Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28580
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄧茂華
dc.contributor.authorShao-Wei Tsaien
dc.contributor.author蔡少葳zh_TW
dc.date.accessioned2021-06-13T00:12:54Z-
dc.date.available2009-10-31
dc.date.copyright2007-07-30
dc.date.issued2007
dc.date.submitted2007-07-26
dc.identifier.citation中文部份
黃忠良(1997)磁性流體理論應用。復漢出版社出版。共202頁。
汪建民(1998)材料分析。中國材料科學學會發行。共743頁。
林沛彥(1999)石墨包裹奈米晶粒材料與機械設計。台灣大學地質學系碩士論文,共72頁。
張麗娟,林沛彥,J. J. Host,鄧茂華(1999)用電弧法製造的石墨包裹奈米晶粒新材料,化工冶金。
張麗娟(1999)石墨包裹奈米鎳晶粒的純化分離效果初步研究。台灣大學地質學系碩士論文,共140頁。
丁南宏等人(2001)真空技術與應用。行政院國家科學委員會精密儀器發展中心出版。共680頁。
鄭啟煇(2002)用電弧法在甲烷與氦氣混合氣體中合成石墨包裹奈米鎳晶粒的初步結果。台灣大學地質科學系碩士論文,共69頁。
林春長(2002)石墨包裹奈米鈷晶粒之純化研究。台灣大學地質科學系碩士論文,共124頁。
王明光等人(2003)實用儀器分析。國立編譯館發行。共692頁。
陳永得(2006)以人造鑽石及噴氣式電弧法合成石墨包裹奈米鐵晶粒之初步結果。台灣大學地質科學系碩士論文,共88頁。
李尚實(2006)不同粒徑大小的石墨包裹奈米鎳晶粒在NP-9膠體系統中之分散研究。台灣大學地質科學系碩士論文,共95頁。

英文部份
“Standard Test Method for Water Adsorption, Bulk Density, Apparent Porosity, and Apparent Specific Gravity of Fired Whitewater Products,” ASTM Designation C373-88. (1994) Book of American Society of Testing and Materials, Philadelphia, PA.
Bein, T. (2005) “Zeolitic Host-Guest Interactions and Building Blocks for the Self-Assembly of Complex Materials,”MRS Bulletin, Vol. 30, p. 713-720.
Boncheva, M., and Whitesides, G., (2005) “Making Things by Self-Assembly,”MRS Bulletin, Vol. 30, p. 736-742.
Cölfen, H., and Yu, S. H., (2005) “Biomimetic Mineralization/Synthesis of Mesoscale Order in Hybrid Inorganic-Organic Mrterials via Nanoparticle Self-Assembly,”MRS Bulletin, Vol. 30, p. 727-735.
Dinsmore, A. D., Hsu, M. F., Nikolaides, M. G., Marquez, M., Bausch, A. R., and Weitz, D. A. (2002) “Colloidosomes: Selectively Permeable Capsules Composed of Colloidal Particles, ” Science, Vol. 298, p. 1006-1009.
Dravid, V. P., Host, J. J., Teng, M. H., Elliott, B. R., Hwang, J. H., and Johnson, D. L., Mason, T. O., and Weertman, J. R. (1995) “Controlled-size nanocapsules, ” Nature, Vol. 374, p. 602.
Elliott, B. R., Host, J. J., Dravid, V. P., Teng, M. H., and Hwang, J. H. (1997) “A descriptive model linking possible formation mechanisms for graphite-encapsulated nanocrystals to processing parameters,” J. Mater. Res., Vol. 12, No. 12, p. 3328-3333.
Eugène, P., Sheng, L., and Jean-Baptiste, D. (1987) “Contribution to the Study of Basic Surface Groups on Carbon,” Carbon, Vol. 25, No. 2, p. 243-247.
Guerret-Piecourt, C. , Lebouar, L. , Lolseau A., and Pascard H. (1994) “Relation between metal electronic structure and morphology of metal compounds inside carbon nanotubes,” Nature, Vol. 372, p. 761-765.
Heidenreich, R. D., Hess, W. M., and Ban, L. L. (1968) “A Test Object and Criteria for High Resolution Electron Microscopy, ” J. Appl. Cryst., Vol. 1, p. 1-19.
Host, J. J. (1997) “Arc synthesis and magnetic properties of graphite encapsulated nanocrystals,” Ph. D. dissertation, Northwestern Univ., Evanston, IL, USA.
Host, J. J., Dravid, V. P., Teng, M. H., Elliott, B. R., Hwang, J. H., Mason. T. O., and Johnson, D. L. (1997) “Graphite encapsulated nanocrystals produced using a low carbon: metal ration,” J. Mater. Res., Vol. 12, p. 1268-1273.
Host, J. J., Dravid, V. P., and Teng, M. H. (1998) “Systematic study of graphite encapsulated nickel nanocrystal synthesis with formation mechanism implication,” J. Mater. Res., Vol. 13, No. 9, p. 2547-2555.
Huang, H. J., Yang, S. H., and Gu, G, (1998) “Preparation of Carbon-Coated Cobalt nanocrystal in a new Gas Blow Arc Reactor and Their Characterization,” J. Phys. Chem. B. Vol. 102, p. 3420-3424.
Hwang, J. -H., Dravid, V. P., Teng, M. H., Host, J. J., Elliott, B. R., Johnson, D. L., and Mason, T. O. (1997) “Magnetic Properities of Graphitically Encapsulated Nickel Nanocrystals,” J. Mater. Res., Vol. 12, No. 4, p. 1076-1082.
Jiang, M., Zhang, X. G., Liu, Y., Hao, G. M., and Lin, J. (2001) “Ferromagnetic Carbon-coated Iron and It’s Compounds nanocrystallite Synthesized at High Metal toCarbon Rate and High Yield by A Modified AC Arc Method,” Material Science and Engineering, B. 87, p. 66-69.
Jiao, J., and Seraphin, S. (1996) “Preparation and properties of ferromagnetic carbon-coated Fe, Co, and Ni nanopaticles,” J. Appl. Phys., Vol. 80, No. 1, p. 103-108.
Jiao, J., and Seraphin, S. (1998) “Carbon encapsulated nanopaticles of Ni, Co, Cu and Ti,” J. Appl. Phys., Vol. 83, No. 5, p. 2442-2448.
Krätschmer, W., Lamb, L. D., Fostiropoulos, K., and Huffman, D. R. (1990) “Solid C60:a new form of carbon,” Nature, Vol. 347, p. 354-358.
Pierson, H. O. (1993) “Handbook of carbon, graphite, diamond and fullerenes,” Noyes publications, p. 399.
Rittner, M. N., and Abraham, T. (1997) “The Nanostructured Materials Industry,” Amer. Ceramic Soc. Bull., Vol. 76, p. 51-53.
Ruoff, R. S., Lorents, D. C., Chan, B., Malhotra, R., and Subramoney, S. (1993) “Single Crystal Metals Encapsulated in Carbon nanoparticles,” Science, Vol. 259, p. 346-348.
Saito, Y., Yoshikawa, T., Okuda, M., Fujimoto, M., Sumiyama, K., Suzuki, K., Kasuya, A., and Nishina, Y. (1993a) “Carbon nanocapsules encaging metals and carbides,” J. Phys. Chem. Solids, Vol. 54, p. 1849.
Saito, Y., Yoshikawa, T., Okuda, M., Fujimoto, M., Sumiyama, K., Suzuki, K., Kasuya, A., and Nishina, Y. (1993b) “Synthesis and electron-beam incision of carbon nanocapsules encaging YC2,” Chem. Phys. Lett., Vol. 209, No. 1-2 p. 72-76.
Saito, Y., Yoshikawa, T., Okuda, M., Fujimoto, M., Yamamuro, S., Wakoh, K., Sumiyama, K., Suzuki, K., Kasuya, A., and Nishina, Y. (1993c) “Iron particles nesting in carbon cages grown by arc discharge,” Chem. Phys. Lett., Vol. 212, No. 3-4, p. 379-383.
Seraphin, S., Zhou, D., Jiao, J., Withers, J. C., and Loutfy, R. (1993) “Selective encapsulation of the carbides of yttrium and titanium into carbon nanoclusters,” Appl. Phys. Lett., Vol. 63, No. 15, p.2073-2075.
Seraphin, S., Zhou, D., Jiao, J., Minke, M., and Wang, S. (1994) “Catalytic role of nickle, palladium, and platinum in the formation of carbon nanoclusters,” Chem. Phys. Lett., Vol. 217, p. 191.
Seraphin, S., Zhou, D., and Jiao, J. (1996) “Filling the carbon nanocages,” J. Appl. Phys., Vol. 80, No. 4, p. 2097-2104.
Subramoney, S., Rouff, R. S., Lorents, D. C., and Malhotra, R. (1993) “Radial single-layer nanotubes,” Nature, Vol. 366, p. 637.
Teng, M. H., Host, J. J., Hwang, J. H., Elliott, B. R., Weertman, J. R., Mason. T. O., Dravid, V. P., and Johnson, D. L. (1995) “Nanophase Ni paricles produced by a blown arc method,” J. Mater. Res., Vol. 10, No. 2, p. 233-236.
Teng, M. H., Tsai, S. W., Hsiao, C. I., and Chen, Y. D. (2007) “Using diamond as a metastable phase carbon source to facilitate the synthesis of graphite encapsulated metal (GEM) nanoparticles by an arc-discharge method,” Journal of Alloys and Compounds, Vol. 434-435, p. 678-681.
Tomita, M., Saito, Y., and Hayashi, T. (1993)“LaC2 Encapsulated in Graphite Nano-Particle,” Jpn. J. Appl. Phys., Vol. 32, Part 2, No. 2B, L 280-282.
Tomita, S., Hikika, M., Fujii, M., Hayashi, S., Akamatsu, K., Deki, S., and Yasuda, H. (2000) “Formation of Co filled carbon nanocapsules by metal-template graphitization of diamond nanoparticles,” J. Appl. Phys., Vol. 88, No. 9, p. 5452-5457.
Ward, D. M. (2005) “Directing the Assembly of Molecular Crystals,”MRS Bulletin, Vol. 30, p. 705-712.
Washburn, E. W. (1921) “The Dynamics of Capillary Flow,” The Physical Review, Vol. 17, No. 3, p. 273-283.
Wu, H., Thalladi, V. R., Whitesides, S., and Whitsides, G. M. (2002) “Using Hierarchical Self-Assembly To Form Three-Dimensional Lattices of Spheres,”J. Am. Chem. Soc., Vol. 124, p. 14495-14502.
Xiangcheng, S. (2003) “Microstructure and Magnetic Properities of Carbon Coated Nanoparticles,” Journal of Dispersion Science and Technology, Vol. 24, No. 3&4, p. 557-567.
Yudasaka, M., Kasuya, Y., Takahashi, K., Takizawa, M., Bandow, S., and Iijima, S. (2002) “Causes of different catalytic activities of metals in formation of single-wall carbon nanotubes,” Appl. Phys. A, Vol. 74, p. 377-385.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28580-
dc.description.abstract石墨包裹奈米晶粒(Graphite Encapsulated Metal Nanoparticles,簡稱GEM)是顆粒粒徑介於5-100 nm的球狀複合材料,其內核為金屬、外殼為石墨,因為特殊的結構與尺寸,使GEM成為科學界頗受矚目的材料之一。
在許多的研究中發現,由於奈米顆粒常常會有團聚的現象產生,讓顆粒與顆粒之間分散情況不佳,以至於在一般的情況之下無法形成緻密的堆積,為了能將奈米顆粒材料緻密化的堆積,根據材料性質的不同,需要經過各種高溫(攝氏一千度以上)與高壓(數個GPa)的製程下才可以形成。在本研究中偶然地發現經由磁性收集過程,可以讓石墨包裹奈米鎳顆粒自行形成一塊塊的緻密塊體,藉由阿基米得法的密度測量以及SEM照片上的初步觀察,判斷這些塊體的緻密程度可以達到80%以上。
本研究主要分為兩部份,第一部份是合成高緻密度石墨包裹奈米鎳晶粒塊體,並且從製造過程中找出可能會影響其形成的因素,以這些因素為變因進行實驗以研究這些因素與高緻密度石墨包裹奈米鎳晶粒塊體形成之關係。第二部份是由第一部份實驗後得到的結果推論出高緻密度石墨包裹奈米鎳晶粒塊體的形成機制。
實驗所得到的結果中,酸溶、磁力及以甲醇為分散劑與毛細作用是影響高緻密度石墨包裹奈米鎳晶粒塊體形成的重要因素。高緻密度石墨包裹奈米鎳晶粒塊體的形成過程及形成機制如下:酸溶及超音波震盪兩個步驟破壞了原本石墨包裹奈米鎳晶粒與其他產物(奈米金屬顆粒與碳雜質)間的部份團聚,並讓打散的顆粒的分散。接著石墨包裹奈米鎳晶粒浸泡在甲醇中時,甲醇分子會吸附在石墨包裹奈米鎳晶粒與碳雜質外圍,讓顆粒與顆粒間產生靜電斥力及增加顆粒間距,並降低了顆粒與顆粒間互相的吸引力(凡得瓦爾力及磁力),同樣有助於分散。同時外加磁場的磁力會使部分的石墨包裹奈米鎳晶粒照磁場方向發生運動(轉動及滑動等) 讓顆粒的排列更接近磁場的方向。最後在甲醇蒸散的過程中,由於毛細作用力產生向內的拉力,讓顆粒與顆粒堆疊的更緊密,即形成了高緻密度石墨包裹奈米鎳金屬晶粒塊體。
zh_TW
dc.description.abstractGraphite Encapsulated Metal (GEM) nanoparticles is a new spherical composite material with a diameter ranging between 5 and 100 nm. It has a core/shell structure, where the core is metal and the shell is graphite. Having the special structure and nanosizes, GEM has become an interesting research subject for the academic community.
Because they easily aggregate together, nanoparticles can’t compact very well in normal situation. Depends on various materials, it may need more than one thousand centigrade or several GPa to make a high density bulk. In this research, we accidentally find a simple way to make high density GEM bulk via magnetic processing. By measuring the density of GEM bulks and observing the pictures taken by SEM, we estimate the porosity of the bulks is lower than 20%.
The study can be divided two parts: First is to synthesize the high density graphite encapsulated nickel nanoparticles and to find out the possible affecting factors. Then we design a number of experiments based on the possible affecting factors as variable parameters. Second is to derive the possible mechanisms of the formation of the high density graphite encapsulated nickel nanoparticles.
Though it is impossible to directly observe the rearranging and densification processes of GEM particles in a magnetic field, the following four factors may all play an important role: First is acid bath and ultrasonic mixing, which break up the aggregation of GEM, nickel nanoparticles and amorphous carbon, and disperse the particles. Second is when the GEM immersed in methanol, the methanol molecules adsorb on the surface of nanoparticles and decrease the van der Waals forces between them. Third is when the GEM put into an external magnetic filed, the ferromagnetic nickel nanoparticles could slide, rotate, and move themselves into a more compact position. Finally is when the methanol evaporates, and GEM becomes even denser through capillarity forces.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T00:12:54Z (GMT). No. of bitstreams: 1
ntu-96-R90224210-1.pdf: 4483386 bytes, checksum: a31d68d44f2cf747af5bd3e3ca1ee4bd (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents致謝………………………………………………………………………. i
中文摘要………………………………………………………………… ii
Abstract…………………………………………………………………… iv
目錄…………………………………………………………………......... vi
圖目錄………………………………………………………………......... viii
表目錄………………………………………………………………......... xi
第一章 前言………………………………………………………........... 1
1-1 研究動機…………………………………………..…………… 1
1-2 本文內容……………………………………………..………… 2
第二章 文獻回顧………………………………………………..………. 4
2-1 奈米材料……………………………………………..………… 4
2-1.1 奈米材料的特性…………………………………………... 4
2-1.2 奈米材料的製造方法……………………………………... 5
2-1.3 電弧加熱蒸發法…………………………………………... 6
2-2 石墨包裹奈米晶粒…………………………………………… 8
2-2.1 石墨包裹奈米晶粒的結構與型態………………………... 9
2-2.2 各元素與碳的電弧實驗結果……………………………... 11
2-2.3 石墨包裹奈米晶粒的形成機制…………………………... 12
2-2.4 電弧法製程演進…………………………………………... 14
2-3 石墨包裹奈米晶粒的性質…………………………………… 16
2-3.1 石墨包裹奈米晶粒的磁性質……………………………... 16
2-3.2 石墨與碳的親油性………………………………………... 19
2-3.3 石墨包裹奈米鎳顆粒的密度……………………………... 20
2-4 以人造鑽石粉末製造石墨包裹奈米晶粒…………………… 20
2-5 自組裝(Self-assembly) ………………………………………. 21
第三章 實驗方法與步驟………………………………………………. 24
3-1 實驗裝置…………………………………………..…………… 24
3-1.1 真空艙及電弧裝置系統…………………………………... 24
3-1.2 實驗原料配置……………………………………………... 26
3-2 實驗流程………………………………………..……………… 27
3-2.1 電弧實驗步驟……………………………………………... 27
3-2.2 電弧實驗控制變因………………………………………... 29
3-2.3 後續處理流程……………………………………………... 31
3-2.4 密度量測…………………………………………………... 33
3-3 分析儀器………………………………………..…………….. 34
第四章 實驗結果與討論………………………………..……………… 39
4-1 高緻密度石墨包裹奈米鎳金屬晶粒描述……..…………….. 39
4-1.1 石墨包裹奈米鎳晶粒初產物粉末………………………... 39
4-1.2 高緻密度石墨包裹奈米鎳晶粒塊體……………………... 41
4-1.3 儀器分析結果……………………………………………... 43
4-2 影響變因、實驗設計與結果………………..………………….. 49
4-2.1 影響變因…………………………………………………... 50
4-2.2 實驗設計、結果與討論…………………………………… 51
4-3 形成機制……………………………………………………….. 58
第五章 結論與建議……………………………..……………………… 67
參考文獻………………………………………………………………… 69
附錄……………………………………………………………………. 74
dc.language.isozh-TW
dc.subject石墨包裹奈米鎳晶粒zh_TW
dc.subject高緻密度zh_TW
dc.subjecthigh densityen
dc.subjectgraphite encapsulated nickel nanoparticlesen
dc.title石墨包裹奈米鎳晶粒的緻密化之初步研究zh_TW
dc.titlePreliminary Study of Packing of Graphite Encapsulated Nickel Nanoparticlesen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃武良,王玉瑞,宋健民
dc.subject.keyword石墨包裹奈米鎳晶粒,高緻密度,zh_TW
dc.subject.keywordgraphite encapsulated nickel nanoparticles,high density,en
dc.relation.page75
dc.rights.note有償授權
dc.date.accepted2007-07-28
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept地質科學研究所zh_TW
顯示於系所單位:地質科學系

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
4.38 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved