請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28575完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳政忠 | |
| dc.contributor.author | Wei-Chih Kuo | en |
| dc.contributor.author | 郭維志 | zh_TW |
| dc.date.accessioned | 2021-06-13T00:12:44Z | - |
| dc.date.available | 2008-07-31 | |
| dc.date.copyright | 2007-07-31 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-07-26 | |
| dc.identifier.citation | 1. M. S. Kushwaha, P. Halevi, L. Dobrzynski, and B. Djafari-Rouhani, “Acoustic Band Structure of Periodic Elastic Composites,” Phys. Rev. Lett. 71, 2022-2025, 1993
2. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059-2062, 1987 3. E. Yablonovitch and T. J. Gmitter, “Photonic band structure: The face-centered-cubic case,” Phys. Rev. Lett. 63, 1950-1953, 1989 4. D. Garcia-Pablos, M. Sigalas, F. R. Montero de Espinosa, M. Torres, M. Kafesaki, and N. Garcia, “Theory and experiments on elastic band gaps,” Phys. Rev. Lett. 84, 4349, 2000 5. M. Kafesaki, M. M. Sigalas, and N. Garcia, “Frequency modulation in the transmittivity of wave guides in elastic-wave band-gap materials,” Phys. Rev. Lett. 85, 4044, 2000. 6. J. O. Vasseur, P. A. Deymier, B. Chenni, B. Djafari-Rouhani, L. Dobrzynski, and D. Prevost, “Experimental and theoretical evidence for existence of absolute acoustic band gaps in two-dimensional solid phononic crystals,” Phys. Rev. Lett. 86, 3012, 2001. 7. T.-T. Wu and J.-C. Hsu, “Band gaps and electromechanical coupling coefficient of a surface acoustic wave in a two-dimensional piezoelectric crystal,” Phys. Rev. B 71, 064303, 2005 8. V. Laude, M. Wilm, S. Benchabane, and A. Khelif, “Full band gap for surface waves in piezoelectric phononic crystal,” Phys. Rev. E 71, 036607, 2005. 9. J.-C. Hsu and T.-T. Wu, “Efficient formulation for band-structure calculations of two-dimensional phononic-crystal plates,” Phys. Rev. B 74, 144303, 2006. 10. X. Zhang, T. Jackson, E. Lafond, P. Deymier, and J. O. Vasseur, “Evidence of surface acoustic wave band gaps in the phononic crystal created on thin plates,” Appl. Phys. Lett. 88, 041911, 2006. 11. Bernard Bonello, a Christine Charles, and François Ganot, “Lamb waves in plates covered by a two-dimensional phononic film”, Appl. Phys. Lett. 88, 021909, 2007 12. Jin-Chen Hsu, “Study on Propagation of Surface and Lamb Waves in Two-Dimensional Piezoelectric Phononic Crystals”, Doctoral Dissertation, Institute of Applied Mechanics, National Taiwan University, Taipei, Taiwan, 2007 13. Z. Hou, X. Fu, and Y. Liu, “Singularity of Bloch theorem in the fluid/solid phononic crystal,” Phys. Rev. B 73, 024304, 2006. 14. Visser, J.H., Venema, A., “Silicon SAW devices and electromagnetic feedthrough”, Ultra. Symposium, 297~301, 1988 15. J Yamada, K Hazama, “Relation of the Insertion Loss and the Triple Transit Echo in SAW Unidirectional Transducers”, Japanese J. of App. Phys. (22), 161-162, 1983 16. Kohji Toda and Masaru Inoue, “Lamb Wave Propagation Characteristics and Transducer Performances in Layered Substrate Composed of Piezoelectric Thin Plate and Glass Thin Plate”, Jpn. J. Sppl. Phys., 38, 5576-5580, 1999 17. Tsung-Tsong Wu, Chung-Hao Hsu, and Jia-Hong Sun,” Design of a highly magnified directional acoustic source based on the resonant cavity of two-dimensional phononic crystals”, Appl. Phys. Lett. 89, 171912, 2006 18. C. Goffaux and J. P. Vigneron, “Theoretical study of a tunable phononic band gap system,” Phys. Rev. B 64, 075118, 2001. 19. Liang-Chen Wu, “Band Gap Measurement of Si-based Phononic Crystals Using layered SFIT,” Master Thesis, Institute of Applied Mechanics, National Taiwan University, Taipei, Taiwan, 2003 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28575 | - |
| dc.description.abstract | 聲子晶體是由數種彈性材料週期性排列而成,當聲波在聲子晶體結構中傳遞時,由於波傳之頻散曲線不連續,造成該不連續的頻段內,聲波無法傳遞,此現象稱之為聲波頻溝(acoustic band gap)。若在此頻段內聲波不論沿任何方向均無法傳遞,則稱之為全頻溝(complete band gap)。在頻溝範圍內,若將無窮週期的聲子晶體結構移除一或數排,形成之線缺陷可做為聲子晶體波導(phononic-crystal waveguide),則原本在頻溝內無法形成模態的頻率,將會在此缺陷結構中形成可傳遞的缺陷模態(defect mode),藉此可引導聲波在該波導中傳遞。
本文將以平面波展開法(Plane Wave Expansion Method)為基礎,探討二維矽基聲子晶體平板之頻溝現象。因矽基材為半導體常用的材料,可與現行的半導體製程整合,提升其實際應用範圍;但由於矽基材並非壓電材料,板波無法以電性方式直接在矽基材上激發。本文提供了一種新的耦合方法,利用橋接方式,將矽基材與壓電材料鋰酸鈮(128°YX-LiNbO3)結合,藉由交指叉電極(Interdigital Transducer)於鋰酸鈮表面以壓電效應激發出板波。一般而言,交指叉電極主要為在壓電基材上激發高頻表面波(Surface Acoustic Wave),其波長相當於交指叉狀電極之週期,若考慮其波長與壓電基材厚度相當,則此交指叉電極將可激發出板波。 利用橋接的結構,本文針對聲子晶體平板的頻溝效應與波導效率進行實驗驗證與探討,其實驗結果與理論計算結果相符,驗證聲子晶體平板之頻溝效應。此效應可更進一步的將其應用於波導結構中,將聲波控制在所設計的路徑中傳遞。 | zh_TW |
| dc.description.abstract | During the past decades, there has been a great interest in phononic crystals that are composite elastic materials distributed periodically. The most interesting character of phononic crystals is the band-gap phenomenon, prohibiting acoustic waves traveling through in a specific frequency range. To predict the band-gap width of phononic-crystal plate, the plane wave expansion (PWE) is applied to predict the dispersion relation of two-dimensional air/silicon phononic crystal plate.
By increasing the wavelength of the interdigital transducer (IDT) to the order that is comparable with the plate thickness, the surface acoustic wave (SAW) could be viewed as a Lamb wave. Since silicon is not the piezoelectric material, another piezoelectric material LiNbO3 is used. The calculated Lamb wave mode frequency of LiNbO3 shows good agreement with experimental results. Air/silicon as phononic crystal plate and LiNbO3 as a Lamb wave generator are coupled together. The band gap of phononic crystal plate and the waveguide phenomenon along Γ-X direction is measured by this measuring setup. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T00:12:44Z (GMT). No. of bitstreams: 1 ntu-96-R94543016-1.pdf: 1260249 bytes, checksum: 4f573307d8f30d7f456a3e79e5eb46a7 (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | 致謝………………………………………………………………………………………I
摘要…………………………………………………………………..………………….II Abstract………………………………………………………………...……………III Contents……….…………………………………………….…………………………IV List of Notations……………………………………………..………………………VI List of Figures……………………………………………….………………………IX List of Tables………………………………………………..………………………XII Chapter 1 Introduction………………………………………………………………1 1-1 Research Motivation………………………………………………...…………1 1-2 Literature Review………………………………………………………………4 1-3 Contents of the Chapters…………………………………………………….…5 Chapter 2 Dispersion of Lamb Waves in Two-dimensioanl Air/Silicon Phononic-Crystal Plate………………………………………………….9 2-1 Plane Wave Expansion Method………………………………………..……….9 2-1.1 Equation of Motion……………………………………………………….10 2-1.2 Mass Density and Elastic Constants……………………………………..11 2-1.3 Displacement Vector……………………………………………………...12 2-1.4 Lamb waves in Two-Dimensional Phononic Crystals. …………………..13 2-2 Band Gaps and Dispersion Relations of Lamb Waves in the Air/Silicon Phononic-Crystal Plate………………………………………………………16 2-3 Experimental Design ………………………………………...……………….19 2-3.1 Design of the Phononic-Crystal Plate for Band-Gap Verification………19 2-3.2 Design of the IDTs on the LiNbO3 Substrate for Generation and Detection of Lamb Waves………………………………………………………..….21 2-3.3 Design of Phononic-Crystal Waveguide………………………………….22 Chapter 3 Fabrications of the Phononic Plate Wave Measuring System……..…33 3-1 Fabrication of Interdigital Transducer……………………………………...…33 3-2 Fabrication of Phononic-Crystal Structure…………………………...……….37 3-2.1 Manufacturing Process of the Phononic-Crystal Plate………………….37 3-3.2 Manufacturing Process of the Phononic-Crystal Waveguide…………….40 3-3 Coupled Measurement Frame………………………………………………...40 Chapter 4 Experimental Results of Lamb-Wave Band Gap and Phononic-Crystal Waveguide………………………………………………………..…….50 4-1 Time Gating Approach……………………………………………………….50 4-2 Band Gap Measurement……………………………………………………...53 4-3 Waveguide Measurement…………………………………………………….57 Chapter 5 Conclusions and Future Work……………………………………..…71 5-1 Conclusions…………………………………………………………………...71 5-2 Future Work………………………………………………………………….72 Appendix……………………………………………………………………………….74 References……………………………………………………………………………...77 | |
| dc.language.iso | en | |
| dc.subject | 板波 | zh_TW |
| dc.subject | 聲子晶體平板 | zh_TW |
| dc.subject | 頻溝效應 | zh_TW |
| dc.subject | 交指叉狀電極 | zh_TW |
| dc.subject | 波導 | zh_TW |
| dc.subject | Lamb wave | en |
| dc.subject | band gap | en |
| dc.subject | phononic-crystal plate | en |
| dc.subject | phononic-crystal waveguide | en |
| dc.subject | IDT | en |
| dc.title | 二維矽基聲子晶體平板板波頻溝與波導之量測 | zh_TW |
| dc.title | Measurements of Lamb-Wave Band Gaps and Waveguiding in 2-D Si-Based Phononic-Crystal Plates | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張培仁,陳永裕 | |
| dc.subject.keyword | 板波,聲子晶體平板,頻溝效應,交指叉狀電極,波導, | zh_TW |
| dc.subject.keyword | phononic-crystal plate,band gap,IDT,Lamb wave,phononic-crystal waveguide, | en |
| dc.relation.page | 79 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-07-28 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 應用力學研究所 | zh_TW |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 1.23 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
