K.; Li, L.; Smalley, K. S. M.; Fong, D.; Zhu, Y. L.; Marimuthu, A.; Nguyen, H.; Lam, B.; Liu, J.; Cheung, I.; Rice, J.; Suzuki, Y.; Luu, C.; Settachatgul, C.; Shellooe, R.; Cantwell, J.; Kim, S. H.; Schlessinger, J.; Zhang, K. Y. J.; West, B. L.; Powell, B.; Habets, G.; Zhang, C.; Ibrahim, P. N.; Hirth, P.; Artis, D. R.; Herlyn, M.; Bollag, G., Discovery of a Selective Inhibitor of Oncogenic B-Raf Kinase with Potent Antimelanoma Activity. Proc. Natl. Acad. Sci. USA 2008, 105, 3041-3046. 47. King, A. J.; Patrick, D. R.; Batorsky, R. S.; Ho, M. L.; Do, H. T.; Zhang, S. Y.; Kumar, R.; Rusnak, D. W.; Takle, A. K.; Wilson, D. M.; Hugger, E.; Wang, L. F.; Karreth, F.; Lougheed, J. C.; Lee, J.; Chau, D.; Stout, T. J.; May, E. W.; Rominger, C. M.; Schaber, M. D.; Luo, L. S.; Lakdawala, A. S.; Adams, J. L.; Contractor, R. G.; Smalley, K. S. M.; Herlyn, M.; Morrissey, M. M.; Tuveson, D. A.; Huang, P. S., Demonstration of a Genetic Therapeutic Index for Tumors Expressing Oncogenic BRAF by the Kinase Inhibitor SB-590885. Cancer Res. 2006, 66, 11100-11105. 48. Gerwick, W. H., Structure and Biosynthesis of Marine Algal Oxylipins. BBA-Lipid Lipid Met. 1994, 1211, 243-255. 49. Depetrocellis, L.; Dimarzo, V., Aquatic Invertebrates Open up New Perspectives in Eicosanoid Research: Biosynthesis and Bioactivity. Prostagl. Leuko. Ess. Fatty Acids 1994, 51, 215-229. 50. Yamamoto, S.; Kishimoto, K.; Arakawa, T.; Suzuki, H.; Nakamura, M.; Yoshimoto, T.; Takao, T.; Shimonishi, Y.; Tanabe, T., Arachidonate 12-Lipoxygenases - Catalytic Properties and Regulation of the Enzyme Gene. Eicosanoids and Other Bioactive Lipids in Cancer, Inflammation, and Radiation Injury 3 1997, 407, 191-196. 51. Samuelsson, B.; Dahlen, S. E.; Lindgren, J. A.; Rouzer, C. A.; Serhan, C. N., Leukotrienes and Lipoxins: Structures, Biosynthesis, and Biological Effects. Science 1987, 237, 1171-1176. 52. Dailey, L. A.; Imming, P., 12-Lipoxygenase: Classification, Possible Therapeutic Benefits from Inhibition, and Inhibitors. Curr. Med. Chem. 1999, 6, 389-398. 53. Steele, V. E.; Holmes, C. A.; Hawk, E. T.; Kopelovich, L.; Lubet, R. A.; Crowell, J. A.; Sigman, C. C.; Kelloff, G. J., Lipoxygenase Inhibitors as Potential Cancer Chemopreventives. Cancer Epidem. Biomar. 1999, 8, 467-483. 54. Ivanov, I.; Heydeck, D.; Hofheinz, K.; Roffeis, J.; O'Donnell, V. B.; Kuhn, H.; Walther, M., Molecular Enzymology of Lipoxygenases. Arch. Biochem. Biophys. 2010, 503, 161-174. 55. Woods, J. W.; Evans, J. F.; Ethier, D.; Scott, S.; Vickers, P. J.; Hearn, L.; Heibein, J. A.; Charleson, S.; Singer, II, 5-Lipoxygenase and 5-Lipoxygenase-Activating Protein are Localized in the Nuclear Envelope of Activated Human Leukocytes. Jpn. J. Exp. Med. 1993, 178, 1935-1946. 56. Shaffer, D. N.; Mansmann, P. T., Leukotriene Inhibition and Advances in the Treatment of Asthma: A Pharmacological Review. Pediatr. Asthma. Aller. 1997, 11, 171-179. 57. Yu, Q., The dynamic roles of angiopoietins in tumor angiogenesis. Future Oncology 2005, 1, 475-484. 58. Hasegawa, M.; Nishigaki, N.; Washio, Y.; Kano, K.; Harris, P. A.; Sato, H.; Mori, I.; West, R. I.; Shibahara, M.; Toyoda, H.; Wang, L.; Nolte, R. T.; Veal, J. M.; Cheung, M., Discovery of Novel Benzimidazoles as Potent Inhibitors of TIE-2 and VEGFR-2 Tyrosine Kinase Receptors. J. Med. Chem. 2007, 50, 4453-4470. 59. Oliner, J.; Min, H.; Leal, J.; Yu, D.; Rao, S.; You, E.; Tang, X.; Kim, H.; Meyer, S.; Han, S. J.; Hawkins, N.; Rosenfeld, R.; Davy, E.; Graham, K.; Jacobsen, F.; Stevenson, S.; Ho, J.; Chen, Q.; Hartmann, T.; Michaels, M.; Kelley, M.; Li, L.; Sitney, K.; Martin, F.; Sun, J.-R.; Zhang, N.; Lu, J.; Estrada, J.; Kumar, R.; Coxon, A.; Kaufman, S.; Pretorius, J.; Scully, S.; Cattley, R.; Payton, M.; Coats, S.; Nguyen, L.; Desilva, B.; Ndifor, A.; Hayward, I.; Radinsky, R.; Boone, T.; Kendall, R., Suppression of Angiogenesis and Tumor Growth by Selective Inhibition of Angiopoietin-2. Cancer Cell 2004, 6, 507-516. 60. Huang, H.; Bhat, A.; Woodnutt, G.; Lappe, R., Targeting the ANGPT–TIE2 pathway in malignancy. Nat. Rev. Cancer 2010, 10, 575-585. 61. Dibb, N. J.; Dilworth, S. M.; Mol, C. D., Opinion - Switching on Kinases: Oncogenic Activation of BRAF and the PDGFR Family. Nat. Rev. Cancer 2004, 4, 718-727. 62. Charlier, C.; Henichart, J.-P.; Durant, F.; Wouters, J., Structural Insights into Human 5-Lipoxygenase Inhibition: Combined Ligand-Based and Target-Based Approach. J. Med. Chem. 2005, 49, 186-195. 63. Glover, F., Future Paths for Integer Programming and Links to Artificial Intelligence. Comput. Oper. Res. 1986, 13, 533-549. 64. Kolb, P.; Caflisch, A., Automatic and Efficient Decomposition of Two-Dimensional Structures of Small Molecules for Fragment-Based High-Throughput Docking. J. Med. Chem. 2006, 49, 7384-7392. 65. Dube, D.; Blouin, M.; Brideau, C.; Chan, C. C.; Desmarais, S.; Ethier, D.; Falgueyret, J. P.; Friesen, R. W.; Girard, M.; Girard, Y.; Guay, J.; Riendeau, D.; Tagari, P.; Young, R. N., Quinolines as Potent 5-Lipoxygenase Inhibitors: Synthesis and Biological Profile of L-746,530. Bioorg. Med. Chem. Lett. 1998, 8, 1255-1260. 66. Mano, T.; Okumura, Y.; Sakakibara, M.; Okumura, T.; Tamura, T.; Miyamoto, K.; Stevens, R. W., 4-[5-Fluoro-3-[4-(2-methyl-1H-imidazol-1-yl) benzyloxy]phenyl] -3,4,5,6- tetrahydro-2H-pyran-4-carboxamide, an Orally Active Inhibitor of 5-Lipoxygenase with Improved Pharmacokinetic and Toxicology Characteristics. J. Med. Chem. 2003, 47, 720-725. 67. Ducharme, Y.; Brideau, C.; Dube, D.; Chan, C. C.; Falgueyret, J. P.; Gillard, J. W.; Guay, J.; Hutchinson, J. H.; McFarlane, C. S., Naphthalenic Lignan Lactones as Selective, Nonredox 5-Lipoxygenase Inhibitors. Synthesis and Biological Activity of (Methoxyalkyl)thiazole and Methoxytetrahydropyran Hybrids. J. Med. Chem. 1994, 37, 512-518. 68. Laufer, S. A.; Augustin, J.; Dannhardt, G.; Kiefer, W., (6,7 -Diaryldihydropyrrolizin-5-yl)acetic Acids, a Novel Class of Potent Dual Inhibitors of Both Cyclooxygenase and 5-Lipoxygenase. J. Med. Chem. 1994, 37, 1894-1897. 69. Hutchinson, J. H.; Charleson, S.; Evans, J. F.; Falgueyret, J.-P.; Hoogsteen, K.; Jones, T. R.; Kargman, S.; Macdonald, D.; McFarlane, C. S., Thiopyrano l[2,3,4-c,d]indoles as Inhibitors of 5-Lipoxygenase, 5-Lipoxygenase-Activating Protein, and Leukotriene C4 Synthase. J. Med. Chem. 1995, 38, 4538-4547. 70. Hutchinson, J. H.; Riendeau, D.; Brideau, C.; Chan, C.; Delorme, D.; Denis, D.; Falgueyret, J. P.; Fortin, R.; Guay, J., Substituted Thiopyrano[2,3,4-c,d]indoles as Potent, Selective, and Orally Active Inhibitors of 5-Lipoxygenase. Synthesis and Biological Evaluation of L-691,816. J. Med. Chem. 1993, 36, 2771-2787. 71. Pommery, N.; Taverne, T.; Telliez, A.; Goossens, L.; Charlier, C.; Pommery, J.; Goossens, J.-F.; Houssin, R.; Durant, F.; Henichart, J.-P., New COX-2/5-LOX Inhibitors: Apoptosis-Inducing Agents Potentially Useful in Prostate Cancer Chemotherapy. J. Med. Chem. 2004, 47, 6195-6206. 72. Barbey, S.; Goossens, L.; Taverne, T.; Cornet, J.; Choesmel, V.; Rouaud, C.; Gimeno, G.; Yannic-Arnoult, S.; Michaux, C.; Charlier, C.; Houssin, R.; Henichart, J. P., Synthesis and Activity of a New Methoxytetrahydropyran Derivative as Dual Cyclooxygenase-2/5-Lipoxygenase Inhibitor. Bioorg. Med. Chem. Lett. 2002, 12, 779-782. 73. Majeux, N.; Scarsi, M.; Apostolakis, J.; Ehrhardt, C.; Caflisch, A., Exhaustive Docking of Molecular Fragments with Electrostatic Solvation. Proteins: Struct. Funct. Genet. 1999, 37, 88-105. 74. HyperChem, Version 7.0; Hypercube, Inc.: Gainesville, 2007. 75. Trott, O.; Olson, A. J., Software News and Update AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J. Comput. Chem. 2010, 31, 455-461. 76. Hess, B.; Kutzner, C.; van der Spoel, D.; Lindahl, E., GROMACS 4: Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. J. Chem. Theory Comput. 2008, 4, 435-447. 77. Oostenbrink, C.; Soares, T. A.; van der Vegt, N. F. A.; van Gunsteren, W. F., Validation of the 53A6 GROMOS Force Field. Eur. Biophys. J. 2005, 34, 273-284. 78. Berendsen, H. P., JPM; van Gunsteren, WF; Hermans, J., Interaction Models for Water in Relation to Protein Hydration. In Intermolecular Forces; Pullman, B., Ed.; D. Reidel: Dordrecht, The Netherlands. 1981, 331-342. 79. Hammarberg, T.; Zhang, Y. Y.; Lind, B.; Radmark, O.; Samuelsson, B., Mutations at the C-Terminal Isoleucine and Other Potential Iron Ligands of 5-Lipoxygenase. Eur. J. Biochem. 1995, 230, 401-407. 80. Schwarz, K.; Walther, M.; Anton, M.; Gerth, C.; Feussner, I.; Kuhn, H., Structural Basis for Lipoxygenase Specificity. J. Biol. Chem. 2001, 276, 773-779. 81. Charlier, C.; Henichart, J.-P.; Durant, F.; Wouters, J., Structural Insights into Human 5-Lipoxygenase Inhibition: Combined Ligand-Based and Target-Based Approach. J. Med. Chem. 2005, 49, 186-195. 82. https://www.reaxys.com/ 83. Sigma-Alderich Chemie GmbH, Steinheim, GE. 84. JChem 5.4.1.1; ChemAxon Ltd: Budapest, Hungary. 85. Imre, G., Kalszi, A., Jkli, I., and Farkas, .Advanced Automatic Generation of 3D Molecular Structures, presented at the 1st European Chemistry Congress, Budapest, Hungary, 2006. 86. Marvin 5.4.0.1; ChemAxon Ltd: Budapest, Hungary. 87. Bridges, A. J., Chemical inhibitors of protein kinases. Chem. Rev. 2001, 101, 2541-2571. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28641 | - |
| dc.description.abstract | 先導藥物結構最適化是藥物開發中重要的一環,然而在抑制劑設計上,化學合成可行性亦是設計的一項考量。因此為設計出結構適化的抑制劑,並考慮合成可行性,本研究將針對先導藥物結構最適化的設計方法探討,根據其設計的演算法分為兩種,一為跳躍示式分子子結構置換,另一為考慮合成可行性的藥物設計。
在論文第一部分,將詳述LeadOp系統,此系統以蛋白質結構為基礎,針對已知的抑制劑結構,利用跳躍示式分子子結構置換方法結構優化已知的抑制劑結構,進而找出更有效的抑制劑。LeadOp考慮已知抑制劑分子的子結構,藉由計算Group efficiency (GE)的計分,評估子結構與蛋白質活性區的作用關係,並從資料庫中選出子結構較佳者進行替代;同時,我們考慮到分子性質並作為篩選條件,排除不穩定的子結構,並選出具有增加分子之間作用性質的子結構做置換。置換完的分子經過結構最佳化以及分子與蛋白質結合能量的計算,篩選出較佳的分子作為抑制劑。在此論文第二部分中,將詳述LeadOp+R 系統, 此系統同時評估抑制劑分子與蛋白質活性區的作用關係以及先導藥物設計上之分子可合成性,進而達到先導藥物結構最適化的設計。從預先擷取的化學反應合成上的規則,並以蛋白質結構為基礎,根據化學反應規則進行蛋白質活性區塊中之抑制劑分子合成,同時每一化學反應步驟的產物皆以GE排序計分,分數較高者將被視為新的反應物進行下一步合成直到系統執行結束,最後合成的產物將是結構最適化後的分子。 本論文中,分別以三組藥物及相對之蛋白質系統,依序BRaf、5-LOX、Tie-2,進行演算法上結構最適化的評估以驗證LeadOp、LeadOp+R的效能,進而設計出已知的藥物,其抑制活性與預測的結果有相同的趨勢。 | zh_TW |
| dc.description.abstract | In this thesis, we describe two systems of structure based de novo optimization process, called “LeadOp” (short for Lead Optimization), and “LeadOp+R” (short for Lead Optimization with chemical Reaction).
In the first system, LeadOp, we described a structure based de novo optimization process, “LeadOp”, by decomposing a structure into fragments of different parts either by chemical rules or user-defined, evaluate each fragment at each part in a pre-docked fragment database that ranked fragments according to specific fragment-receptor binding interactions, replace fragments with less contribution to binding, and finally reassemble fragments from each part to form a ligand. The fundamental idea was to replace “bad” fragments of an inhibitor and replace with “good” fragments while leaving the rest of the inhibitor in the original core to improve the activity for lead optimization. The fragments were selected from a collection of 27,417 conformers by exhaustive docking at the target binding sites from synthesizable docked molecular building blocks and fragments from decomposing all known inhibitors from DrugBank database and related inhibitors. However, even with the fragment based design from common building blocks, it is still a challenge for synthesis. In the second system, “LeadOp+R” was developed based on 198 classical chemical reactions to consider the synthetic accessibility while optimizing leads. LeadOp+R first allows user to identify a preserved space defined by the volume occupied by a fragment of the query molecule to be preserved. Then LeadOp+R searches for building blocks with the same preserved space as initial reactants and grows molecules towards the preferred receptor-ligand interactions according to reaction rules from reaction database in LeadOp+R. Multiple conformers of each intermediate product were considered and evaluated at each step. The conformer with the best group efficiency score would be selected as the initial conformer of the next building block until the program finished optimization for all selected receptor-ligand interactions. The two systems were examed with three biomolecular sysmtes, including mutant B-Raf kinase, Tie-2 kinase, and human 5-LOX inhibitor design. The “LeadOp” methodology was able to optimize the query molecules and systematically developed improved analogs for each of our example systems. The “LeadOp+R” methodology optimized the query molecule and systematically developed improved analogs along with their proposed synthetic routes. The suggested synthetic route (proposed from our synthesis algorithm) was the same as the published synthetic route devised by a synthetic/organic chemist. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T00:15:21Z (GMT). No. of bitstreams: 1 ntu-100-R98945021-1.pdf: 28869070 bytes, checksum: 3765b7e788e76c2d8b7c21bc8c90cebf (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | Table of Content
口試委員會審定書......................................................................................................... i 誌謝................................................................................................................................. ii 中文摘要......................................................................................................................... iv ABSTRACT..................................................................................................................... vi LIST OF FIGURES........................................................................................................ xi LIST OF TABLES.......................................................................................................... xiii CHAPTER 1. Introduction............................................................................................. 1 1.1 Lead optimization in computer-aided drug design.......................................... 1 1.2 Computer-assisted synthesis design................................................................ 3 1.3 New methodologies of lead optimization drug design.................................... 4 1.3.1 Structure-based fragment hopping of lead optimization : LeadOp....... 5 1.3.2 Lead optimization with synthetic accessibility: LeadOp+R................. 6 1.4 Data Sets.......................................................................................................... 7 1.4.1 Mutatnt B-Raf kinase inhibitors............................................................ 8 1.4.2 Human 5-Lipoxygenase inhibitors........................................................ 9 1.4.3 Tie-2 kinase inhibitors......................................................................... 10 CHAPTER 2. LeadOp.................................................................................................... 11 2.1 Introduction of LeadOp system.................................................................. 11 2.2 Materials.................................................................................................... 12 2.3 Algorithm of LeadOp................................................................................. 12 2.3.1 Overall procedure of LeadOp............................................................. 12 2.3.2 Generation of fragments................................................................... 15 2.3.3 Pre-docked fragment database construction..................................... 15 2.3.4 Preparation for optimization............................................................. 16 2.3.5 Selection of fragments to be replaced.............................................. 16 2.3.6 Tabu Search for better replacement and compounds assembly........ 17 2.3.7 Trimming the potential compound library........................................ 17 2.3.8 Molecular dynamics simulations...................................................... 17 2.4 Result and Discussion of LeadOp............................................................ 19 2.4.1 LeadOp for mutant B-Raf kinase inhibitors..................................... 19 2.4.2 LeadOp for Human 5-lipoxygenase inhibitors................................. 28 2.5 Conclsion................................................................................................ 38 CHAPTER 3. LeadOp+R............................................................................................. 40 3.1 Introduction of LeadOp+R system.......................................................... 40 3.2 Materials................................................................................................. 41 3.3 Algorithm of LeadOp+R.......................................................................... 42 3.3.1 Overall procedure of LeadOp+R....................................................... 42 3.3.2 Constructurion of the LeadOp+R reaction database........................... 44 3.3.3 Identify reactant……………………………………………………... 48 3.3.4 Determine reaction rules for each reactant identified.......................... 48 3.3.5 Generation of reaction products based on reaction rules..................... 48 3.3.6 Evaluation of the products for each reaction....................................... 50 3.3.7 Final selection by strcture-based analysis........................................... 51 3.3.8 Molecular dynatmics simulations....................................................... 52 3.4 Result and Discussion of LeadOp+R.......................................................... 54 3.4.1 LeadOp+R optimization with for Tie-2 kinase inhibitors.................. 54 3.4.1.1 Structure-based lead optimization with synthetic routes.......... 54 3.4.1.2 Synthetic routes suggested by LeadOp+R................................ 61 3.4.2 LeadOp+R optimization with for 5-lipoxygenase inhibitors ............. 72 3.4.2.1 Structure-based lead optimization with synthetic routes.......... 72 3.4.2.2 Synthetic routes suggested by LeadOp+R................................ 78 3.5 Comparision of LeadOp and LeadOp+R in the 5-lipoxygenase system.... 91 CHAPTER 4. Conclusion............................................................................................. 93 REFERENCE................................................................................................................ 96 APPENDIX…............................................................................................................. 111 | |
| dc.language.iso | en | |
| dc.subject | 電腦輔助合成設計 | zh_TW |
| dc.subject | 片段設計 | zh_TW |
| dc.subject | 結構跳躍式 | zh_TW |
| dc.subject | 先導藥物最適化 | zh_TW |
| dc.subject | 以蛋白質結構為基礎設計 | zh_TW |
| dc.subject | 電腦輔助分子設計 | zh_TW |
| dc.subject | Structure-based Drug Design | en |
| dc.subject | Computer-assisted Synthesis | en |
| dc.subject | Computer-aided Molecular Design | en |
| dc.subject | Fragment-based | en |
| dc.subject | Lead Optimization | en |
| dc.subject | Scaffold-Hopping | en |
| dc.title | 以蛋白質結構為基礎之合成可行性先導藥物最適化電腦輔助藥物設計 | zh_TW |
| dc.title | Structure-Based Lead Optimization with Synthetic Accessibility in Computer-Aided Drug Design | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 鄧哲明,方俊民,孫仲銘 | |
| dc.subject.keyword | 片段設計,結構跳躍式,先導藥物最適化,以蛋白質結構為基礎設計,電腦輔助分子設計,電腦輔助合成設計, | zh_TW |
| dc.subject.keyword | Fragment-based,Scaffold-Hopping,Lead Optimization,Structure-based Drug Design,Computer-aided Molecular Design,Computer-assisted Synthesis, | en |
| dc.relation.page | 111 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-08-05 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 生醫電子與資訊學研究所 | zh_TW |
| 顯示於系所單位: | 生醫電子與資訊學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 28.19 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
