Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28640
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林文澧(Win-Li Lin),楊榮森(Rong-Sen Yang),符文美(Wen-Mei Fu)
dc.contributor.authorHsiao-Wei Yuen
dc.contributor.author游曉微zh_TW
dc.date.accessioned2021-06-13T00:15:18Z-
dc.date.available2007-07-31
dc.date.copyright2007-07-31
dc.date.issued2007
dc.date.submitted2007-07-26
dc.identifier.citation1.Azuma Y, Ito M, Harada Y, Takagi H, Ohta T, Jingushi S. Low-intensity pulsed ultrasound accelerates rat femoral fracture healing by acting on the various cellular reactions in the fracture callus. J Bone Miner Res. 2001;16: 671-80.
2.Claes L, Willie B. The enhancement of bone regeneration by ultrasound. Prog Biophys Mol Biol. 2007;93: 384-98.
3.de Bold AJ, Bruneau BG, Kuroski de Bold ML. Mechanical and neuroendocrine regulation of the endocrine heart. Cardiovasc Res. 1996;31: 7-18.
4.Denninger JW, Marletta MA. Related Articles, Guanylate cyclase and the .NO/cGMP signaling pathway. Biochim Biophys Acta. 1999;1411: 334-50.
5.Dong SS, Williams JP, Jordan SE, Cornwell T, Blair HC. Nitric oxide regulation of cGMP production in osteoclasts. J Cell Biochem. 1999;73: 478-87.
6.Heckman JD, Ryaby JP, McCabe J, Frey JJ, Kilcoyne RF. Acceleration of tibial fracture-healing by non-invasive, low-intensity pulsed ultrasound. J Bone Joint Surg Am. 1994;76: 26-34.
7.Hikiji H, Shin WS, Oida S, Takato T, Koizumi T, Toyo-oka T. Direct action of nitric oxide on osteoblastic differentiation. FEBS Lett. 1997;410: 238-42.
8.Ikeda K, Takayama T, Suzuki N, Shimada K, Otsuka K, Ito K. Effects of low-intensity pulsed ultrasound on the differentiation of C2C12 cells. Life Sci. 2006;79: 1936-43.
9.Inoue A, Hiruma Y, Hirose S, Yamaguchi A, Furuya M, Tanaka S, Hagiwara H. Stimulation by C-type natriuretic peptide of the differentiation of clonal osteoblastic MC3T3-E1 cells. Biochem Biophys Res Commun. 1996;221: 703-7.
10.Jingushi S, Mizuno K, Matsushita T, Itoman M. Low-intensity pulsed ultrasound treatment for postoperative delayed union or nonunion of long bone fractures. J Orthop Sci. 2007;12: 35-41.
11.Kim SH, Koh GY, Cho KW, Park WY, Seo JS. Stretch-activated atrial natriuretic peptide secretion in atria with heat shock protein 70 overexpression. Exp Biol Med (Maywood). 2003;228: 200-6.
12.Komatsu Y, Chusho H, Tamura N, Yasoda A, Miyazawa T, Suda M, Miura M, Ogawa Y, Nakao K. Significance of C-type natriuretic peptide (CNP) in endochondral ossification: analysis of CNP knockout mice. J Bone Miner Metab. 2002;20: 331-6.
13.Li JK, Chang WH, Lin JC, Ruaan RC, Liu HC, Sun JS. Cytokine release from osteoblasts in response to ultrasound stimulation. Biomaterials. 2003;24: 2379-85.
14.Liedert A, Kaspar D, Blakytny R, Claes L, Ignatius A. Signal transduction pathways involved in mechanotransduction in bone cells. Biochem Biophys Res Commun. 2006;349: 1-5.
15.Mancini L, Moradi-Bidhendi N, Becherini L, Martineti V, MacIntyre I. The biphasic effects of nitric oxide in primary rat osteoblasts are cGMP dependent. Biochem Biophys Res Commun. 2000;274: 477-81.
16.Mericq V, Uyeda JA, Barnes KM, De Luca F, Baron J. Regulation of fetal rat bone growth by C-type natriuretic peptide and cGMP. Pediatr Res. 2000;47: 189-93.
17.Miyazawa T, Ogawa Y, Chusho H, Yasoda A, Tamura N, Komatsu Y, Pfeifer A, Hofmann F, Nakao K. Cyclic GMP-dependent protein kinase II plays a critical role in C-type natriuretic peptide-mediated endochondral ossification. Endocrinology. 2002;143: 3604-10.
18.Mukai S, Ito H, Nakagawa Y, Akiyama H, Miyamoto M, Nakamura T. Transforming growth factor-beta1 mediates the effects of low-intensity pulsed ultrasound in chondrocytes. Ultrasound Med Biol. 2005;31: 1713-21.
19.Nolte PA, van der Krans A, Patka P, Janssen IM, Ryaby JP, Albers GH. Low-intensity pulsed ultrasound in the treatment of nonunions. J Trauma. 2001;51: 693-702.
20.Otsuka E, Hirano K, Matsushita S, Inoue A, Hirose S, Yamaguchi A, Hagiwara H. Effects of nitric oxide from exogenous nitric oxide donors on osteoblastic metabolism. Eur J Pharmacol. 1998;349: 345-50.
21.Potter LR, Abbey-Hosch S, Dickey DM. Natriuretic peptides, their receptors, and cyclic guanosine monophosphate-dependent signaling functions. Endocr Rev. 2006;27: 47-72.
22.Reher P, Harris M, Whiteman M, Hai HK, Meghji S. Ultrasound stimulates nitric oxide and prostaglandin E2 production by human osteoblasts. Bone. 2002;31: 236-41.
23.Rubin CT, Hausman MR. The cellular basis of Wolff's law- transduction of physical stimuli to skeletal adaptation. Rheum Dis Clin North Am. 1988;14: 503-17
24.Sato W, Matsushita T, Nakamura K. Acceleration of increase in bone mineral content by low-intensity ultrasound energy in leg lengthening. J Ultrasound Med. 1999;18: 699-702.
25.Schulz S. C-type natriuretic peptide and guanylyl cyclase B receptor.Peptides. 2005;26: 1024-34.
26.Suda M, Tanaka K, Fukushima M, Natsui K, Yasoda A, Komatsu Y, Ogawa Y, Itoh H, Nakao K. C-type natriuretic peptide as an autocrine/paracrine regulator of osteoblast. Evidence for possible presence of bone natriuretic peptide system.
Biochem Biophys Res Commun. 1996;223: 1-6.
27.Sun JS, Hong RC, Chang WH, Chen LT, Lin FH, Liu HC. In vitro effects of low-intensity ultrasound stimulation on the bone cells. J Biomed Mater Res. 2001;57: 449-56.
28.Takayama T, Suzuki N, Ikeda K, Shimada T, Suzuki A, Maeno M, Otsuka K, Ito K. Low-intensity pulsed ultrasound stimulates osteogenic differentiation in ROS 17/2.8 cells. Life Sci. 2007;80: 965-71.
29.Tang CH, Yang RS, Huang TH, Lu DY, Chuang WJ, Huang TF, Fu WM. Ultrasound stimulates cyclooxygenase-2 expression and increases bone formation through integrin, focal adhesion kinase, phosphatidylinositol 3-kinase, and Akt pathway in osteoblasts. Mol Pharmacol. 2006;69: 2047-57.
30.Teixeira CC, Ischiropoulos H, Leboy PS, Adams SL, Shapiro IM. Nitric oxide-nitric oxide synthase regulates key maturational events during chondrocyte terminal differentiation. Bone. 2005;37: 37-45.
31.Tokola H, Hautala N, Marttila M, Magga J, Pikkarainen S, Kerkela R, Vuolteenaho O, Ruskoaho H. Mechanical load-induced alterations in B-type natriuretic peptide gene expression. Can J Physiol Pharmacol. 2001;79: 646-53.
32.Tsuji T, Kunieda T. A loss-of-function mutation in natriuretic peptide receptor 2 (Npr2) gene is responsible for disproportionate dwarfism in cn/cn mouse. J Biol Chem. 2005;280:14288-92.
33.van't Hof RJ, Armour KJ, Smith LM, Armour KE, Wei XQ, Liew FY, Ralston SH. Requirement of the inducible nitric oxide synthase pathway for IL-1-induced osteoclastic bone resorption. Proc Natl Acad Sci U S A. 2000;97: 7993-8.
34.van't Hof RJ, Ralston SH. Nitric oxide and bone. Immunology. 2001;103: 255-61.
35.Walsh WR, Stephens P, Vizesi F, Bruce W, Huckle J, Yu Y. Effects of low-intensity pulsed ultrasound on tendon-bone healing in an intra-articular sheep knee model. Arthroscopy. 2007;23: 197-204.
36.Wang FS, Kuo YR, Wang CJ, Yang KD, Chang PR, Huang YT, Huang HC, Sun YC, Yang YJ, Chen YJ. Nitric oxide mediates ultrasound-induced hypoxia-inducible factor-1alpha activation and vascular endothelial growth factor-A expression in human osteoblasts. Bone. 2004;35: 114-23.
37.Warden SJ, Fuchs RK, Kessler CK, Avin KG, Cardinal RE, Stewart RL. Ultrasound produced by a conventional therapeutic ultrasound unit accelerates fracture repair. Phys Ther. 2006;86: 1118-27.
38.Welgus, H.G., Jeffery, J.J., Eisen, A.Z., Roswit, W.T., Stricklin, G.p., Human skin fibroblast collagenase: interaction with substrate and inhibitor. 1985;5: 167-179.
39.Yasoda A, Ogawa Y, Suda M, Tamura N, Mori K, Sakuma Y, Chusho H, Shiota K, Tanaka K, Nakao K. Natriuretic peptide regulation of endochondral ossification. Evidence for possible roles of the C-type natriuretic peptide/guanylyl cyclase-B pathway. J Biol Chem. 1998;273: 11695-700.
40.Yeh LC, Zavala MC, Lee JC. C-type natriuretic peptide enhances osteogenic protein-1-induced osteoblastic cell differentiation via Smad5 phosphorylation. J Cell Biochem. 2006;97: 494-500.
41.Zaragoza C, Lopez-Rivera E, Garcia-Rama C, Saura M, Martinez-Ruiz A, Lizarbe TR, Martin-de-Lara F, Lamas S. Cbfa-1 mediates nitric oxide regulation of MMP-13 in osteoblasts. J Cell Sci. 2006;119: 1896-902.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28640-
dc.description.abstract低強度間歇性超音波(low-intensity pulsed ultrasound, LIPUS)提供非侵入式、非熱傳導的機械訊息傳遞,可以加速骨癒合速度、增加骨骼形成。人體中,一氧化氮(nitric oxide, NO)和C-type natriuretic peptide(CNP)均和骨骼系統代謝有關。
一氧化氮由一氧化氮合成酶(nitric oxide synthase, NOS)產生,其中誘導一氧化氮酶(inducible nitric oxide synthase, iNOS)會因為外界刺激而產生,當大量iNOS產生後,可以產生多量的NO。而CNP藉由它的受體- B型鳥糞環化酵素(guanylyl cyclase type B receptor, GC-B)結合進行生理作用。兩者路徑在造骨細胞中,皆會活化環鳥嘌呤核甘單磷酸(cyclic guanosine monphosphate, cGMP)促進骨骼生長。
本論文中,利用低強度間歇性超音波(frequency =1.5MHz, intensity =30m/cm2, duration =20 minutes, pulse at 1:4)給予初級造骨細胞刺激進行iNOS/NO/cGMP和CNP/GC-B/cGMP路徑之研究。另外,利用蛇毒蛋白Rhodostomin阻滯造骨細胞膜上的integrins作用後,觀察超音波是否仍可以將機械訊息傳遞至細胞內。
結果顯示,超音波可以刺激造骨細胞的一氧化氮產生、誘導一氧化氮酶和GC-B在蛋白質與基因表現增加,同時促進細胞內環鳥嘌呤核甘單磷酸濃度增加,強化CNP之感受性。在原子力顯微鏡實驗中,也發現經過超音波刺激後,骨細胞表面的細胞小泡增加、肌動蛋白絲重組、細胞膜韌度增加之現象。
綜合言之,低強度間歇性超音波能刺激iNOS/NO/cGMP和CNP/GC-B/cGMP路徑,並且活化骨細胞。
zh_TW
dc.description.abstractLow-intensity pulsed ultrasound(LIPUS)is regarded as a non-invasive and non-thermal mechanotransduction which accelerates fracture healing and promotes bone formation. Nitric oxide(NO)and C-type natriuretic peptide(CNP)are relevant to bone metabolism in human beings. NO is generated by nitric oxide synthase enzyme(NOS)in human beings. Inducible nitric oxide synthase enzyme(iNOS)is one of the NOS, which is responsible to external stimulation and be capable of generating a larger quantity of NO. CNP can bind with its specific receptor, guanylyl cyclase type B receptor(GC-B), and modulates physiological effects. Both of above two pathways transduce extracellualr signals to activate cyclic guanosine monphosphate(cGMP)to regulate bone development. In this study, we explored the effects of LIPUS(frequency =1.5MHz, intensity =30mW/cm2, duration =20 minutes, pulse at 1:4)on the formation of primary osteoblasts by iNOS/NO/cGMP and CNP/GC-B/cGMP pathways. Moreover, we examined the antagonism of Rhodostomin(Rn)on LIPUS-stimulated effects in osteoblasts. The results show that LIPUS increased nitrite concentration in culture medium, both mRNA and protein levels of iNOS and GC-B. LIPUS also enhanced intracellular cGMP content and the sensitivity to exogenous CNP in cultured osteoblasts. Treatment of disintegrin rhodostomin attenuated the US-induced NO、iNOS and GC-B expression. The cell morphological change in response to LIPUS was examined by atomic force microscope(AFM)and the results show that vacuoles formed in the cell surface and the actin reorganized. The stiffness of the osteoblastic membrane was also increased by LIPUS exposure.
In summary, we demonstrated that LIPUS not only enhanced iNOS/NO/cGMP and CNP/GC-B/cGMP pathways but also changed cellular activity by the influence on the cytoskeleton and membrane structures.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T00:15:18Z (GMT). No. of bitstreams: 1
ntu-96-R94548022-1.pdf: 1503057 bytes, checksum: 42a11a3b00d5c08da2f273f84770f86f (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents口試委員會審定書…………………………………………………… I
目錄…………………………………………………………………… II
中文摘要……………………………………………………………… IV
英文摘要……………………………………………………………… VI
縮寫表………………………………………………………………… VIII
圖目錄………………………………………………………………… IX
第一章 緒論………………………………………………………… 1
1-1超音波原理與生物效應……………………………………... 2
1-2 骨細胞……………………………………………………….. 2
1-3超音波於骨組織之應用……………………………………... 2
1-4一氧化氮與骨組織之關連…………………………………... 4
1-5 C-type Natriuretic Peptides與骨組織之關連……………….. 6
1-6機械感受與骨間質受器之關連……………………………... 8
1-7研究動機與目的……………………………………………... 10
第二章 實驗材料與方法……………………………………………. 14
2-1實驗材料……………………………………………………… 14
2-2實驗方法……………………………………………………… 15
第三章 實驗結果…..………………………………………………… 25
3-1超音波刺激於初級造骨細胞之NO/iNOS表現…………….. 25
3-2超音波刺激於初級造骨細胞之CNP/GC-B表現…………… 25
3-3超音波刺激於初級造骨細胞內之cGMP表現……………… 26
3-4蛇毒蛋白Rhodostomin抑制超音波作用……………………. 27
3-5原子力學顯微鏡下,超音波刺激初級造骨細胞的變化……. 28
第四章 討論…………………………………………………………… 44
第五章 參考文獻……………………………………………………… 49
dc.language.isozh-TW
dc.subjectB型鳥糞環化酵素zh_TW
dc.subject環鳥嘌呤核甘單磷酸zh_TW
dc.subject誘導一氧化氮&#37238zh_TW
dc.subject低強度間歇性超音波zh_TW
dc.subjectguanylyl cyclase type B receptoren
dc.subjectcyclic guanosine monophosphateen
dc.subjectInducible nitric oxide synthaseen
dc.subjectLow-intensity pulsed ultrasounden
dc.title低強度間歇性超音波刺激對於骨細胞cGMP增加機轉之探討zh_TW
dc.titleRegulation of Low-Intensity Pulsed Ultrasound on
cGMP Formation in Bone Cells
en
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林世明
dc.subject.keyword低強度間歇性超音波,誘導一氧化氮&#37238,B型鳥糞環化酵素,環鳥嘌呤核甘單磷酸,zh_TW
dc.subject.keywordLow-intensity pulsed ultrasound,Inducible nitric oxide synthase,guanylyl cyclase type B receptor,cyclic guanosine monophosphate,en
dc.relation.page54
dc.rights.note有償授權
dc.date.accepted2007-07-27
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
1.47 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved