Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28541
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor詹穎雯(Yin-Wen Chan)
dc.contributor.authorYu-Sheng Chenen
dc.contributor.author陳育聖zh_TW
dc.date.accessioned2021-06-13T00:11:30Z-
dc.date.available2013-08-17
dc.date.copyright2011-08-17
dc.date.issued2011
dc.date.submitted2011-08-05
dc.identifier.citation1.H. H. Uhlig and R. W. Revie, “Corrosion and corrosion control”, 3rd Ed., John Wiley & Sons, New York, 1991.
2.Metals Handbook – Corrosion, “Metals Handbook Ninth Ed.”,Vol.13 , ASM International , Ohio, 1988.
3.Rasheeduzzafar, S. Ehtesham Hussain, S.S. Al-Saadoun, “Effect of cement composition on corrosion of reinforcing steel in concrete”, Cement and Concrete Research, No.21, pp.777-794, 1991.
4.BRE Digest, “The durability of steel in concrete part 2”, Building Research Establishment, England, 1982.
5.劉秉京,「混凝土結構耐久性設計」,人民交通出版社,2007。
6.吳建國、黃然、梁明德等,「混凝土橋梁鹽分腐蝕問題之研究」,交通台灣區國道新建工程局,民國82年。
7.Mario Collepardi, Aldo Marcialis, Renato Turriziani, “Penetration of chloride ions into cement pastes and concretes”, Journal of the American Ceramic Society, Volume 55, Issue 10, pp.534-535, 1972.
8.日本土木學會,「混凝土標準示方書﹝維持管理編﹞」,2001。
9.丸屋剛、宇治公隆,「コンクリートの塩分の拡散浸透に關する表面塩化物の定式化」,コンクリート工學年次論文報告集,p.597-602,1989。
10.川村力,「鉄道構造物の調查に基づくコンクリート中への塩化物イオン浸透に關する研究」,土木學會論文集,No.781,Vol.66,p.193-204,2005。
11.M. D. A. Thomas and Phil B. Bamforth, “ Modelling chloride diffusion in concrete Effect of fly ash and slag”, Cement and Concrete Research, No.29, pp.487-495, 1999.
12.M. D. A. Thomas and J. D. Matthews, “Chloride penetration and reinforcement corrosion in fly ash concrete ecposed to a marine environment”, the 3rd CANMET/ACI International Conference on Concrete in a Marine Environment, ACI SP-163, pp.317-338, 1996.
13.Tarek Uddin Mohammed, Toru Yamaji, and Hidenori Hamada, “Chloride diffusion, microstructure, and mineralogy of concrete after 15 years of exposure in tidal environment”, ACI Materials Journal, Vol.99, Issue.3, pp.256-263, 2002.
14.Hidenori Hamada, Tarek Uddin Mohammed, and Toru Yamaji, “Properties of concrete after 30 years’ exposure under marine submerged condition”, Journal of the Society of Materials Science (Japan), Vol. 54, No. 8, pp.842-849, 2005.
15.蔡得時,「利用氯化物之滲透評估混凝土在海洋環境之品質及保護層厚度」,防蝕工程期刊,民國81 年。
16.V. T. Ngala, C. L. Page, L. J. Parrott, S. W. Yu, “Diffusion in cementitious materials: II, further investigations of chloride and oxygen diffusion in well-cured OPC and OPC/30% PFA pastes”, Cement and Concrete Research, Vol. 25, Iss. 4, pp. 819-826, 1995.
17.M. D. A. Thomas and J. D. Matthews, “Performance of PFA concrete in a marine environment – 10 year results”, Cement and Concrete Composites, Vol. 26, pp. 5-20, 2004.
18.C. Alonso, C. Andrade, M. Castellote, P. Castro, “Chloride threshold values to depassivate reinforcing bars embedded in a standardized OPC mortar”, Cement and Concrete Research, Vol. 33, Iss.7 , pp.1487-1490, 2000.
19.K. H. Pettersson, “Factors influencing chloride induced corrosion of reinforcement in concrete”, in: C. Sjostrom (Ed.), Durability of Building Materials and Components, Vol. 1, Chapman & Hall, London, pp. 334-341, 1996.
20.P. Lambert, C. L. Page, P. R. W. Vassie, “Investigation of reinforcement corrosion. Electrochemical monitoring of steel in chloride contaminated concrete”, Mater Struct, Vol. 24, pp.351-358, 1991.
21.V. K. Gouda and W. Y. Halaka, “Corrosion and corrosion inhibition of reinforced steel”, Br Corros J., Vol. 5, pp. 204-208, 1970.
22.O. A. Kayyali and M. N. Haque, “The ratio of Cl-/OH- in chloride con- taminated concrete. A most important criterion”, Mag Concr Res, Vol. 47, pp. 235-242, 1995.
23.P. Schiessl and W. Breit, “Local repair measures at concrete structures damaged by reinforcement corrosion”, Proceedings of the 4th International Symposium on Corrosion of Reinforcement in Concrete Construction, SCI, Cambridge, pp.525- 234, 1996.
24.M. D .A. Thomas, J. D. Matthews, C. A. Haynes, “Chloride diffusion and reinforce- ment corrosion in marine exposed concretes containing PFA”, Corrosion of Reinforcement in Concrete, Elsevier, Warwickshire, pp. 198-212, 1990.
25.M. Thomas, “Chloride thresholds in marine concrete”, Cement and Concrete Research, Vol. 26, Iss. 4, pp. 513-519, 1996.
26.B. B. Hope and A.K.C. Ip, “Chloride corrosion threshold in concrete”, ACI Material Journal, pp. 306-314, 1987.
27.ACI 318-08, “Building code requirements for structural concrete and commentary”, 2008.
28.ACI 222R-01, “Protection of metals in concrete against corrosion”, 2001.
29.EN 206-1, “Concrete - Part 1: Specification, performance, production and conformity”, 2000.
30.Dura Crete, “General guidelines for durability design and redesign,” The European Union – Brite. EuRam III, Project No. BE95-1347, 2000.
31.J. M. Frederikren, “Chloride threshold values for service life desjgn”, Second International RILEM Workshop on Testing and Modeling the Chloride Ingress into Concrete, pp.397-414, 2000.
32.中華人民共和國交通部,「水運工程混凝土施工規範(JTJ268-96)」,1996。
33.廣州四航工程技術研究院,「海工高性能混凝土結構壽命預測和評估」,中港集團重點技術開發項目,2004。
34.陳柱清、柯正龍、羅建明、羅俊雄,「臺灣地區大氣腐蝕劣化因子調查研究(2/2)」,交通部運輸研究所,民國98年。
35.ISO 9223, “Corrosion of metals and alloys-Corrosivity of atmosphere - Classification”, 1992.
36.ISO 9224, “Corrosion of metals and alloys-Corrosivity of atmosphere – Guiding values for the corrosivity categories”, 1992.
37.ISO 9225, “Corrosion of metals and alloys-Corrosivity of atmosphere – Measurement of pollution”, 1992.
38.ISO 9226, “Corrosion of metals and alloys – Corrosivity of atmosphere – Determination of corrosion rate of standard specimens for the evaluation of corrosivity”, 1992.
39.ISO 8565, “Metals and alloys – Atmospheric corrosion testing – General requirements for field test”, 1992.
40.CNS 13401,「金屬及合金之腐蝕-大氣腐蝕性之分類」,中國國家標準,民國86年。
41.CNS 13753,「金屬及合金之腐蝕-大氣腐蝕性(測定標準試片之腐蝕速率以評估腐蝕性)」,中國國家標準,
42.CNS 13754,「金屬及合金之腐蝕-大氣腐蝕性(污染之測定)」,中國國家標準,民國85年。
43.CNS 14122,「金屬及合金之腐蝕-大氣腐蝕–試片腐蝕生成物清除法」,中國國家標準,民國87年。
44.CNS 14123,「金屬及合金之腐蝕-大氣腐蝕測試(現場測試之一般要求)」,中國國家標準,民國87年。
45.Memo To Bridge Designers 10-5, “Protection of reinforcement against corrosion due to chlorides, acids sulfates (metric)”, U.S.A. Caltrans, 2006.
46.Bridge Design Specifications 8.22, “Protection against corrosion”, U.S.A. Caltrans, 2003.
47.日本道路協會,「道路橋鹽害對策指針(案)•同解說」,1984年。
48.日本土木學會,「海洋コンクリート構造物設計指針(案)」,年1977。
49.日本港灣協會,「港灣の設施の技術上の基準•同解說」,1979年。
50.日本混凝土工學協會,「海洋コンクリート構造物の防食指針(案)」,1983年。
51.NZS 3101.1&2, “Concrete structures standard:Amendment 2”, 2006.
52.交通部,「公路橋梁設計規範」,民國98年。
53.中國土木水利工程學會,「混凝土工程設計規範與解說[土木401-96]」,科技圖書,民國96年。
54.ASTM G140-02, ”Standard test method for determining atmospheric chloride deposition rate by wet candle method”, American Society for Testing Materials, USA , 2002.
55.日本建設省土木研究所構造橋樑部橋樑研究所,「飛來鹽分量全國調查(Ⅳ)-飛來鹽分量的分佈特性與風的關係-」土木研究所資料,第3175號,pp. 1~26,1993年3月。
56.G. R. Meira, C. Andrade, I. J. Padaratz, C. Alonso, J. C. Borba Jr, “Chloride penetration into concrete structures in the marine atmosphere zone–Relationship between deposition of chlorides on the wet candle and chlorides accumulated into concrete,” Cement & Concrete Composites, Vol. 29, pp.667-676, 2007.
57.M. Morcillo, B. Chico, E. Otero, L. Mariaca, “Effect of marine aerosol on atmospheric corrosion. Mater Perform”, No. 7, pp.38-72, 1999.
58.F. Corvo, N. Betancourt, A. Mendoza, “The influence of airborne salinity on the atmospheric corrosion of steel”, Corros Sci, No. 37, pp.1889-1901, 1995.
59.H. R. Ambler and A. A. J. Bain, “Corrosion of metals in the tropics”, J Appl Chem, No. 5, pp.437-467, 1955.
60.秋山充良、伊東佑香、鈴木基行,「鋼筋混凝土構造物於塩害環境下耐久可靠度設計之相關基礎研究」,日本土木學會論文集E,第62卷,第2期,第385-401頁,2006。
61.B. Sorensen and E. Maahn, “Penetration rate of chloride in marine concrete structures”, Nordic Concrete Research, pp.24.1-24.18, 1982.
62.Life 365, “Service life prediction model for reinforced concrete exposed to chlorides,” Version 1.1, 2001.
63.鄭福田、蔣本基、莊東漢、杜悅元、林勝南,「台灣地區之氣候與大氣腐蝕環境因子調查」,鋼材大氣腐蝕與焊接技術研討會,台北,1995 年。
64.John P. Broomfielf, “Corrosion of steel in concrete”, 1st Ed., E & FN Spon, 1997.
65.詹穎雯、楊仲家、陳育聖、張永昌,「台灣苗栗以北地區大氣中氯鹽環境與橋梁腐蝕劣化之研究」,交通部公路總局,民國99年。
66.廖展章(楊仲家指導),「以加速氯離子穿透試驗評估礦物摻料及用量之混凝土耐久性影響」,國立台灣海洋大學材料工程研究所,碩士論文,民國93年6月。
67.林致緯(楊仲家指導),「以鹽水浸漬試驗與快速氯離子滲透試驗探討混凝土中氯離子擴散行為」,國立台灣海洋大學材料工程研究所,碩士論文,民國95年6月。
68.P. S. Mangat and B. T. Molloy, “Prediction of long term chloride concentration in concrete”, Material and Structures, Vol. 27, pp.338~346, 1994.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28541-
dc.description.abstract本研究主要針對台灣北部沿海地區之氯鹽環境加以調查,並進行現地暴露試驗及老舊結構物之表面混凝土取樣並分析其氯離子含量,進而建立兩者之關聯性,經由試驗結果結合學理分析,提出鋼筋混凝土結構物鹽害之對策分區及保護層厚度設計之建議值。
沿海地區氯鹽量之調查在北台灣地區共設置了45個採集點,儀器係使用日本飛來鹽份採集器,並依據本研究所發展出來之採樣程序進行分析,試驗期間自95年12月至99年8月止。試驗結果顯示各地區除了氯鹽量分佈有很大的差異外,各季節受季風之影響亦有很大之變化,但每年各季節氯鹽量有很好之重現性,藉由有效風向、有效風速、有效雨量及臨海距離等環境因子,可建立出本土化氯鹽量之預測經驗式。
氯鹽環境下鋼筋混凝土耐久性質之探討,係藉由鋼筋混凝土暴露試驗及現地老舊結構物之取樣,分別探討混凝土材料耐久性質及鋼筋腐蝕行為,暴露地點分別為基隆海洋大學、桃園竹圍漁港及苗栗龍鳳漁港,試驗內容包含混凝土力學性質、氯離子滲入行為、表面氯離子濃度及鋼筋腐蝕速率等,試驗結果顯示力學性質與抵抗氯離子之能力隨著水膠比的減少而增加,而添加卜作嵐礦物摻料之配比可有效降低氯離子擴散係數,至於混凝土表面氯離子濃度與時間平方根有很好之線性關係,並可以指數方程式與海岸線距離建立起各配比之關係式。
經由上述之試驗結果,可建立混凝土表面氯離子濃度與大氣中氯鹽量之關係,並可依各地區有效雨量之不同,分別選擇總氯離量或附著氯鹽量之經驗式;此外,藉由暴露試驗所得到的氯離子擴散係數,可用以修正文獻中加速試驗所得到之擴散係數,代入氯離子擴散方程式中,得到各種配比在不同氯鹽環境下所需要之保護層厚度。
此外,本研究並依各地區氯鹽量之分佈情形,將鹽害區域分為極嚴重鹽害區(S)、嚴重鹽害區(Ⅰ)、中度鹽害區(Ⅱ)及輕度鹽害區(Ⅲ)等四區,並由所對應之氯鹽分佈情形訂定出各分區之範圍;由各鹽害分區之保護層厚度計算結果可知,台灣沿海地區之鹽害程度確實相當嚴重,在極嚴重鹽害區(S)及嚴重鹽害區(Ⅰ)的環境下,幾乎無法使用普通強度混凝土來達到抵抗鹽害的侵蝕,使用水灰比0.35之純水泥混凝土保護層厚度需達9~10 cm,而添加40%爐石粉之混凝土則可降至7.5 cm。
比較規範與本研究之建議值,顯示出規範對於較嚴重的鹽害區保護層厚度之考量似有不足之處,而對於輕微的鹽害區範圍之訂定則較為保守,而本研究依據實際環境調查資料所提出之建議值,可初步訂定出各縣市鹽害分區之範圍,並給予較合適之保護層設計值,有助於工程師於沿海環境下設計出抗鹽害且符合經濟效益之構造物。
zh_TW
dc.description.abstractThis research focused on the study of air borne chloride in the coastal region of northern Taiwan, and experiments of on-site exposure tests and chloride content on the surface of old reinforcement concrete (RC) structures, to investigate the correlation between air borne chloride and chloride content of RC structures. Through the theoretical analysis and experiments, the partition of the salt injury to RC structures and the method to estimate the design thickness of covering were proposed in this research.
There were 45 sampling sites to investigate the air borne chloride in the northern Taiwan. The instrument of Japanese air borne chloride sampler was used and the sampling and analysis procedure had followed the steps proposed in this study. The testing period started from December 2006 to August 2010. The testing results have shown the obvious difference of air borne chloride distribution among the testing sites, and the apparent influence of the seasonal monsoon. However, the tests also indicate the considerably well seasonal reproducibility of the air borne chloride content. Based on the environmental factors of effective wine direction, effective wind speed, effective precipitation, and distance from the shore, a domestic empirical prediction model for air borne chloride content was established.
The study of the durability of RC structures in marine atmosphere had been conducted using RC exposure tests and on-site samplings, to investigate the durability of concrete and the behavior of corrosion of rebar. The exposure tests were performed at NTOU(Keelung), Chu-Wei Fishing Port(Taoyuan), and Lung-Fong Fishing Port( Miaoli). The tests included the mechanics performance of concrete, permeation of chloride, the chloride content on the concrete surface, and the corrosion rate of rebar. The results had shown that the mechanical properties and the resistance to chloride ions increased as the water binder ratio deceased. Furthermore, the addition of pozzolan mineral mixture had effectively reduced the diffusion coefficient of chloride. The chloride on the concrete surface and the square root of time had good linear relationship, and thus an exponential expression with the distance from the shore can be used to estimate the mixture proportion.
By the test results, the relationship between the chloride content on the concrete surface and the air borne chloride had also been studied. Depending on the effective precipitation, an empirical equation can be applied based on either total air borne chloride (Cair) or adhesive air borne chloride (Cadh). Besides, the diffusion coefficient of chloride obtained from exposure tests can be used to correct the one from the indoor accelerated tests, and can be applied to the diffusion formula of chloride, to estimate the required thickness of covering in various conditions of mixing proportion and chloride content.
The study results from this research can be used to initially define the distribution of salt injury in each county, and to provide adequate design thickness of covering for RC. The procedures and recommendations of this research can helpfully assist the engineers on designs of chloride-resistant and economic costal structures.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T00:11:30Z (GMT). No. of bitstreams: 1
ntu-100-D93521015-1.pdf: 8532730 bytes, checksum: 36777062362704921fadfc2bafd538e9 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents論文口試委員審定書 I
誌謝 III
中文摘要 V
英文摘要 VII
目錄 IX
表目錄 XIII
圖目錄 XVII
第一章 緒論 1
1.1 前言 1
1.2 研究目的 2
1.3 研究內容與論文架構 3
第二章 文獻回顧 5
2.1 大氣腐蝕機理與影響因子 5
2.1.1 大氣腐蝕劣化機理 5
2.1.2 大氣腐蝕劣化影響因子 7
2.2 鋼筋混凝土受氯離子腐蝕之機制 8
2.3 氯離子在混凝土中擴散行為 11
2.3.1 擴散方程式 11
2.3.2 爐石粉及飛灰對擴散係數之影響 13
2.3.3 水灰比對擴散係數之影響 19
2.4 臨界氯離子濃度 23
2.4.1 引起鋼筋開始銹蝕的氯離子濃度 23
2.4.2 氯離子臨界值之相關規定 25
2.5 腐蝕環境分區 28
2.5.1 大氣腐蝕環境分類 28
2.5.2 腐蝕環境分類 30
2.6 大氣中氯鹽量之試驗方法 35
2.6.1 濕燭法 35
2.6.2 飛來鹽份採集法 36
2.7 大氣中氯鹽量之分佈 37
第三章 實驗計晝 41
3.1 實驗內容與架構 41
3.2 大氣中氯鹽量分佈試驗 43
3.2.1 大氣中氯鹽採集試驗點規劃 43
3.2.2 氯鹽採集器製作及安裝 49
3.2.3 試驗方法 53
3.3 混凝土試體現地暴露試驗 54
3.3.1 暴露場地規劃 54
3.3.2 試體材料與參數 56
3.3.3 試體設計與建置 60
3.3.4 試驗方法與取樣頻率 64
3.4 現地結構物表面氯離子濃度試驗 65
3.5 耐久性質實驗 66
3.5.1 抗壓強度實驗 66
3.5.2 彈性模數實驗 66
3.5.3 中性化實驗 67
3.5.4 氯離子濃度實驗 67
3.5.5 鋼筋腐蝕電流試驗 68
3.5.6 基本實驗儀器 69
第四章 大氣中氯鹽量之分佈試驗結果與分析 73
4.1 總氯鹽量之試驗結果與分析 73
4.1.1 各地區月氯鹽量之比較 73
4.1.2 各地區季氯鹽量之比較 81
4.1.3 各地區年氯鹽量之比較 87
4.2 附著氯鹽量之試驗結果與分析 92
4.2.1 各地區月附著氯鹽量之比較 92
4.2.2 各地區季附著氯鹽量之比較 99
4.2.3 各地區年附著氯鹽量之比較 100
4.3 氯鹽量之等位線圖 102
4.4 小結 105
第五章 大氣中氯鹽量與環境因子關係之探討 107
5.1 距離因子與氯鹽量相關性之探討 107
5.1.1 氯鹽量與臨海距離之相關性 107
5.1.2 氯鹽量之衰減率及距離回歸式 109
5.2 方位、高程與氯鹽量相關性之探討 113
5.2.1 方位對氯鹽量之影響 113
5.2.2 高程對氯鹽量之影響 116
5.3 氣象因子與氯鹽量相關性之探討 119
5.3.1 氣象資料分析與轉換 119
5.3.2 氯鹽量與氣象參數關係之探討 127
5.4 氯鹽量之水平方向迴歸式分析結果 134
5.5 小結 135
第六章 鋼筋混凝土暴露試驗之結果與分析 137
6.1抗壓強度與彈性模數之結果與分析 137
6.1.1 抗壓強度與彈性模數試驗結果 137
6.1.2 不同暴露場地之比較 145
6.1.3 背海側及面海側之比較 148
6.2 中性化試驗之結果與分析 149
6.3 氯離子含量之分佈結果與分析 151
6.3.1 氯離子含量之分佈試驗結果 151
6.3.2 面海與背海氯離子含量之比較 157
6.3.3 各暴露點試體氯離子濃度之比較 159
6.3.4 表面氯離子含量與齡期之關係 161
6.4鋼筋腐蝕電流之結果與分析 165
6.4.1 鋼筋腐蝕電流之試驗結果 165
6.4.2 鋼筋腐蝕電流與混凝土中氯離子濃度之關係 167
6.5 小結 169
第七章 混凝土氯離子濃度與氯鹽量之關係 171
7.1 混凝土表面氯離子濃度與氯鹽量關係之探討 171
7.1.1 暴露試體表面氯離子濃度與氯鹽量關係之探討 171
7.1.2 現地構造物表面氯離子濃度與氯鹽量關係之探討 172
7.1.3 附著氯鹽量與有效雨量關係之探討 175
7.2 氯離子擴散係數之探討 177
7.2.1 加速試驗與暴露試驗氯離子擴散係數之比較 177
7.2.2 添加爐石、飛灰對氯離子擴散係數影響之探討 181
7.3 鹽害環境下保護層厚度之分析 184
7.3.1 不同臨界氯離子濃度對保護層厚度之探討 184
7.3.2 不同爐石、飛灰取代量對保護層厚度之探討 188
7.3.3 鋼筋混凝土結構物鹽害之對策分區 191
7.4 小結 196
第八章 結論與建議 199
8.1 結論 199
8.2 建議 202
參考文獻 203
dc.language.isozh-TW
dc.subject鋼筋腐蝕速率zh_TW
dc.subject氯鹽量zh_TW
dc.subject氯離子zh_TW
dc.subject擴散係數zh_TW
dc.subject暴露試驗zh_TW
dc.subjectair borne chlorideen
dc.subjectcorrosion rate of rebaren
dc.subjectexposure testen
dc.subjectdiffusion coefficienten
dc.subjectchloride ionen
dc.title北台灣沿海地區氯鹽環境與混凝土耐久性質之研究zh_TW
dc.titleOn the Correlation between Air-Borne Chloride and Durability of Concrete in Coastal Region of North Taiwanen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree博士
dc.contributor.oralexamcommittee陳振川(Jenn-Chuan Chern),楊仲家(Chung-Chia Yang),李釗(Chau Lee),張大鵬(Ta-Peng Chang),劉楨業(Tony Liu),劉玉雯(Yu-Wen Liu)
dc.subject.keyword氯鹽量,氯離子,擴散係數,暴露試驗,鋼筋腐蝕速率,zh_TW
dc.subject.keywordair borne chloride,chloride ion,diffusion coefficient,exposure test,corrosion rate of rebar,en
dc.relation.page209
dc.rights.note有償授權
dc.date.accepted2011-08-05
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
8.33 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved